辽西柏杖子金矿花岗质岩体地球化学特征及其成矿意义

李红宾, 许卫军, 董国臣, 常泽光, 李华伟, 汤家辉, 苏麟, 梁景利. 2024. 辽西柏杖子金矿花岗质岩体地球化学特征及其成矿意义. 地质通报, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005
引用本文: 李红宾, 许卫军, 董国臣, 常泽光, 李华伟, 汤家辉, 苏麟, 梁景利. 2024. 辽西柏杖子金矿花岗质岩体地球化学特征及其成矿意义. 地质通报, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005
LI Hongbin, XU Weijun, DONG Guochen, CHANG Zeguang, LI Huawei, TANG Jiahui, SU Lin, LIANG Jingli. 2024. Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning. Geological Bulletin of China, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005
Citation: LI Hongbin, XU Weijun, DONG Guochen, CHANG Zeguang, LI Huawei, TANG Jiahui, SU Lin, LIANG Jingli. 2024. Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning. Geological Bulletin of China, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005

辽西柏杖子金矿花岗质岩体地球化学特征及其成矿意义

  • 基金项目: 重大科技专项计划《岩浆-流体系统成矿作用与空间结构》(编号:202303AA08000601)
详细信息
    作者简介: 李红宾(2000− ),男,在读硕士生,矿物学、岩石学、矿床学专业。E−mail:136751697@qq.com
    通讯作者: 董国臣(1962− ),男,教授,博士生导师,从事岩石学及矿床学研究。E−mail:donggc@cugb.edu.cn
  • 中图分类号: P588.12+1;P595;P597+.3

Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning

More Information
  • 辽西柏杖子金矿是冀东−辽西成矿带上较大规模的金矿之一,其金成矿与中生代岩浆作用形成的花岗质岩体关系密切。在野外调研的基础上,将柏杖子花岗质岩体划分为黑云母二长花岗岩、含黑云母二长花岗岩、二长花岗岩及花岗斑岩脉,同时开展了岩石学、岩石地球化学、年代学及Hf同位素研究。研究结果显示,花岗斑岩脉的锆石U−Pb年龄为231.0 ± 1.3 Ma和231.7 ± 2.7 Ma,形成于晚三叠世。花岗质岩体的主量元素均表现出高钾钙碱性、准铝到弱过铝质花岗岩的特征,微量元素表现出相对富集Rb、Th、U、K、Hf元素,相对亏损Ba、Ta、Nb、P、Ti元素,无明显Eu、Ce异常,相对富集轻稀土元素而亏损重稀土元素的特征,在构造环境判别图解中均落入后碰撞环境。哈克图解及微量元素协变图显示,从黑云母二长花岗岩到花岗斑岩脉具有I型花岗岩的演化趋势,并经历了黑云母、钾长石、磷灰石、钛铁矿、榍石等矿物的分离结晶。花岗斑岩脉的锆石Hf同位素显示εHft)值为−9.02~−5.62(平均−7.43),二阶段Hf模式年龄TMD2为1592~1810 Ma(平均1710 Ma),表明岩浆源区为古元古代晚期大陆地壳物质部分熔融形成。由锆石微量元素计算得到花岗斑岩脉的△FMQ为−1.23~4.65。花岗斑岩脉富碱、高氧逸度及中等演化程度的特征都有利于金成矿,具有较好的成矿潜力。

  • 加载中
  • 图 1  柏杖子大地构造图和区域地质图(a, b,据Miao et al., 2008修改)、矿体示意图(c,据矿区中段地质图修改)

    Figure 1. 

    图 2  柏杖子金矿花岗岩体TAS图解(a,据Middlemost,1994修改)、A/CNK−A/NK图解(b,据Maniar et al.,1989修改)、Si2O−K2O图解(c,据Rickwood,1989修改)和Si2O−(Na2O+K2O−CaO)图解(d,据Frost,2001修改)

    Figure 2. 

    图 3  柏杖子金矿花岗斑岩脉微量元素原始地幔标准蛛网图(a)和稀土元素球粒陨石标准化配分型式图(b)(原始地幔和球粒陨石数据据Sun et al., 1989

    Figure 3. 

    图 4  花岗斑岩脉锆石稀土元素配分图(a,c)和U−Pb年龄谐和图(b,d)

    Figure 4. 

    图 5  柏杖子金矿区相关花岗质侵入体年龄

    Figure 5. 

    图 6  柏杖子花岗质岩体哈克图解

    Figure 6. 

    图 7  柏杖子花岗质岩体元素协变关系图(底图据徐晓波等,2021

    Figure 7. 

    图 8  柏杖子金矿花岗斑岩脉构造环境判别图解(据Pearce et al.,1984修改)

    Figure 8. 

    图 9  柏杖子花岗斑岩脉锆石εHf(t)与U−Pb年龄图解

    Figure 9. 

    图 10  柏杖子金矿花岗斑岩脉锆石TTi-logfo2图解

    Figure 10. 

    表 1  柏杖子花岗质岩体主量元素分析数据

    Table 1.  Major elements of granitic rock mass from the Baizhangzi gold deposit %

    元素 花岗斑岩 黑云母二长花岗岩 含黑云母二长花岗岩 二长花岗岩
    20BZ
    14
    20BZ
    53
    20BZ
    129
    21BZ
    160
    21BZ
    172
    20BZ
    126
    20BZ
    30
    21BZ
    178
    20BZ
    141
    20BZ
    92
    20BZ
    13
    20BZ
    90
    20BZ
    43
    20BZ
    49
    21BZ
    173
    21BZ
    175
    SiO2 76.93 69.02 70.45 74.55 74.43 66.08 68.43 68.03 65.69 64.01 65.449 68.25 65.05 68.41 67.83 68.71
    Al2O3 12.33 10.75 14.61 12.52 13.57 15.35 15.39 14.51 15.92 15.29 15.58 15.35 15.52 14.77 14.76 15.3
    TiO2 0.05 0.06 0.19 0.07 0.11 0.38 0.29 0.28 0.35 0.36 0.35 0.29 0.35 0.27 0.29 0.29
    CaO 0.59 3.76 1.43 1.23 0.59 1.545 1.07 1.75 1.9 2.36 1.76 1.43 1.9 1.43 1.54 1.21
    MgO 0.23 1.94 0.60 0.22 0.26 1.15 0.75 0.64 0.85 1.21 0.98 0.62 0.72 0.65 0.62 0.45
    K2O 4.24 4.20 4.16 3.92 4.54 5.03 4.8 4.9 5.14 5.89 4.98 5.06 6.26 5.19 5.04 5.14
    Na2O 4.35 3.33 5.01 4.49 4.21 4.49 4.95 4.32 4.57 3.85 4.73 4.62 3.98 4.43 4.65 4.94
    MnO 0.02 0.08 0.05 0.04 0.01 0.06 0.04 0.06 0.04 0.11 0.05 0.06 0.05 0.05 0.06 0.02
    P2O5 <0.01 <0.01 0.08 0.03 0.05 0.24 0.14 0.11 0.26 0.3 0.23 0.18 0.24 0.14 0.13 0.14
    TFe2O3 0.38 1.26 1.27 0.72 0.82 3.13 2.12 1.75 2.5 2.46 2.62 1.65 2.51 2.11 1.57 2.18
    烧失量 0.78 5.34 1.874 1.40 0.84 2.39 1.57 2.75 2.07 3.65 2.79 2.18 2.61 2.03 2.68 1.56
    总计 99.91 99.74 99.73 99.19 99.43 99.85 99.55 99.10 99.29 99.49 99.52 99.69 99.19 99.48 99.17 99.94
    A/CNK 0.96 0.64 0.95 0.9 1.05 0.98 1.01 0.93 0.96 0.90 0.95 0.98 0.93 0.95 0.93 0.96
    A/NK 1.05 1.07 1.15 1.08 1.15 1.20 1.15 1.17 1.22 1.20 1.18 1.17 1.17 1.14 1.13 1.12
    σ 2.17 2.11 3.03 2.23 2.42 3.93 3.74 3.40 4.16 4.51 4.20 3.71 4.76 3.64 3.78 3.95
    K2O+ Na2O 8.67 7.97 9.37 8.60 8.88 9.52 9.75 9.22 9.71 9.74 9.71 9.68 10.24 9.62 9.69 10.08
    K2O/Na2O 0.98 1.26 0.83 0.87 1.08 1.12 0.97 1.13 1.12 1.53 1.05 1.10 1.57 1.17 1.08 1.04
      注:TFe2O3为全铁含量;A/CNK = molar[Al2O3/ (CaO +K2O+ Na2O)];A/NK = molar[Al2O3/ (K2O+ Na2O) ];σ = (K2O+ Na2O)2/(SiO2-43)
    下载: 导出CSV

    表 2  柏杖子花岗质岩体微量和稀土元素分析数据

    Table 2.  Trace elements and REE of granitic rock mass from the Baizhangzi gold deposit 10−6

    元素花岗斑岩黑云母二长花岗岩含黑云母二长花岗岩二长花岗岩
    20BZ1421BZ16020BZ12620BZ14120BZ1320BZ9220BZ4921BZ17321BZ175
    La14.518.884.484.884.368.467.473.477.8
    Ce24.333.4153154150130125137141
    Pr2.053.0515.116.416.214.013.014.014.7
    Nd5.799.3651.154.757.347.742.844.245.9
    Sm0.811.397.588.387.617.556.716.666.83
    Eu0.290.381.762.101.802.001.351.351.48
    Gd0.871.004.334.804.384.383.623.593.88
    Tb0.100.150.540.590.550.510.480.470.47
    Dy0.520.752.432.682.412.442.262.152.18
    Ho0.100.150.410.460.410.420.40.370.39
    Er0.360.431.141.211.151.081.111.071.05
    Tm0.0930.0750.170.170.160.170.160.160.15
    Yb0.700.581.051.111.061.021.031.031.01
    Lu0.100.0990.170.170.160.170.170.170.17
    ΣREE50.5869.56323.2331.6327.5279.8265.5285.6297.0
    LREE/HREE16.8320.5330.5628.6330.8626.4627.7630.7030.94
    δEu1.040.950.860.930.870.980.760.760.80
    δCe0.960.980.970.950.930.970.970.980.95
    (La/Yb)N14.9723.3057.6654.8057.0548.1046.9451.1255.25
    Li0.640.687.949.865.900.905.603.776.64
    Be6.595.513.884.724.305.015.035.095.60
    Sc1.310.743.53.683.594.332.452.432.31
    Cr5.415.4910.915.610.211.67.15108.82
    Co0.353.375.941787.087.294.14185131
    Ni1.173.738.667.838.248.144.273.325.62
    Ga13.816.818.720.120.11918.819.219.6
    Rb105106141134127174135134134
    Sr105162793855801801610479420
    Zr72.157.3368336363357308307325
    Nb14.514.219.316.219.118.620.52525.5
    Cs1.381.232.512.201.252.361.451.191.79
    Ba2482431580169413111771122110191789
    Hf4.073.518.518.178.48.697.477.818.5
    Ta1.071.461.000.931.010.951.171.991.76
    Tl0.530.600.840.680.70.980.730.730.66
    Pb22.246.228.230.516.525.730.415.720.3
    Th24.031.434.736.537.531.543.455.748.6
    U13.39.157.997.857.169.037.0311.77.15
    下载: 导出CSV

    表 3  柏杖子花岗斑岩脉LA−ICP−MS锆石 U−Th−Pb 测试结果

    Table 3.  Zircon U−Th−Pb isotopic data obtained by LA−ICP−MS of granite porphyry dykes from Baizhangzi

    测点 含量/10−6 Th/U 同位素比值 年龄/Ma 谐和度

    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    20BZ14
    01 21.45 555.14 413.44 1.34 0.0479 0.0022 0.2686 0.0068 0.0364 0.0004 241.6 5.5 230.2 2.5 95%
    02 26.30 649.17 504.73 1.29 0.0485 0.0017 0.2588 0.0067 0.0370 0.0004 233.7 5.4 233.9 2.4 99%
    03 11.14 278.61 212.95 1.31 0.0531 0.0015 0.2669 0.0074 0.0364 0.0004 240.2 5.9 230.6 2.6 95%
    04 17.74 361.38 359.99 1.00 0.0526 0.0016 0.2655 0.0082 0.0366 0.0004 239.1 6.6 231.9 2.5 96%
    05 14.87 332.75 292.59 1.14 0.0467 0.0021 0.2510 0.0070 0.0364 0.0004 227.4 5.7 230.7 2.6 98%
    06 16.62 373.98 348.86 1.07 0.0476 0.0022 0.2644 0.0085 0.0363 0.0004 238.2 6.9 230.1 2.4 96%
    07 45.01 931.99 918.24 1.01 0.0555 0.0013 0.2777 0.0053 0.0363 0.0004 248.8 4.2 230.0 2.3 92%
    08 38.00 810.32 828.33 0.98 0.0481 0.0025 0.2756 0.0077 0.0367 0.0006 247.2 6.1 232.1 3.9 93%
    09 21.97 474.08 438.04 1.08 0.0557 0.0016 0.2792 0.0073 0.0365 0.0004 250.0 5.8 231.3 2.6 92%
    10 42.12 847.88 860.04 0.99 0.0539 0.0013 0.2692 0.0068 0.0363 0.0005 242.0 5.5 230.0 2.9 94%
    11 27.93 556.62 597.56 0.93 0.0526 0.0012 0.2643 0.0064 0.0366 0.0005 238.1 5.1 231.9 3.2 97%
    12 18.63 388.53 372.25 1.04 0.0538 0.0020 0.2819 0.0073 0.0365 0.0004 252.1 5.8 231.4 2.5 91%
    13 53.52 1161.67 1076.05 1.08 0.0551 0.0012 0.2754 0.0070 0.0361 0.0005 247.0 5.6 228.8 2.9 92%
    14 20.48 498.22 396.15 1.26 0.0519 0.0016 0.2589 0.0074 0.0363 0.0003 233.8 6.0 229.9 2.2 98%
    15 17.82 405.83 343.99 1.18 0.0534 0.0018 0.2711 0.0093 0.0369 0.0005 243.6 7.4 233.3 2.8 95%
    16 23.26 489.43 462.66 1.06 0.0520 0.0022 0.2794 0.0079 0.0365 0.0004 250.2 6.3 231.2 2.6 92%
    20BZ129
    01 31.77 741.49 706.20 1.05 0.0546 0.0015 0.2675 0.0081 0.0355 0.0005 240.7 6.5 225.1 3.4 93%
    02 16.31 437.55 317.69 1.38 0.0513 0.0015 0.2526 0.0071 0.0358 0.0004 228.7 5.7 227.0 2.3 99%
    03 41.16 952.65 947.18 1.01 0.0533 0.0013 0.2503 0.0063 0.0342 0.0006 226.8 5.1 216.5 4.0 95%
    04 34.64 741.83 764.50 0.97 0.0529 0.0013 0.2662 0.0069 0.0365 0.0005 239.7 5.5 231.3 3.3 96%
    05 23.33 454.56 495.79 0.92 0.0498 0.0014 0.2526 0.0071 0.0368 0.0005 228.7 5.8 233.2 3.0 98%
    06 24.60 649.23 469.07 1.38 0.0508 0.0012 0.2597 0.0061 0.0371 0.0004 234.5 4.9 235.1 2.7 99%
    07 24.16 513.69 508.16 1.01 0.0536 0.0013 0.2674 0.0069 0.0361 0.0004 240.6 5.5 228.3 2.4 94%
    08 12.40 234.45 255.91 0.92 0.0497 0.0016 0.2523 0.0075 0.0370 0.0005 228.4 6.1 234.3 2.9 97%
    09 23.52 589.10 469.77 1.25 0.0535 0.0019 0.2654 0.0094 0.0360 0.0004 239.0 7.6 227.8 2.5 95%
    10 35.57 675.76 752.44 0.90 0.0489 0.0010 0.2506 0.0052 0.0372 0.0004 227.0 4.2 235.6 2.7 96%
    11 21.73 476.78 430.05 1.11 0.0498 0.0013 0.2580 0.0069 0.0376 0.0003 233.1 5.6 237.8 2.1 98%
    12 16.43 383.71 329.21 1.17 0.0481 0.0016 0.2407 0.0078 0.0364 0.0004 219.0 6.4 230.5 2.4 94%
    13 29.75 644.43 609.19 1.06 0.0513 0.0013 0.2641 0.0069 0.0373 0.0004 238.0 5.5 236.1 2.8 99%
    14 48.96 974.04 1030.80 0.94 0.0512 0.0010 0.2642 0.0056 0.0375 0.0006 238.1 4.5 237.6 3.7 99%
    15 30.70 752.22 601.35 1.25 0.0532 0.0012 0.2682 0.0057 0.0367 0.0004 241.3 4.6 232.1 2.4 96%
    下载: 导出CSV

    表 4  柏杖子花岗斑岩脉锆石稀土和微量元素分析数据

    Table 4.  Analysis results of zircon REE and trace elements of granite porphyry dykes from Baizhangzi 10−6

    测点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu logfo2 △FMQ △NNO
    20BZ14
    01 0.199 86.65 0.327 5.489 8.451 3.380 34.8 9.074 88.54 29.64 120.8 24.22 214.3 43.2 −16.70 −1.23 −1.79
    02 0.190 95.98 0.423 6.055 8.805 3.696 37.4 10.36 103.2 34.02 138.6 27.47 241.9 48.4 −16.27 −0.76 −1.32
    03 0.047 40.23 0.138 2.407 3.386 1.541 14.48 3.880 38.21 12.5 51.11 10.08 91.19 18.03 −16.19 0.17 −0.41
    04 2.065 82.01 0.728 5.894 7.495 2.629 28.51 7.917 80.15 28.32 117.9 23.8 219.5 44.51 −15.37 0.95 0.40
    05 0.184 62.94 0.255 3.238 4.998 1.971 20.6 5.699 54.74 18.59 74.58 14.85 134.8 27.28 −14.11 1.16 0.57
    06 2.99 74.82 1.255 11.15 13.14 4.883 45.49 11.91 116 38.18 157.8 31.06 278.5 54.48 −13.83 1.16 0.61
    07 2.399 113.3 1.419 8.318 9.546 2.994 36.9 9.912 97.74 33.25 138.4 27.89 254.9 49.26 −13.68 1.29 0.74
    08 0.46 96.65 0.769 8.88 13.28 4.695 55.59 14.89 150.1 49.49 203.1 40.92 362.7 70.73 −13.66 1.80 1.24
    09 6.382 96.54 1.731 10.62 7.914 2.664 29.25 7.808 74.79 25.38 105.8 21.08 189.4 37.15 −13.62 1.83 1.29
    10 6.759 105.5 1.929 11.06 7.704 2.673 30.56 8.459 86.81 29.99 128.4 25.91 230.1 45.73 −13.53 1.90 1.34
    11 0.059 102.7 0.254 4.073 8.366 2.892 35.23 10.09 104.1 37.41 156 32.02 285.1 58.68 −13.45 2.19 1.63
    12 0.356 79.51 0.404 4.677 6.595 2.546 28.01 7.293 76.4 26.02 106.3 21.58 195.2 39.3 −13.13 2.30 1.74
    13 9.015 200.7 3.473 21.70 17.85 5.920 67.96 17.93 182.7 62.85 266.9 53.39 483.6 95.11 −13.02 2.31 1.74
    14 9.171 96.58 2.642 14.51 8.472 2.875 29.01 7.276 71.54 23.57 94.64 18.84 168.8 32.42 −12.97 2.33 1.77
    15 0.027 72.99 0.289 4.729 8.029 3.036 30.12 8.210 82.63 27.45 111.9 21.88 199.4 39.58 −12.67 2.70 2.15
    16 13.35 119.3 3.457 15.95 9.4 3.531 33.91 9.429 97.13 33.85 141.5 28.39 261.3 52.61 −12.27 3.24 2.66
    20BZ129
    01 2.296 112 1.977 11.39 8.899 3.518 37.16 10.26 103.4 35.62 150.0 30.83 274.0 54.15 −15.03 −1.09 −1.55
    02 0.194 46.75 1.281 14.47 14.91 3.838 39.88 8.913 73.15 21.83 86.21 16.81 152.1 29.07 −14.99 0.50 −0.06
    03 3.442 121.6 2.235 12.44 10.85 3.321 40.09 10.72 110.7 38.13 162.5 32.27 296.1 57.86 −14.17 0.98 0.45
    04 9.566 138.8 4.694 23.33 12.45 3.799 40.99 10.99 115.9 39.56 168.5 34.31 313.5 60.86 −13.56 1.06 0.49
    05 4.314 98.62 1.905 12.45 8.474 3.109 31.85 8.968 91.69 31.64 132.9 27.44 248.9 49.99 −13.13 1.41 0.85
    06 0.620 93.96 0.445 5.171 8.052 3.066 32.92 8.643 85.05 28.01 113.1 22.79 200.2 39.93 −13.09 1.77 1.25
    07 2.301 97.97 2.389 12.26 9.487 3.390 33.56 9.117 89.37 30.32 126.1 25.75 232.3 45.75 −12.66 1.94 1.38
    08 0.040 39.04 0.307 3.931 4.779 1.352 15.30 3.417 32.42 9.995 42.52 8.912 82.80 16.90 −12.65 2.36 1.83
    09 1.129 90.85 0.703 6.863 6.769 2.871 29.32 7.666 77.45 24.74 100.0 19.93 180.7 35.65 −12.18 2.41 1.85
    10 0.120 104 0.277 3.389 7.421 2.471 33.39 9.749 98.05 33.37 142.5 28.89 262.8 51.56 −12.08 2.63 2.10
    11 2.458 94.30 0.821 7.094 8.020 2.567 30.39 8.067 79.84 25.92 108.6 21.39 190.0 37.87 −11.88 2.75 2.20
    12 0.034 71.90 0.277 4.633 6.747 2.961 30.40 8.319 80.01 27.89 117.4 23.48 212.8 43.31 −11.85 2.76 2.25
    13 0.641 104.2 0.517 6.336 8.711 3.478 37.91 10.49 106.2 36.41 152.3 30.82 279.4 55.50 −11.56 3.01 2.46
    14 4.094 117.3 1.574 9.175 9.277 2.913 38.32 10.05 103.8 35.53 151.2 30.65 283.6 54.57 −10.96 3.35 2.79
    15 0.262 116.3 0.412 5.363 8.844 3.138 37.39 10.16 101.4 34.18 140.3 27.76 250.9 49.28 −10.10 4.65 4.09
    01 2.296 112 1.977 11.39 8.899 3.518 37.16 10.26 103.4 35.62 150.0 30.83 274.0 54.15 −15.03 −1.09 −1.55
      注:logfo2为绝对氧逸度;△FMQ为对应温度下绝对氧逸度与铁橄榄石-磁铁矿+石英缓冲液氧逸度的差值;△NNO为对应温度下绝对氧逸度与自然镍-绿镍矿缓冲液氧逸度的差值;计算方法据Li et al., 2019
    下载: 导出CSV

    表 5  柏杖子花岗斑岩脉锆石Hf同位素分析结果

    Table 5.  Zircon Lu−Hf isotopic data of granite porphyry dykes from the Baizhangzi gold deposit

    测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ε Hf(0) ε Hf(t) TDM1/Ma TDM2/Ma
    20BZ14
    01230.20.0220900.0000890.0008450.0000040.2824320.000028−12.5−7.511541713
    02230.60.0256200.0003100.0009970.0000110.2824490.000024−11.9−6.911351677
    03231.90.0216200.0003200.0007930.0000130.2824730.000024−11.0−6.010951620
    04230.70.0265100.0002700.0010150.0000120.2824350.000030−12.4−7.411551708
    05230.10.0223220.0000740.0008610.0000030.2823890.000029−14.0−9.012151810
    06232.10.0273100.0003400.0010360.0000120.2824290.000020−12.6−7.611641721
    07231.90.0338100.0002100.0013380.0000070.2824440.000029−12.1−7.111521690
    08230.00.0391600.0006100.0013160.0000240.2824750.000021−11.0−6.111081622
    09228.80.0279600.0007600.0009810.0000180.2823960.000028−13.8−8.812091796
    10231.40.0279500.0003100.0010810.0000110.2824200.000029−12.9−7.911781742
    20BZ129
    01225.10.0241000.0005100.0008580.0000110.2824070.000019−13.4−8.511891773
    022270.0094200.0001500.0003690.0000050.2824850.000025−10.6−5.610671592
    03235.10.0258100.0004400.0009680.0000140.2824530.000041−11.7−6.711281665
    04231.30.0273900.0006700.0009960.0000170.2823900.000020−14.0−9.012181808
    05233.20.0277600.0003800.0010680.0000120.2824170.000025−13.0−8.011821747
    06228.30.0329100.0002900.0012190.0000050.2824090.000025−13.3−8.411981770
    07235.60.0291800.0003300.0010990.0000100.2824290.000025−12.6−7.511661719
    08230.50.0249700.0002400.0009470.0000080.2824460.000029−12.0−7.011381683
    09237.60.0289200.0007600.0010910.0000280.2824300.000027−12.6−7.411641716
    10232.10.0246800.0003400.0009360.0000130.2824700.000033−11.1−6.111041628
    下载: 导出CSV
  • [1]

    Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of Eastern Australia: implications for good−rich ore systems[J]. Resource Geology, 54: 241−252. doi: 10.1111/j.1751-3928.2004.tb00205.x

    [2]

    Breiter K, Lamarao C N, Kras Borges R M. 2014. Chemical characteristics of zircon from A−type granites and comparison to zircon of S−type granites[J]. Lithos, 192/195: 208−225. doi: 10.1016/j.lithos.2014.02.004

    [3]

    Chen X Y. 2021. Geological and Geochemical Characteristics and Geological Significance of Jinchangyu Intermediate−acid Dikes in East Hebei[D]. Master Thesis of Hebei GEO University (in Chinese with English abstract).

    [4]

    Cheng S B, Fu J M, Xu, D M, et al. 2009. Geochemical Characteristics and Petrogenensis of Xuehuading Granitic Batholith and its Enclaves, South China[J]. Geotectonica et Metallogenia, 33(4): 588−597 (in Chinese with English abstract).

    [5]

    Deng J F, Su S G, Zhao H L, et al. 2003. Deep Processes of Mesozoic YanShanian Lithosphere Thinning in North China[J]. Earth Science Frontiers, 10(3): 41−50 (in Chinese with English abstract).

    [6]

    Dong P S, Dong G C, Sun Z R, et al. 2018. Zircon U−Pb chronology, Hf isotopic compositions, geochemistry characteristics and geological significance of Shouw angfen complex in Yanshan region[J]. Earth Science Frontiers, 25(6): 264−276 (in Chinese with English abstract).

    [7]

    Dong P, Dong G, Santosh M, et al. 2020. Early cretaceous igneous activities in the north flank of the North China Craton: The Shouwangfen complex example[J]. International Geology Review, 62(6): 714−739. doi: 10.1080/00206814.2019.1631220

    [8]

    Dong P, Dong G, Santosh M, et al. 2022. Eocene magmatism in the western Tengchong Block: Implications for crust−mantle interaction associated with the slab rollback of the Neo−Tethys Ocean[J]. Gondwana Research, 106: 259−280. doi: 10.1016/j.gr.2022.01.018

    [9]

    Du D H, Yang Z M, Liu Y F, et al. 2015. Geology, alteration and mineralization of the Tinggong porphyry Cu deposit in southern Tibet[J]. Acta Petrologica et Mineralogica, 34(4): 447−474 (in Chinese with English abstract).

    [10]

    Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    [11]

    Geng J Z, Li H K, Zhang J, et al. 2011. Zircon Hf isotope analysis by means of LA−MC−ICP−MS[J]. Geological Bulletin of China, 30(10): 34−39. (in Chinese with English abstract).

    [12]

    Geng S F. 2019. Baizhangzi gold deposit metallogenic geological features and metallogenic prediction in lingyuan city of Liaoning province, China[D]. Master Thesis of Jilin University (in Chinese with English abstract).

    [13]

    Guo S F, Tang Z L, Luo Z H, et al. 2009. Zircon SHRIMP U−Pb dating and geological significance from granite bodies in Tangzhangzi and Niuxinshan, eastern Hebei Province, China[J]. Geological Bulletin of China, 28(10): 1458−1464 (in Chinese with English abstract).

    [14]

    Han B F. 2007. Diverse post−collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract).

    [15]

    He W, Ye H S, Cao J. 2018. The study of zircon U−Pb ages and Hf isotopes of the intrusions of the Tangzhangzi Au ( Mo) poly−metallic deposit and the geological implications[J]. Acta Petrologica Sinica, 34(9): 2703−2715 (in Chinese with English abstract).

    [16]

    Hoskin P W O, Schaltegger U. 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27−62. doi: 10.2113/0530027

    [17]

    Ishihara S I. 1977. The Magnetite−series and Ilmenite−series Granitic Rocks[J]. Mining Geology, 27: 293−305.

    [18]

    Lentz D R, Fowler A D. 1992. A Dynamic Model for Graphic Quartz−Feldspar Intergrowths in Granitic Pegmatites in the Southwestern Grenville Province[J]. The Canadian Mineralogist, 30(3): 571−585.

    [19]

    Li H W. 2020. Genesis and deep prospecting of altered granite type orebody in Baizhangzi gold deposit, Liaoning province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    [20]

    Li J F, Fu J M, Ma C Q, et al. 2021. Zircon U−Pb ages, geochemical characteristics and geological significance of Jinjiling pluton in Nanling[J]. Earth Science, 46(4): 1231−1247 (in Chinese with English abstract).

    [21]

    Li W, Cheng Y, Yang Z. 2019. Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity[J]. Geochemistry, Geophysics, Geosystems, 20(5): 2542–2555.

    [22]

    Liégeois J P. 1998. Preface−Some words on the post−collisional magmatism[J]. Lithos, 45: XV−XVIII. doi: 10.1016/S0024-4937(98)00065-6

    [23]

    Luo Z K, Li J J, Guan K, et a. 2004. SHRIMP zircon U Pb age of the granite at Baizhangzi gold field in Lingyuan, Liaoning Province[J]. Geological Survey and Research, 27(2): 82−85 (in Chinese with English abstract).

    [24]

    Luo Z K, Miao L C, Guan K, et al. 2003. SHRIMP U−Pb zircon dating of the Dushan granitic batholith and related granite−porphyry dyke, eastern Hebei Province, China, and their geological significance[J]. Geochimica, 32(2): 70−77 (in Chinese with English abstract).

    [25]

    Luo Z K, Qiu Y S, Guan K, et al. 2001. SHRIMP U−Pb dating on zircon from Yu’erya and Niuxinshan granite intrusions in eastern Hebei Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 278–285 (in Chinese with English abstract).

    [26]

    Maitre R W L. 1976. Some problems of the projection of chemical data into mineralogical classification[J]. Contributions to Mineralogy and Petrology, 56(2): 181−189. doi: 10.1007/BF00399603

    [27]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [28]

    Mao J W, Zhang Z H, Yu J J, et al. 2003. Mesozoic tectonic setting of large scale ore−forming in east China and adjacent areas: revealed by precise ages of metallic deposits[J]. Science in China (series D), 33(4): 289−299 (in Chinese with English abstract).

    [29]

    Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica, 21(1): 169−188 (in Chinese with English abstract).

    [30]

    Miao L C, Qiu Y M, Fan W M. 2008. Mesozoic multi−phase magmatism and gold mineralization in the Early Precambrian North China craton, eastern Hebei Province, China: SHRIMP Zircon U−Pb Evidence[J]. International Geology Review, 50(9): 826−847. doi: 10.2747/0020-6814.50.9.826

    [31]

    Middlemost E A K. 1994. Naming materials in the magma /igneous rock system[J]. Earth−science reviews, 37(3/4): 215−224. doi: 10.1016/0012-8252(94)90029-9

    [32]

    Miller C F, David W M. 1984. Extreme fractionation in felsic magma chambers: a product of liquid−state diffusion or fractional crystallization?[J]. Earth and Planetary Science Letters, 68(1): 151−158. doi: 10.1016/0012-821X(84)90147-X

    [33]

    Miller C F, McDowell, Susanne M, et al. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 31(6): 529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    [34]

    Othmar M, Peter B K, Timothy L G. 2001. The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study[J]. Contributions to Mineralogy and Petrology, 141(6): 643−658. doi: 10.1007/s004100100266

    [35]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace Element Discrimination Diagrams for the Tectonic In−terpretation of Granitic Rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    [36]

    Pichavant M, Montel J M, Richard L R. 1992. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison−Watson model[J]. Geochimica et Cosmochimica Acta, 56(10): 3855−3861. doi: 10.1016/0016-7037(92)90178-L

    [37]

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247−263. doi: 10.1016/0024-4937(89)90028-5

    [38]

    Rudnick R L, Gao S. 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4: 1−51.

    [39]

    Sláma J, Kosler J, Condon D J, et al. 2008. Plesovice zircon − A new natural reference material for U−Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249: 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    [40]

    Su L. 2020. The granite in the Baizhangzi, western Liaoning and the significance of gold mineralization[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    [41]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    [42]

    Wang C, Wei Q R, Liu X N, et al. 2014. Post−collision related late indosinian granites of Gangdise terrane: Evidences from zircom U−Pb geochronology and petrogeochemistry[J]. Earth Science–Journal of China University of Geosciences, 39(9): 1277−1288 (in Chinese with English abstract).

    [43]

    Wang X O. 2014. Geological characteristics and metallogenic model of the Baizhangzi gold deposit in Lingyuan, Liaoning Province[J]. Geology and Resources, 23(4): 339–342 (in Chinese with English abstract).

    [44]

    Wang, X W, Wang X D, 2002. Some diagnostic criteria for mineralized granite[J]. Acta Petrologica et Mineralogica, 21(2): 119–130 (in Chinese with English abstract).

    [45]

    Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64: 295−304. doi: 10.1016/0012-821X(83)90211-X

    [46]

    Wei Q, Xuan L, Ma L, et al. 2016. Prospecting New Progress and Significance in Maojiadian–Baizhangzi Gold–concentrated Area[J]. NON–Ferrous Mining and Metallurgy, 32(3): 4−8 (in Chinese with English abstract).

    [47]

    Wei Y H. 1992. Stable Isotope Characteristics of Baizhangzi Gold Deposit in Liaoning[J]. Journal of Shenyang Institute of Gold Technology, 11(4): 20−26 (in Chinese with English abstract).

    [48]

    Whalen J B, Crurrie K L, Chappell B W. 1987. A−type granite: Geochemical characteristics, discrimination and petrogenesis[J]. Contribution to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    [49]

    Wu F Y, Li X H, Yang J H, et al. 2007a. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238 (in Chinese with English abstract).

    [50]

    Wu F Y, Li X H, Zheng Y F, et al. 2007b. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 27(2): 185−220 (in Chinese with English abstract).

    [51]

    Xiong L, 2017. The Relationship between E volution of the Mesozoic Magmatic Rocks and Gold Metallogenesis in Eastern Hebei− western Liaoning District[D]. Ph.D Thesis of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    [52]

    Xu X Y, Jiang N, Fan W B, et al. 2016. Petrogenesis and geological implications for the Mesozoic granites in Qinglong area, eastern Hebei Province[J]. Acta Petrologica Sinica, 32(1): 212−232 (in Chinese with English abstract).

    [53]

    Xu X B, Wang L X, Ma C Q, et al. 2021. Petrogenesis and geological implications of the Yangfengou intermediate felsic dykes in the Balong area within the Eastern Kunlun orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 654–674 (in Chinese with English abstract).

    [54]

    Yan X, Chen B, Wang Z Q, et al. 2019. The petrogenesis of the two stage A −type granites from the Niujuan silver deposit in the northern margin of North China Craton and their tectonic implications[J]. Acta Petrologica Sinica, 35(2): 558−588 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.18

    [55]

    Yang A X, Sun D Y, Hou X G, et al. 2021. Geochemical characteristics and geological significance of diorite of Yu'erya gold deposit area in Eastern Hebei Province[J]. Journal of Jilin University (Earth Science Edition), 51(2): 416−428 (in Chinese with English abstract).

    [56]

    Ye H. 2014. The Early Mesozoic magmatism and deformation in the east segment of the northern margin of the North China Craton[D]. Ph.D Thesis of China Academy of Geological Sciences (in Chinese with English abstract).

    [57]

    Zhang D Y, Wang S Z, Cao C, et al. 2022. Mesozoic magmatism and metallogenic significance in eastern Hebei gold belt: Evidence from zircon mineralogy[J]. Geological Review, 68(4): 1361−1374 (in Chinese with English abstract).

    [58]

    Zhang Q, Wang Y L, Jin W J, et al. 2008. Criteria for the recognition of pre−, syn− and post−orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1−18 (in Chinese with English abstract).

    [59]

    Zhang S H, Zhao Y, Song B, et al. 2009. Contrasting Late Carboniferous and Late Permian--Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121: 181–200.

    [60]

    Zhang S H, Zhao Y, Ye H, et al. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction[J]. Lithos, 155: 1−18. doi: 10.1016/j.lithos.2012.08.009

    [61]

    Zhao H L, Deng J F, Di Y J, et al. 1997. The genesis and model of Yuerya gold deposit[J]. Earth Science, 22(3): 53−56(in Chinese with English abstract).

    [62]

    Zhao J H, Peng J T, Hu R Z, et al. 2005. Chronology, petrology, geochemistry and tectonic environment of Banxi quartz porphyry Dikes, Hunan Province[J]. Acta Geoscientica Sinica, 26(6): 525−534 (in Chinese with English abstract).

    [63]

    Zhao L. 2019. Geological characteristics and direction of altered granite type gold deposit in Baizhangzi, Liaoning Province[D]. Master Thesis of Jilin University (in Chinese with English abstract).

    [64]

    陈显玉. 2021. 冀东金厂峪中酸性岩脉地质地球化学特征及地质意义[D]. 河北地质大学硕士学位论文.

    [65]

    程顺波, 付建明, 徐德明, 等. 2009. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J]. 大地构造与成矿学, 33(4): 588−597. doi: 10.3969/j.issn.1001-1552.2009.04.013

    [66]

    邓晋福, 苏尚国, 赵海玲, 等. 2003. 华北地区燕山期岩石圈减薄的深部过程[J]. 地学前缘, 10(3): 41−50. doi: 10.3321/j.issn:1005-2321.2003.03.003

    [67]

    董朋生, 董国臣, 孙转荣, 等. 2018. 燕山地区寿王坟杂岩体锆石U−Pb年代学、Hf同位素和地球化学特征及其地质意义[J]. 地学前缘, 25(6): 264−276.

    [68]

    杜等虎, 杨志明, 刘云飞, 等. 2015. 西藏厅宫斑岩铜矿床地质、蚀变及矿化特征研究[J]. 岩石矿物学杂志, 34(4): 447−474. doi: 10.3969/j.issn.1000-6524.2015.04.002

    [69]

    耿建珍, 李怀坤, 张健, 等. 2011. 锆石Hf同位素组成的LA−MC−ICP−MS测定[J]. 地质通报, 30(10): 34−39. doi: 10.3969/j.issn.1671-2552.2011.10.004

    [70]

    耿树峰. 2019. 辽宁省凌源市柏杖子金矿床成矿地质特征与成矿预测[D]. 吉林大学硕士学位论文.

    [71]

    郭少丰, 汤中立, 罗照华, 等. 2009. 冀东唐杖子、牛心山花岗岩体锆石SHRIMP U−Pb定年及其地质意义[J]. 地质通报, 28(10): 1458−1464. doi: 10.3969/j.issn.1671-2552.2009.10.012

    [72]

    韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006

    [73]

    贺文, 叶会寿, 曹晶. 2018. 冀东唐杖子金(钼)多金属矿区侵入岩体锆石U−Pb年龄、Hf同位素特征及其地质意义[J]. 岩石学报, 34(9): 2703−2715.

    [74]

    李华伟. 2020. 辽宁柏杖子金矿区蚀变花岗岩型矿体成因及深部找矿预测[D]. 中国地质大学(北京)硕士学位论文.

    [75]

    李剑锋, 付健明, 马昌前, 等. 2021. 南岭金鸡岭岩体锆石U−Pb年龄、地球化学特征及地质意义[J]. 地球科学, 46(4): 1231−1247.

    [76]

    罗镇宽, 李俊健, 关康, 等. 2004. 辽宁凌源柏杖子金矿区花岗岩SHRIMP锆石U−Pb年龄[J]. 地质调查与研究, 27(2): 82−85.

    [77]

    罗镇宽, 苗来成, 关康, 等. 2003. 冀东都山花岗岩基及相关花岗斑岩脉 SHRIMP 锆石 U−Pb年龄[J]. 地球化学, 32(2): 70−77.

    [78]

    罗镇宽, 裘有守, 关康, 等. 2001. 冀东峪耳崖和牛心山花岗岩体 SHRIMP 锆石 U−Pb 定年及其意义[J]. 矿物岩石地球化学通报, 20(4): 278−285. doi: 10.3969/j.issn.1007-2802.2001.04.021

    [79]

    毛景文, 张作衡, 余金杰, 等. 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学(D辑: 地球科学), 33(4): 289−299.

    [80]

    毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017

    [81]

    苏麟. 2020. 辽西柏杖子花岗岩及其对金成矿意义[D]. 中国地质大学(北京)硕士学位论文.

    [82]

    王程, 魏启荣, 刘小念, 等. 2014. 冈底斯印支晚期后碰撞花岗岩: 锆石 U−Pb 年代学及岩石地球化学证据[J]. 地球科学—中国地质大学学报, 39(9): 1277−1288.

    [83]

    王晓鸥. 2014. 辽宁凌源柏杖子金矿床地质特征及成矿模式[J]. 地质与资源, 23(4): 339−342.

    [84]

    汪雄武, 王晓地. 2002. 花岗岩成矿的几个判别标志[J]. 岩石矿物学杂志, 21(2): 119−130. doi: 10.3969/j.issn.1000-6524.2002.02.005

    [85]

    魏强, 玄力, 马利, 等. 2016. 毛家店-柏杖子金矿集中区找矿新进展及意义[J]. 有色矿冶, 32(3): 4−8.

    [86]

    魏有惠. 1992. 辽宁柏杖子金矿床稳定同位素特征[J]. 沈阳黄金学院学报, 11(4): 20−26.

    [87]

    吴福元, 李献华, 杨进辉, 等. 2007a. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238.

    [88]

    吴福元, 李献华, 郑永飞, 等. 2007b. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, 27(2): 185−220.

    [89]

    熊乐. 2017. 冀东—辽西地区中生代岩浆演化与金成矿关系[D]. 中国地质大学(武汉)博士学位论文.

    [90]

    徐希阳, 姜能, 范文博, 等. 2016. 冀东青龙地区中生代花岗岩的岩石成因和地质意义[J]. 岩石学报, 32(1): 216−236.

    [91]

    徐晓波, 王连训, 马昌前, 等. 2021. 东昆仑造山带巴隆地区羊粪沟中酸性岩脉成因及其地质意义[J]. 矿物岩石地球化学通报, 40(3): 654−674.

    [92]

    严翔, 陈斌, 王志强, 等. 2019. 华北克拉通北缘牛圈银矿区两期A型花岗岩的成因及其构造意义[J]. 岩石学报, 35(2): 558−588.

    [93]

    杨爱雪, 孙德有, 侯雪刚, 等. 2021. 冀东峪耳崖金矿区闪长岩脉地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 51(2): 416−428.

    [94]

    叶浩. 2014. 华北北缘东段早中生代构造变形与岩浆作用研究[D]. 中国地质科学院博士学位论文.

    [95]

    张岱岳, 王树志, 曹冲, 等. 2022. 冀东金矿带中生代岩浆作用及其成矿意义——来自锆石矿物学证据[J]. 地质论评, 68(4): 1361−1374.

    [96]

    张旗, 王元龙, 金惟俊, 等. 2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 27(1): 1−18. doi: 10.3969/j.issn.1671-2552.2008.01.001

    [97]

    赵海玲, 邓晋福, 狄永军, 等. 1997. 河北峪耳崖金矿矿床成因及成矿模式[J]. 地球科学, 22(3): 53−56.

    [98]

    赵军红, 彭建堂, 胡瑞忠, 等. 2005. 湖南板溪脉岩的年代学、岩石学、地球化学及其构造环境[J]. 地球学报, 26(6): 525−534. doi: 10.3321/j.issn:1006-3021.2005.06.007

    [99]

    赵亮. 2019. 辽宁柏杖子蚀变花岗岩型金矿地质特征及找矿方向[D]. 吉林大学硕士学位论文.

  • 加载中

(11)

(5)

计量
  • 文章访问数:  286
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2023-08-02
修回日期:  2024-01-26
刊出日期:  2024-10-15

目录