同构造岩浆流动与相对稳定环境下岩体侵位的差异性及其对华北北缘晚古生代晚期—早中生代构造演化的约束

蒋小洁, 刘松楠, 周丽云, 陈鑫, 王瑜. 2024. 同构造岩浆流动与相对稳定环境下岩体侵位的差异性及其对华北北缘晚古生代晚期—早中生代构造演化的约束. 地质通报, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029
引用本文: 蒋小洁, 刘松楠, 周丽云, 陈鑫, 王瑜. 2024. 同构造岩浆流动与相对稳定环境下岩体侵位的差异性及其对华北北缘晚古生代晚期—早中生代构造演化的约束. 地质通报, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029
JIANG Xiaojie, LIU Songnan, ZHOU Liyun, CHEN Xin, WANG Yu. 2024. Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate. Geological Bulletin of China, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029
Citation: JIANG Xiaojie, LIU Songnan, ZHOU Liyun, CHEN Xin, WANG Yu. 2024. Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate. Geological Bulletin of China, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029

同构造岩浆流动与相对稳定环境下岩体侵位的差异性及其对华北北缘晚古生代晚期—早中生代构造演化的约束

  • 基金项目: 国家自然科学青年科学基金项目《福建长乐−南澳韧性剪切带内同构造岩浆流动及其地质意义》(批准号:4160020778)
详细信息
    作者简介: 蒋小洁(1994− ),女,硕士,地质工程专业。E-mail:373629089@qq.com
    通讯作者: 王瑜(1966− ),男,教授,从事构造年代学、陆内构造变形与机理、大地构造等的教学与科研工作。E-mail:wangy@cugb.edu.cn
  • 中图分类号: P541; P588.12+1

Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate

More Information
  • 花岗质岩浆岩是大陆地壳的重要组成部分,对华北北缘燕山地区构造变形、基本构造格架的分析已经做了大量研究,但对于花岗岩体侵位的动力学环境研究较少。与相对稳定构造环境下侵位的花岗岩不同,同构造岩浆流动通常发生在大陆边缘、造山带等构造活跃带,在强烈的构造应力场影响下,岩体特征、侵位过程、流动方向通常十分复杂。华北板块北缘在晚古生代期间有大量花岗质岩体侵入,其构造属性与成因分析为研究古亚洲洋的俯冲与华北板块破坏提供了关键证据。对华北板块北缘的大光顶岩体和盘山岩体从宏观到微观进行构造变形及岩石学特征分析,结合电子探针手段进行半定量的矿物学研究,并利用角闪石压力计来计算岩体形成的压力条件,得出岩体侵位的深度,探讨华北北缘不同动力学背景下的构造环境。大光顶花岗闪长岩在露头尺度上表现为大量轴面低角度北倾的无根褶皱,包体和捕虏体长轴平行于流动面理,显微镜下可见角闪石、黑云母等暗色矿物定向排列,具有典型的同构造变形特征,角闪石全铝压力计指示结晶压力为3.62~5.64 kbar,大致对应中地壳的深度(12.86~22.99 km),认为晚古生代(320~290 Ma)时期,华北板块北缘中下地壳重熔形成由北向南的同构造岩浆流动,同时也为中—深层次的应力传递提供媒介。中生代盘山花岗岩中的包体、捕虏体未发生变形,也无暗色矿物定向排列,岩体与围岩接触带发育热接触变质作用形成大理岩,属稳定构造环境下侵位的花岗岩。

  • 加载中
  • 图 1  阴山−燕山构造带大地构造背景(a, 据Wang et al., 2018修改)及区域地层综合柱状图(b)

    Figure 1. 

    图 2  大光顶岩体分布特征及其地质图(底图据1∶20万承德幅K–50–(28),1973修改)

    Figure 2. 

    图 3  矿物定向排列形成暗色与浅色相间的面理构造

    Figure 3. 

    图 4  大光顶岩体地质剖面图

    Figure 4. 

    图 5  盘山岩体地质构造图(底图据1∶20万兴隆幅(K–50–(34),1965修改)

    Figure 5. 

    图 6  同构造岩浆流动(大光顶岩体)与相对稳定构造环境下花岗岩(盘山岩体)宏观特征及对比

    Figure 6. 

    图 7  同构造岩浆流动(大光顶岩体)微观特征及其与相对稳定构造环境下花岗岩(盘山岩体)对比

    Figure 7. 

    图 8  华北板块北缘晚古生代造山与岩浆活动演化示意图(据Zhou et al., 2012 修改)

    Figure 8. 

    图 9  盘山花岗岩侵位示意图

    Figure 9. 

    表 1  角闪石化学成分分析及压力、结晶深度计算

    Table 1.  Analysis of amphibolite components and calculation of pressure and crystallization depth

    样品号 NCC–4–1 NCC–4–2 NCC–4–3 NCC–4–4 NCC–5–1 NCC–5–2 NCC–5–3 NCC–5–4 NCC–8–1 NCC–8–2
    SiO2 41.81 41.66 41.15 40.82 42.00 41.48 42.96 42.57 44.54 44.97
    TiO2 0.88 0.73 0.87 1.08 1.67 1.79 1.66 1.66 0.95 1.08
    Al2O3 10.27 10.63 10.39 10.49 10.86 10.45 10.05 9.96 8.75 8.38
    FeO 20.22 20.27 20.80 21.11 19.84 20.06 19.68 20.54 17.94 17.33
    MnO 0.42 0.52 0.44 0.40 0.95 0.87 0.95 0.90 0.51 0.34
    MgO 9.36 9.18 8.84 8.53 8.80 8.77 9.47 9.43 10.89 11.00
    CaO 11.68 11.84 11.75 11.90 10.61 10.48 10.92 10.58 11.73 11.88
    Na2O 1.57 1.24 1.64 1.52 1.69 1.71 1.58 1.58 1.33 1.26
    K2O 1.13 1.21 1.37 1.45 1.34 1.20 1.25 1.20 0.78 0.78
    NiO 0.00 0.00 0.03 0.00 0.11 0.00 0.06 0.00 0.09 0.12
    总计 97.33 97.31 97.27 97.31 97.89 96.81 98.58 98.43 97.56 97.18
    Si 6.34 6.31 6.29 6.26 6.30 6.29 6.38 6.32 6.63 6.73
    AlIV 1.66 1.69 1.71 1.74 1.70 1.71 1.62 1.68 1.37 1.27
    AlVI 0.17 0.21 0.16 0.16 0.22 0.16 0.14 0.06 0.17 0.20
    Ti 0.10 0.08 0.10 0.12 0.19 0.20 0.19 0.19 0.11 0.12
    Fe3+ 0.83 0.87 0.74 0.67 0.94 1.01 0.93 1.19 0.71 0.51
    Mg 2.12 2.07 2.02 1.95 1.97 1.98 2.10 2.09 2.42 2.45
    Mn 0.05 0.07 0.06 0.05 0.12 0.11 0.12 0.11 0.06 0.04
    Fe2+ 1.74 1.69 1.92 2.04 1.55 1.54 1.51 1.36 1.52 1.66
    Ca 1.90 1.92 1.92 1.96 1.71 1.70 1.74 1.68 1.87 1.90
    Al(total) 1.83 1.90 1.87 1.90 1.92 1.87 1.76 1.74 1.54 1.48
    P/kbar (Hammarstrom et al., 1986) 5.31 5.62 5.50 5.62 5.74 5.48 4.93 4.85 3.81 3.51
    P/kbar (Hollister et al., 1987) 5.58 5.94 5.80 5.94 6.07 5.78 5.17 5.07 3.90 3.57
    P/kbar (Johnson et al., 1989) 4.30 4.57 4.46 4.57 4.67 4.44 3.99 3.91 3.04 2.79
    P/kbar (Schmidt, 1992) 5.72 6.02 5.91 6.02 6.13 5.88 5.37 5.29 4.30 4.02
    P/kbar (Anderson et al., 1995) 5.24 5.53 5.42 5.53 5.64 5.40 4.91 4.83 3.89 3.62
    深度/km 21.01 22.46 21.90 22.46 22.99 21.78 19.32 18.92 14.20 12.86
      注:主量元素含量单位为%
    下载: 导出CSV
  • [1]

    Anderson J L, Smith D R. 1995. The effect of temperature and oxygen fugacity on Al−in−hornblende barometry[J]. American mineralogist, 80: 549−559. doi: 10.2138/am-1995-5-614

    [2]

    Anderson J L. 1996. Status of thermobarometry in granitic batholiths[J]. Transactions of the Royal Society of Edinburgh, 87(1/2): 125−138.

    [3]

    Anderson J L, Barth A P, Wooden J L, et al. 2008. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 69(1): 121−142. doi: 10.2138/rmg.2008.69.4

    [4]

    Archanjo C J. 2020. Composite magmatic/magnetic fabrics evidences late AMS in syn−tectonic dikes in the Monteiro−Sume plutonic−volcanic complex (NE Brazil)[J]. Journal of Structural Geology, 140: 104154.1−104154.16.

    [5]

    Bettioui D, Liegeois J P, Fettous E H, et al. 2022. Syn−kinematic emplacement of granitic batholith and leucogranite along the extensional detachment shear zone system of the Tin Begane area, Laouni terrane (LATEA metacraton, Central Hoggar, Algeria)[J]. Precambrian Research, 368: 106484. doi: 10.1016/j.precamres.2021.106484

    [6]

    Bose S, Adlakha V, Pundir S. 2022. Submagmatic flow to solid−state ductile deformation of the Karakoram Batholith, India: insights into syn−tectonic cooling and exhumation[J]. International Journal of Earth Sciences, 111(7): 2337−2352. doi: 10.1007/s00531-022-02236-8

    [7]

    Cao H H. 2013. Geochronology and geochemical of the Late Paleozoic−Early Mesozoic igneous rocks in the eastern segment of the northern margin of the North China Block[D]. Ph. D. Dissertation of Jilin University: 100−122(in Chinese with English abstract).

    [8]

    Ellwood B B, Whitney J A. 1980. Magnetic fabric of the Elberton granite, northeast Georgia[J]. Journal of Geophysical Research, 85: 1481−1486. doi: 10.1029/JB085iB03p01481

    [9]

    Fu J Y, Na F C, Li Y C, et al. 2021. Southward subduction of the Mongo−Okhotsk Ocean Middle Triassic magmatic records of the Luomahu Group in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 40(6): 889−904(in Chinese with English abstract).

    [10]

    Gong M, Cai J H, Yan G H, et al. 2019. Petrogeochemical characteristics and zircon SHRIMP U−Pb ages of the alkaline intrusions on northern side of the Yinshan Mountains−Yanshan Mountains and their tectonic significances[J]. Geological Review, 65(4): 894−914(in Chinese with English abstract).

    [11]

    Hammarstrom J M, Zen E. 1986. Aluminum in hornblende: An empirical igneous geobarometer[J]. American Mineralogist, 71(11/12): 1297−1313.

    [12]

    Hebei Provincial Bureau of Geology and Mineral Resources. 1994. 1∶50000 Longhua County Regional Geological Survey Report[R].

    [13]

    Hollister L S, Grissom G C, Peters E K, et al. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc−alkaline plutons[J]. American Mineralogist, 72(3): 231−239.

    [14]

    Hossain I, Tsunogae T, Rajesh H M. 2009. Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate[J]. Journal of Asian Earth Sciences, 34(6): 731−739. doi: 10.1016/j.jseaes.2008.10.010

    [15]

    Johnson M C, Rutherford M J. 1989. Experimental calibration of the aluminum−in−hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks[J]. Geology, 17(9): 837−841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2

    [16]

    Li M X, Wang L J, Zhang L M, et al. 2023. Petrogenesis of the Huobulin granite in the southern part of the Xing'an Block and its insight into the evolution of the Mongol−Okhotsk Ocean[J]. Geological Bulletin of China, 42(9): 1541−1555(in Chinese with English abstract).

    [17]

    Liu Y L, Wang Q S, Zhao J H. 1978. A preliminary study based on gravity data of the crustal structure of the Peking−Tientsin area and its neighboring regions[J]. Acta Geophysica Sinica, 21(1): 9−17(in Chinese with English abstract).

    [18]

    Ma X, Chen B, Chen J F, et al. 2012. Zircon SHRIMP U−Pb age, geochemical, Sr−Nd isotopic, and in−situ Hf isotopic data of the Late Carboniferous−Early Permian plutons in the northern margin of the North China Craton[J]. Science China: Earth Sciences, 42(12): 1830−1850(in Chinese with English abstract).

    [19]

    Ma Y S, Zeng Q L, Song B, et al. 2007. SHRIMP U−Pb dating of zircon from Panshan granitoid pluton in Yanshan orogenic belt and its tectonic implications[J]. Acta Petrologica Sinica, 23(3): 547−556(in Chinese with English abstract).

    [20]

    McNulty B A, Tobisch O T, Cruden A R, et al. 2000. Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California[J]. GSA Bulletin, 112(1): 119−135. doi: 10.1130/0016-7606(2000)112<119:MEOTMG>2.0.CO;2

    [21]

    Paterson S R, Vernon R H, Tobisch O T. 1989. A review of criteria for the identifification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 11(3): 349−363. doi: 10.1016/0191-8141(89)90074-6

    [22]

    Philpotts A R, Asher P M. 1994. Magmatic flow−direction indicators in a giant diabase feeder dike, Connecticut[J]. Geology, 22(4): 363−366. doi: 10.1130/0091-7613(1994)022<0363:MFDIIA>2.3.CO;2

    [23]

    Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al−in−hornblende barometer[J]. Contributions to Mineralogy and Petrology, 110: 304−310. doi: 10.1007/BF00310745

    [24]

    Stein E, Dietl C. 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald[J]. Mineralogy and Petrology, 72(1/3): 185−207.

    [25]

    Tao W, Li Y, Chen Y T, et al. 2021. Syn−tectonic emplacement duringsinistral transpression: The Late Triassic Gaoqiao pluton in the SouthQinling Belt, central China[J]. Geological Journal, 56: 995−1011. doi: 10.1002/gj.3995

    [26]

    Vernon R H. 2000. Review of microstructural evidence of magmatic and solid−state flow[J]. Visual Geosciences, 5(2): 1−23. doi: 10.1007/s10069-000-0002-3

    [27]

    Wang W L, Liu Y, Zhao L G, et al. 2020. Dataset of chronology, geochemistry and zircon Hf isotopes of Permian magmatites in the Middle Section of the Northern Margin of North China Craton[J]. Geology in China, 47(S1): 32−39(in Chinese with English abstract).

    [28]

    Wang Y, Zhou L Y, Zhao L J, et al. 2010. Paleozoic uplands and unconformity in the North China Block: Constraints from zircon LA−ICP−MS dating and geochemical analysis of Bauxite[J]. Terra Nova, 22: 264−273.

    [29]

    Wang Y, Sun L X, Zhou L Y, et al. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Earth Sciences, 61(5): 499−514.

    [30]

    Wyllie P J, Carroll M R, Johnston A D, et al. 1989. Interactions among magmas and rocks in subduction zone regions: Experimental studies from slab to mantle to crust[J]. European Journal of Mineralogy, 1(2): 165−179. doi: 10.1127/ejm/1/2/0165

    [31]

    Yang C L, Zou T, Zhu X Y, et al. 2021. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. Geology in China, 48(1): 247−263(in Chinese with English abstract).

    [32]

    Yoichi U, Norihiro N, Takeyoshi Y. 2006. Magnetite microexsolutions in silicate and magmatic flow fabric of the Goyozan granitoid (NE Japan): Significance of partial remanence anisotropy[J]. Journal of Geophysical Research Solid Earth, 111(B11101): 1−19.

    [33]

    Zeng Y S, Wang Q F, Groves D I, et al. 2023. Prolonged Mesozoic intracontinental gold mineralization in the South China Block controlled by lithosphere architecture and evolving Paleo−Pacific Plate subduction[J]. Earth−Science Reviews, 240: 104387.

    [34]

    Zhang C, Shi S C, Shi Y, et al. 2021. Tectonic evolution of northern margin of Eastern North China Craton: Evidences of Middle Triassic Plutons in Faku Area, Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 51(3): 734−748(in Chinese with English abstract).

    [35]

    Zhang S H, Zhao Y, Song B. 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo−uplift: implications for the tectonic evolution of the northern margin of North China block[J]. Mineralogy and Petrology, 87: 123−141. doi: 10.1007/s00710-005-0116-2

    [36]

    Zhang S H, Zhao Y, Song B, et al. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Paleozoic active continental margin[J]. Journal of the Geological Society (London), 164: 451−463. doi: 10.1144/0016-76492005-190

    [37]

    Zhou L Y, Wang Y. 2012. Late Carboniferous syn−tectonic magmatic flow at the northern margin of the North China Craton−Evidence for the reactivation of cratonic basement[J]. Journal of Asian Earth Sciences, 54/55: 131−142.

    [38]

    曹花花. 2013. 华北板块北缘东段晚古生代—早中生代火成岩的年代学与地球化学研究[D]. 吉林大学博士学位论文: 100−122.

    [39]

    付俊彧, 那福超, 李仰春, 等. 2021. 蒙古−鄂霍茨克洋南向俯冲: 小兴安岭西北部落马湖群中三叠世岩浆记录[J]. 地质通报, 40(6): 889−904. doi: 10.12097/j.issn.1671-2552.2021.06.006

    [40]

    龚弥, 蔡剑辉, 阎国翰, 等. 2019. 阴山−燕山北麓富碱侵入岩体的岩石地球化学特征、锆石 SHRIMP U−Pb 年龄及构造意义[J]. 地质论评, 65(4): 894−914.

    [41]

    河北省地质矿产局. 1994. 1∶50000隆化县幅区域地质调查报告[R].

    [42]

    李猛兴, 王丽娟, 张利明, 等. 2023. 兴安地块南段霍布林岩体成因及其对蒙古−鄂霍茨克洋演化的启示[J]. 地质通报, 42(9): 1541−1555. doi: 10.12097/j.issn.1671-2552.2023.09.010

    [43]

    刘元龙, 王谦身, 赵建华. 1978. 根据重力资料探讨北京—天津及其邻近地区的地壳构造[J]. 地球物理学报, 21(1): 9−17.

    [44]

    马旭, 陈斌, 陈家富, 等. 2012. 华北克拉通北缘晚古生代岩体的成因和意义: 岩石学、锆石 U−Pb 年龄、Nd−Sr 同位素及锆石原位 Hf 同位素证据[J]. 中国科学: 地球科学, 42(12): 1830−1850.

    [45]

    马寅生, 曾庆利, 宋彪, 等. 2007. 燕山中段盘山花岗岩体锆石 SHRIMP U−Pb 年龄测定及其构造意义[J]. 岩石学报, 23(3): 547−556. doi: 10.3969/j.issn.1000-0569.2007.03.002

    [46]

    王文龙, 刘洋, 赵利刚, 等. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及锆石 Hf 同位素测试数据集[J]. 中国地质, 47(S1): 32−39.

    [47]

    杨朝磊, 邹涛, 祝新友, 等. 2021. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展−减薄作用[J]. 中国地质, 48(1): 247−263. doi: 10.12029/gc20210117

    [48]

    张超, 石绍山, 石溢, 等. 2021. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 51(3): 734−748.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  314
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2023-09-21
修回日期:  2024-01-02
刊出日期:  2024-09-15

目录