西藏江达圭利大型深层滑坡蠕滑变形特征与稳定性分析

刘吉鑫, 郭长宝, 吴瑞安, 宋德光, 闫怡秋, 李祥. 2024. 西藏江达圭利大型深层滑坡蠕滑变形特征与稳定性分析. 地质通报, 43(10): 1855-1868. doi: 10.12097/gbc.2023.07.032
引用本文: 刘吉鑫, 郭长宝, 吴瑞安, 宋德光, 闫怡秋, 李祥. 2024. 西藏江达圭利大型深层滑坡蠕滑变形特征与稳定性分析. 地质通报, 43(10): 1855-1868. doi: 10.12097/gbc.2023.07.032
LIU Jixin, GUO Changbao, WU Ruian, SONG Deguang, YAN Yiqiu, LI Xiang. 2024. Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang. Geological Bulletin of China, 43(10): 1855-1868. doi: 10.12097/gbc.2023.07.032
Citation: LIU Jixin, GUO Changbao, WU Ruian, SONG Deguang, YAN Yiqiu, LI Xiang. 2024. Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang. Geological Bulletin of China, 43(10): 1855-1868. doi: 10.12097/gbc.2023.07.032

西藏江达圭利大型深层滑坡蠕滑变形特征与稳定性分析

  • 基金项目: 中国地质调查局项目《川西—藏东地区交通廊道活动构造与地质调查》(编号:DD20190319)和《全国重大工程地质安全风险区划与综合评价》(编号:DD20221816)
详细信息
    作者简介: 刘吉鑫(1998− ),男,在读博士生,从事地质灾害调查研究。E−mail:ljx18811071971@163.com
    通讯作者: 郭长宝(1980− ),男,博士,研究员,从事工程地质与地质灾害调查研究。E−mail:guochangbao@163.com
  • 中图分类号: P642.22

Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang

More Information
  • 青藏高原东缘地质环境条件复杂,在内外动力耦合作用下该区域发育一系列大型—特大型深层滑坡,曾多次发生滑坡失稳堵江事件。位于西藏江达县的圭利滑坡为一大型深层古滑坡,滑坡空间结构特征复杂、变形强烈。在收集并分析资料的基础上,综合利用野外地质调查、遥感解译、无人机航测、InSAR形变监测、数值模拟等研究方法,对圭利滑坡几何特征和蠕滑变形特征进行分析,并揭示其成因和失稳机制。研究结果表明,圭利滑坡在平面上可划分为滑坡后缘区(Ⅰ)和滑坡堆积区(Ⅱ)两部分,其中滑坡堆积区可划分为局部稳定区(Ⅱ1)和前缘强变形区(Ⅱ2、Ⅱ3),根据成都理工大学团队钻探数据,钻探揭露的深层滑带埋深分别为64.02 m、57.90 m、54.13 m,滑坡体积约6.55×107m3。SBAS-InSAR监测数据表明,圭利滑坡目前处于蠕滑变形阶段,局部处于加速变形阶段,强烈变形区位于滑坡中前部,向后呈渐进变形破坏特征,地表最大形变速率可达−92.12 mm/a,滑坡体变形主要受降雨和河流侵蚀影响。数值模拟结果表明,天然工况下滑体位移变形量较小,稳定性较好;暴雨工况下圭利滑坡的前缘强变形区出现明显的变形迹象,可能发生失稳下滑,牵引后部堆积体发生滑动,为典型的牵引式蠕滑变形模式,下滑的堆积体可能堵塞金沙江,存在形成堵江−溃坝−洪水灾害链的风险。研究结果可为圭利滑坡防治提供有效参考,对大型深层滑坡稳定性评价具有一定理论和实际意义。

  • 加载中
  • 图 1  金沙江上游江达县圭利段地质构造与地层岩性分布图

    Figure 1. 

    图 2  圭利滑坡发育特征

    Figure 2. 

    图 3  圭利滑坡工程地质平面图及平面形态特征

    Figure 3. 

    图 4  圭利滑坡A—A’工程地质剖面图

    Figure 4. 

    Figure Ⅰ. 

    图 5  圭利滑坡InSAR形变速率及典型剖面图

    Figure 5. 

    图 6  圭利滑坡监测点区域降雨量与累积变形量时序图(降雨数据据江达气象站)

    Figure 6. 

    图 7  圭利滑坡数值模型与网格划分图

    Figure 7. 

    图 8  不同工况下圭利滑坡位移变化图

    Figure 8. 

    图 9  不同工况下圭利滑坡最大剪应力云图

    Figure 9. 

    图 10  不同工况下圭利滑坡塑性应变云图

    Figure 10. 

    图 11  滑坡前缘强变形区稳定性系数与位移变化曲线

    Figure 11. 

    表 1  圭利滑坡模拟计算主要参数

    Table 1.  The main parameters of simulation calculation of Guili landslide

    岩性 饱和渗透系数/(m·s−1 天然容重/(kN·m−3 饱和容重/(kN·m−3 粘聚力/kPa 内摩擦角/° 弹性模量/kPa 泊松比
    滑坡堆积体1 2e-5 19.5 20 40 35 24000 0.31
    滑坡堆积体2 3.5e-6 18.6 19.2 25 33 22000 0.33
    含砾滑带土 4e-7 18 18.3 14 14 5000 0.3
    断层破碎带 - 22 - 50 24 180000 0.21
    基岩 - 24 - 60 26 200000 0.2
    下载: 导出CSV
  • [1]

    Chen J, Dai F C, Lv T Y, et al. 2013. Holocene landslide−dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 298: 107−113. doi: 10.1016/j.quaint.2012.09.018

    [2]

    Chen H, Huang J, Lin F, et al. 2008. The application of GeoStudio software in saturated−unsaturated seepage analysis of soil slopes[J]. Sichuan Architecture, 28(6): 67−68(in Chinese with English abstract).

    [3]

    Deng J H, Gao Y J, Yu Z Q, et al. 2019. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Dvanced Engineering Sciences, 51(1): 9−16(in Chinese with English abstract).

    [4]

    Du Y, Lu Y D, Xie M W, et al. 2020. Stability evaluation of creeping landslide considering variation of initial conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 39(S1): 2828−2836(in Chinese with English abstract).

    [5]

    Fan X M, Yang F, Subramanian S S, et al. 2020. Prediction of a multi−hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China[J]. Landslides, 17(1): 147−164. doi: 10.1007/s10346-019-01313-5

    [6]

    Gao Y J, Zhao S Y, Deng J H, Yu Z Q, et al. 2021. Flood assessment and early warning of the reoccurrence of river blockage at the Baige landslide[J]. Journal of Geographical Sciences, 31(11): 1694−1712. doi: 10.1007/s11442-021-1918-9

    [7]

    Guo C B, Yan Y Q, Zhang Y S, et al. 2022. Research progress and prospect of failure mechanism of large deep−seated creeping landslides in Tibetan Plateau, China[J]. Earth Science, 47(10): 3677−3700(in Chinese with English abstract).

    [8]

    Guo C B, Yan Y Q, Zhang Y S, et al. 2021. Study on the creep−sliding mechanism of the Giant Xiongba ancient landslide based on the SBAS−InSAR method, Tibetan Plateau, China[J]. Remote Sensing, 13(17): 3365. doi: 10.3390/rs13173365

    [9]

    Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in china since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract).

    [10]

    Li J J, Zhou S Z, Zhao Z J, et al. 2015. The Qingzang movement: the major uplift of the Qinghai−Tibetan Plateau[J]. Sci. China Earth Sci., 58: 2113−2122(in Chinese with English abstract).

    [11]

    Liu W, Ju N, Zhang Z, et al. 2020. Simulating the process of the Jinshajiang landslide−caused disaster chain in October 2018[J]. Bulletin of Engineering Geology and the Environment, 79: 2189−2199. doi: 10.1007/s10064-019-01717-6

    [12]

    Lu H Y, Li W L, Xu Q, et al. 2019. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 44(9): 1342−1354(in Chinese with English abstract).

    [13]

    Luan Y T, Wu Y J, Nian Y K, et al. 2003. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 23(3): 1−8(in Chinese with English abstract).

    [14]

    Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949.

    [15]

    Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28(in Chinese with English abstract).

    [16]

    Pan G T, Ren F, Yin F G, et al. 2020. Key zones of oceanic plate geology and Sichuan−Tibet Railway Project[J]. Earth Science, 45(7): 2293−2304(in Chinese with English abstract).

    [17]

    Peng J B, Ma R R, Lu Q Z, et al. 2004. Geological hazards effects of uplift of Qinghai−Tibet Plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract).

    [18]

    Sun L Q. 1983. The geological feature and its formation in the sanjiang arcuate structural zone[J]. Tibetan Plateau Geological Collection, (4): 63−74(in Chinese with English abstract).

    [19]

    Wang B D, Wang L Q, Wang D B, et al. 2021. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc−basin system, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 41(2): 246−264(in Chinese with English abstract).

    [20]

    Wang P F, Chen J, Dai F C, et al. 2014. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 217: 193−203. doi: 10.1016/j.geomorph.2014.04.027

    [21]

    Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives[J]. Engineering Geology, 174(1): 103−138.

    [22]

    Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 48(5): 120−128(in Chinese with English abstract).

    [23]

    Xu L, Chang M, Wu B B, et al. 2023. Development characteristics and movement process of Guili landslide in Jinsha River[J/OL]. Journal of Disaster Prevention and Mitigation Engineering, 43(7): 845−853(in Chinese with English abstract).

    [24]

    Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract).

    [25]

    Yan Y Q, Guo C B, Zhang Y S, et al. 2021. Study of the deformation characteristics of the Xiongbacien landslide based on the SBAS−InSAR method, Tibet, China[J]. Acta Geologica Sinica, 95(11): 3556−3570(in Chinese with English abstract).

    [26]

    Yan Y Q, Guo C B, Zhong N, et al. 2022. Deformation characteristics of Jiaju ancient landslide based on InSAR monitoring method, Sichuan, China[J]. Earth Science, 47(12): 4681−4697(in Chinese with English abstract).

    [27]

    Yang C, Tie Y B, Zhang X Z, et al. 2024. Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan M8.0 earthquake area based on numerical simulation[J]. China Geology, 7: 248−263. doi: 10.31035/cg2023144

    [28]

    Zhang P W, Liu D F, Huang D H, et al. 2003. Saturated−unsaturated unsteady seepage flow numerical simulation[J]. Rock and Soil Mechanics, (6): 927−930(in Chinese with English abstract).

    [29]

    Zhang Y S, Cheng Y L, Yao X, et al. 2013. The evolution process of Wenchuan earthquake−landslide−debris flow geohazard chain[J]. Geological Bulletin of China, 32(12): 1900−1910(in Chinese with English abstract).

    [30]

    Zhang Y S, Wu R A, Guo C B, et al. 2018. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 33(7): 728−740(in Chinese with English abstract).

    [31]

    Zhang Y S, Ba J R, Ren S S, et al. 2020. An analysis of geo−mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 47(6): 1637−1645(in Chinese with English abstract).

    [32]

    Zhang Y S, Li J Q, Ren S S, et al. 2022. Development characteristics of clayey altered rocks in the Sichuan Tibet traffic corridor and their promotion to large scale landslides[J]. Earth Science, 47(6): 1945−1956(in Chinese with English abstract).

    [33]

    Zhao G H, Lan H X, Yin H Y, et al. 2024. Deformation, structure and potential hazard of a landslide based on InSAR in Banbar county, Xizang (Tibet)[J]. China Geology, 7: 203−221. doi: 10.31035/cg2023130

    [34]

    Zhao S Y, Zheng Y R, Shi W M, et al. 2002. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 24(2): 254−260(in Chinese with English abstract).

    [35]

    Zheng Y R, Zhao S Y. 2004. Calculation of inner force of support structure for landslide/slope by using strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering, (20): 3552−3558(in Chinese with English abstract).

    [36]

    Zhu S N, Yin Y P, Huang P L, et al. 2021. Deformation characteristics and instability mechanism of large monoclinal layered neogenic bedrock landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 29(3): 657−667(in Chinese with English abstract).

    [37]

    陈浩, 黄静, 林锋. 2008. GeoStudio软件在土坡饱和—非饱和渗流分析中的应用[J]. 四川建筑, 28(6): 67−68. doi: 10.3969/j.issn.1007-8983.2008.06.030

    [38]

    邓建辉, 高云建, 余志球, 等. 2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术, 51(1): 9−16.

    [39]

    杜岩, 陆永都, 谢谟文, 等. 2020. 考虑初始条件变异的蠕滑型滑坡稳定性评价研究[J]. 岩石力学与工程学报, 39(S1): 2828−2836.

    [40]

    郭长宝, 闫怡秋, 张永双, 等. 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望[J]. 地球科学, 47(10): 3677−3700.

    [41]

    黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [42]

    陆会燕, 李为乐, 许强, 等. 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 44(9): 1342−1354.

    [43]

    栾茂田, 武亚军, 年延凯. 2003. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 23(3): 1−8. doi: 10.3969/j.issn.1672-2132.2003.03.001

    [44]

    潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    [45]

    潘桂棠, 任飞, 尹福光, 等. 2020. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 45(7): 2293−2304.

    [46]

    彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466. doi: 10.3321/j.issn:1001-8166.2004.03.018

    [47]

    孙立蒨. 1983. 三江弧形构造带地质构造特征及其形成[J]. 青藏高原地质文集, (4): 63−74.

    [48]

    王保弟, 王立全, 王冬兵, 等. 2021. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 41(2): 246−264.

    [49]

    吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128.

    [50]

    徐璐, 常鸣, 武彬彬, 等. 2023. 金沙江上游圭利滑坡发育特征及运动过程分析[J]. 防灾减灾工程学报, 43(7): 845−853.

    [51]

    许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551.

    [52]

    闫怡秋, 郭长宝, 张永双, 等. 2021. 基于SBAS−InSAR技术的西藏雄巴古滑坡变形特征[J]. 地质学报, 95(11): 3556−3570. doi: 10.3969/j.issn.0001-5717.2021.11.027

    [53]

    闫怡秋, 郭长宝, 钟宁, 等. 2022. 基于InSAR形变监测的四川甲居古滑坡变形特征[J]. 地球科学, 47(12): 4681−4697.

    [54]

    张培文, 刘德富, 黄达海, 等. 2003. 饱和-非饱和非稳定渗流的数值模拟[J]. 岩土力学, (6): 927−930. doi: 10.3969/j.issn.1000-7598.2003.06.011

    [55]

    张永双, 成余粮, 姚鑫, 等. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报, 32(12): 1900−1910.

    [56]

    张永双, 吴瑞安, 郭长宝, 等. 2018. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 33(7): 728−740. doi: 10.11867/j.issn.1001-8166.2018.07.0728

    [57]

    张永双, 巴仁基, 任三绍, 等. 2020. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质, 47(6): 1637−1645. doi: 10.12029/gc20200603

    [58]

    张永双, 李金秋, 任三绍, 等. 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学, 47(6): 1945−1956. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206004

    [59]

    赵尚毅, 郑颖人, 时卫民, 等. 2002. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 24(2): 254−260.

    [60]

    郑颖人, 赵尚毅. 2004.用有限元强度折减法求边(滑)坡支挡结构的内力[J]. 岩石力学与工程学报, 20: 3552−3558.

    [61]

    朱赛楠, 殷跃平, 黄波林, 等. 2021.三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究[J]. 工程地质学报, 29(3): 657−667.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  308
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2023-07-26
修回日期:  2024-02-08
刊出日期:  2024-10-15

目录