四川盐边二叠纪峨眉山玄武岩底部镓−铌−稀土矿化富集层的发现及对找矿勘查的启示

程建康, 孙宝伟, 霍加庆, 朱凯宁, 肖亮, 王彬. 2025. 四川盐边二叠纪峨眉山玄武岩底部镓−铌−稀土矿化富集层的发现及对找矿勘查的启示. 地质通报, 44(1): 59-76. doi: 10.12097/gbc.2023.10.028
引用本文: 程建康, 孙宝伟, 霍加庆, 朱凯宁, 肖亮, 王彬. 2025. 四川盐边二叠纪峨眉山玄武岩底部镓−铌−稀土矿化富集层的发现及对找矿勘查的启示. 地质通报, 44(1): 59-76. doi: 10.12097/gbc.2023.10.028
CHENG Jiankang, SUN Baowei, HUO Jiaqing, ZHU Kaining, XIAO Liang, WANG Bin. 2025. Discovery of Ga-Nb-REE enrichment layer at the bottom of Permian Emeishan basalt, Yanbian County, Sichuan Province,and its enlightenment for prospecting and exploration. Geological Bulletin of China, 44(1): 59-76. doi: 10.12097/gbc.2023.10.028
Citation: CHENG Jiankang, SUN Baowei, HUO Jiaqing, ZHU Kaining, XIAO Liang, WANG Bin. 2025. Discovery of Ga-Nb-REE enrichment layer at the bottom of Permian Emeishan basalt, Yanbian County, Sichuan Province,and its enlightenment for prospecting and exploration. Geological Bulletin of China, 44(1): 59-76. doi: 10.12097/gbc.2023.10.028

四川盐边二叠纪峨眉山玄武岩底部镓−铌−稀土矿化富集层的发现及对找矿勘查的启示

  • 基金项目: 四川省地质矿产勘查开发局四〇五地质队创新基金项目《峨眉山大火成岩省攀西地区火山沉积-表生淋积型铌等战略性矿产调查与成矿研究》(编号:KJCX-2021-001)
详细信息
    作者简介: 程建康(1968− ),男,硕士,高级工程师,从事区域地质矿产调查、矿产勘查与评价工作。E−mail:530838781@qq.com
    通讯作者: 孙宝伟(1980− ),男,硕士,高级工程师,从事地质矿产勘查与评价工作。E−mail:41066946@qq.com
  • 中图分类号: P618.7;P534.46

Discovery of Ga-Nb-REE enrichment layer at the bottom of Permian Emeishan basalt, Yanbian County, Sichuan Province,and its enlightenment for prospecting and exploration

More Information
  • 研究目的

    重点对四川省盐边县东风村一带峨眉山玄武岩底部发现的火山沉积型镓-铌-稀土矿化富集层开展岩石学和地球化学研究,分析成矿物源和成矿条件,探讨成矿机制,为找矿勘查提供新的启示。

    研究方法

    在野外调查的基础上,采集具有代表性的岩矿石样品,通过镜下鉴定和主量、微量及稀土元素分析开展研究工作。

    研究结果

    镓−铌−稀土矿化富集层是基性火山碎屑岩强烈风化形成的富铝古风化壳,主要由蚀变凝灰质火山角砾岩、铝土质粘土岩、凝灰质粘土岩等岩石组成,受控于下伏阳新组顶部喀斯特地貌与上覆玄武岩的接触界面。矿化富集层延伸稳定,具有显著的Nb、Ta、Ga、Ti、REE等矿化富集特征且矿化均匀。矿化富集层稀土元素表现为轻稀土元素强烈富集而重稀土元素亏损,Nb、Ta、Ti元素的富集程度随岩石铝质含量增高而变大,Ga元素含量较均匀。成矿物源主要来自峨眉山地幔柱活动形成的玄武岩及基性火山碎屑岩,湿润炎热的古地理环境、平缓开阔的地貌及酸性含氧介质为Ga、Nb、REE等元素的活化、迁移和富集创造了有利条件,成矿元素经历多次溶失、络合、迁移、水解、沉淀和吸附等作用,最终形成矿化富集层。

    结论

    峨眉山玄武岩底部发现的火山沉积型镓−铌−稀土矿化富集层是一种新型的稀有稀土成矿类型,不但具有良好的找矿前景和巨大的资源潜力,而且对研究成矿理论和拓展找矿思路具有重要意义。

  • 加载中
  • 图 1  东风村地区大地构造位置(a,据罗改等,2021修改)、地质简图(b,据左群超等,2006修改)及实测地质剖面简图(c)

    Figure 1. 

    图 3  东风村地区火山岩原始地幔标准化多元素配分图(标准化数值据Sun et al., 1989;Ga标准化数值据Taylor et al., 1985

    Figure 3. 

    图 2  含矿岩系剖面柱状图和成矿元素含量变化曲线图(地层代号注释同图1

    Figure 2. 

    图 4  东风村地区火山岩球粒陨石标准化稀土元素配分图(标准化数值据Boynton,1984

    Figure 4. 

    图 5  东风村地区火山岩∑REE−(La/Yb)N图解(底图据Allegre et al., 1978)

    Figure 5. 

    表 1  含矿岩系简项分析结果

    Table 1.  Abbreviated analysis results of ore-bearing rock series

    样品号 ΣRE2O3/% Nb2O5/10−6 Ta2O5/10−6 (Nb,Ta)2O5/10−6 Ga/10−6 TiO2/%
    DFCP01H1 0.11 298.69 19.01 317.70 43.17 3.18
    DFCP01H2 0.12 284.10 18.10 302.19 51.33 3.68
    DFCP01H3 0.09 335.60 21.06 356.65 46.93 3.87
    DFCP01H4 0.12 357.05 22.63 379.68 51.68 4.04
    DFCP01H5 0.10 341.60 21.56 363.17 48.50 3.95
    DFCP01H6 0.12 288.96 18.85 307.81 47.41 3.32
    DFCP01H7 0.10 359.91 23.30 383.21 46.76 4.34
    DFCP01H8 0.08 377.87 23.63 401.50 43.17 4.36
    DFCP01H9 0.09 320.58 20.55 341.13 47.60 3.64
    DFCP01H10 0.11 332.59 21.39 353.98 53.64 3.55
    DFCP01H11 0.11 308.56 20.29 328.85 53.16 3.38
    DFCP01H12 0.11 346.61 22.32 368.93 54.21 3.88
    DFCP01H13 0.12 347.40 22.16 369.55 47.84 3.83
    DFCP01H14 0.15 371.79 24.87 396.66 58.38 4.90
    DFCP01H15 0.14 343.03 22.69 365.72 53.93 4.74
    DFCP01H16 0.11 354.33 22.87 377.21 53.06 4.55
    DFCP01H17 0.12 403.26 26.27 429.52 55.54 5.30
    DFCP01H18 0.08 501.18 31.16 532.34 50.31 6.16
    DFCP01H19 0.14 409.55 25.86 435.42 62.06 5.39
    DFCP01H20* 0.045 65.90 4.59 70.49 43.52 2.80
    DFCP01H21* 0.038 73.48 4.52 78.00 33.81 2.68
    平均值 0.11 351.72 22.56 374.28 50.98 4.21
    变化系数/% 17.23 14.14 13.47 14.09 9.60 18.84
    富集系数 6.76 12.94 11.57 12.84 2.83 3.94
      注:*为玄武岩样;平均值、变化系数、富集系数为矿化富集层样品计算值;富集系数=组分(元素)含量/地壳丰度,地壳丰度值据黎彤(1976
    下载: 导出CSV

    表 2  含矿岩系主量、微量和稀土元素含量及特征参数

    Table 2.  Contents and characteristic parameters of major, trace and rare earth elements for ore−bearing rock series

    元素 DFH11 DFH12 DFH13 DFH14 DFB103 DFB104 DFB105 DFB18−2 DFB101 DFB102
    紫红色粘土岩 黄绿色粘土岩 紫红色凝灰岩 火山角砾岩 黄褐色粘土岩 红褐色褐铁矿 杂色粘土岩 玄武岩 玄武岩 玄武岩
    SiO2 33.68 12.03 31.89 30.32 28.58 13.15 19.76 48.41 48.04 46.95
    TiO2 4.18 6.86 4.96 4.62 6.38 1.07 3.22 2.87 2.30 2.24
    Al2O3 29.42 41.19 28.28 29.92 46.71 9.54 15.61 13.19 11.23 10.99
    Fe2O3 19.50 10.23 19.98 20.45 1.99 63.67 39.98 4.75 4.44 4.18
    FeO 0.46 15.65 0.53 0.21 1.22 3.39 8.75 6.81 7.15 7.46
    MnO 0.01 0.01 0.02 0.00 0.00 0.07 0.02 0.18 0.17 0.18
    MgO 0.12 0.83 0.19 0.15 0.22 1.27 1.35 6.03 9.56 10.88
    CaO 0.20 0.06 0.33 0.10 0.18 0.31 0.47 8.36 9.21 9.60
    Na2O 0.04 0.02 0.03 0.03 0.06 0.05 0.03 3.59 2.07 1.63
    K2O 0.06 0.01 0.05 0.04 0.05 0.04 0.09 1.23 1.67 1.60
    P2O5 0.19 0.06 0.25 0.10 0.15 0.22 0.19 0.36 0.30 0.30
    烧失量 11.67 9.69 12.39 13.27 13.62 7.51 9.65 3.23 3.61
    总计 99.53 96.65 98.90 99.23 99.17 100.28 99.12 99.35 99.61
    CIA 99.31 99.85 99.49 99.53 99.47 98.01 98.82 50.09 56.64 60.82
    CIW 99.54 99.87 99.68 99.69 99.58 98.46 99.42 52.76 62.31 67.27
    ICV 0.63 0.43 0.72 0.66 0.22 4.82 2.18 3.38 4.64 5.02
    Ki 1.95 0.50 1.92 1.72 1.04 2.34 2.15 6.24 7.27 7.26
    La 205.46 41.19 186.23 108.57 162.46 188.25 207.07 44.28 42.31 33.70
    Ce 332.88 158.15 322.53 191.10 263.10 386.34 438.25 89.30 93.70 88.57
    Pr 34.08 9.45 36.10 20.34 30.17 85.12 45.07 11.24 12.43 11.84
    Nd 134.95 39.61 149.82 85.08 113.92 449.36 172.93 46.89 58.47 53.95
    Sm 16.66 6.00 20.28 11.68 15.31 63.29 22.50 8.36 9.16 8.64
    Eu 4.70 1.61 5.69 3.32 3.77 12.17 4.91 2.74 2.37 1.87
    Gd 11.90 4.40 14.33 8.62 10.98 34.18 15.28 7.72 8.14 6.35
    Tb 1.46 0.59 1.84 1.14 1.39 4.06 2.45 0.98 1.07 0.83
    Dy 7.13 3.44 9.61 5.73 6.05 17.73 13.65 5.02 4.98 3.99
    Ho 1.21 0.70 1.67 1.21 0.99 3.41 2.75 0.86 0.88 0.69
    Er 3.23 1.90 4.44 3.49 3.00 9.74 7.62 2.16 2.33 1.84
    Tm 0.37 0.28 0.52 0.51 0.36 1.22 0.96 0.20 0.25 0.22
    Yb 2.98 2.11 3.90 3.74 2.57 8.15 6.32 1.94 1.82 1.45
    Lu 0.32 0.24 0.46 0.41 0.29 0.93 0.69 0.19 0.20 0.15
    Y 28.18 17.25 38.17 25.30 22.80 124.29 95.65 22.84 23.97 17.32
    LREE 728.73 256.01 720.65 420.09 588.74 1184.52 890.73 202.81 218.44 198.57
    HREE 56.80 30.92 74.96 50.15 48.43 203.70 145.37 41.92 43.64 32.85
    ∑REE 785.53 286.93 795.61 470.24 637.17 1388.22 1036.11 244.73 262.08 231.42
    ∑Ce/∑Y 12.83 8.28 9.61 8.38 12.16 5.81 6.13 4.84 5.01 6.04
    δEu 0.97 0.92 0.97 0.97 0.85 0.73 0.77 1.03 0.82 0.74
    δCe 0.96 1.93 0.95 0.98 0.90 0.73 1.09 0.96 0.98 1.07
    (La/Yb)N 46.47 13.13 32.18 19.55 42.62 15.57 22.09 15.41 15.68 15.68
    (La/Sm)N 7.76 4.32 5.78 5.85 6.67 1.87 5.79 3.33 2.90 2.45
    (Gd/Yb)N 3.22 1.68 2.96 1.86 3.45 3.38 1.95 3.22 3.61 3.54
    Rb 3.36 0.69 2.09 1.43 2.52 12.27 12.63 10.44 43.00 39.74
    Ba 211.30 48.94 278.25 102.49 174.04 140.13 222.73 702.80 433.17 434.16
    Th 32.34 30.07 22.96 18.30 44.66 10.11 24.28 3.28 4.96 2.53
    U 9.26 15.87 8.43 8.11 17.84 5.63 8.88 1.15 1.02 0.56
    Nb 285.09 414.28 291.87 268.88 442.31 78.24 250.47 37.13 45.89 39.39
    Ta 17.25 23.83 19.73 17.03 21.16 3.98 12.52 3.47 2.56 2.47
    Sr 316.56 106.75 353.86 189.48 247.84 139.65 292.17 485.10 551.10 506.49
    Zr 729.78 1128.20 705.98 695.21 1093.08 203.93 627.87 258.30 273.25 249.58
    Hf 16.46 23.73 15.90 15.71 30.95 2.86 11.62 6.40 6.99 6.53
    Bi 0.17 0.34 0.25 0.25 0.52 0.33 0.43 0.07 0.07 0.08
    Ga 46.67 57.67 46.17 45.60 53.64 54.21 50.31 32.85 43.52 33.81
    Co 31.18 50.92 35.47 31.00 9.45 385.31 59.44 48.72 59.57 46.25
    Cr 133.93 196.54 198.49 145.71 159.79 119.73 189.92 176.64 648.57 472.28
    Cs 0.66 1.40 1.75 0.16 0.51 0.65
    Ni 32.29 18.70 56.41 45.16 33.38 62.82 37.45 64.53 162.23 132.33
    Sc 13.12 15.38 16.34 11.22 21.06 18.15 18.25 22.79 31.40 36.34
    Sn 5.33 7.99 5.93 5.65 8.99 3.55 6.34 1.77 3.59 3.82
    V 551.65 586.40 476.25 349.45 588.45 280.32 854.39 344.56 340.89 253.39
    W 3.73 1.82 5.07 6.41 0.62 0.57
    Li 253.65 134.20 228.90 268.35 439.44 59.02 97.08 8.69 10.01
    Pb 26.06 19.12 23.98 30.69 29.56 14.55 27.27 7.44 9.87
    Zn 108.69 160.38 114.83 105.87 31.03 233.05 107.47 103.40 107.10
    Cu 38.10 18.90 69.80 78.70 75.25 44.03 50.98 166.95 134.54
    Nb/Ta 16.53 17.39 14.79 15.79 20.90 19.66 20.01 10.69 17.95 15.93
    Th/Ta 1.87 1.26 1.16 1.07 2.11 2.54 1.94 0.94 1.94 1.02
    Zr/Hf 44.34 47.54 44.40 44.25 35.32 71.30 54.03 40.36 39.09 38.25
    La/Th 6.35 1.37 8.11 5.93 3.64 18.62 8.53 13.51 8.53 13.32
    Ti/Nb 87.87 99.29 101.86 103.07 86.43 81.98 77.05 463.43 299.97 340.89
    Sr/Ba 1.50 2.18 1.27 1.85 1.42 1.00 1.31 0.69 1.27 1.17
    Sr/Cu 8.31 5.65 5.07 2.41 3.29 3.17 5.73 3.30 3.76
    U/Th 0.29 0.53 0.37 0.44 0.40 0.56 0.37 0.35 0.21 0.22
    Ni/Co 1.04 0.37 1.59 1.46 3.53 0.16 0.63 1.32 2.72 2.86
      注:①稀土元素参数采用球粒陨石标准化值(Boynton,1984)。②CIA=Al2O3×100/(Al2O3+CaO*+Na2O+K2O);CIW=Al2O3/(Al2O3+CaO*+Na2O);WIP=100×(2Na2O/0.35+MgO/0.9+2K2O/0.25+CaO*/0.7);ICV=(Fe2O3+K2O+Na2O+CaO+MgO+TiO2)/Al2O3Ki=SiO2/Al2O3;CaO*为硅酸盐中CaO的摩尔含量,即若CaO<Na2O,采用CaO作为样品CaO*,相反则采用Na2O作为CaO*(McLennan,1993);各式中氧化物均为摩尔含量。主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV
  • [1]

    Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1−25. doi: 10.1016/0012-821X(78)90123-1

    [2]

    Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare earth element geochemistry. Elsevier: 63−114.

    [3]

    Cao H S. 1991. A discussion on the genetic environment and minerogenesis of "Dachang Strata"in southwestern Guizhom[J]. Geology of Guizhou, 8(1): 5−12 (in Chinese with English abstract).

    [4]

    Chen Y, Liu X C, Zhang Q H. 1984. A tentative discussion on the genesis of the Dchang antimony deposit, Qinglong County, Guizhou Province[J]. Mineral Deposits, 3(8): 1−12 (in Chinese with English abstract).

    [5]

    Chen Z, Hou L Y, Mo Z. 2015. Discovery of niobium mineralization body and its significance in Yulong, Weining, Guizhou[J]. Guizhou Geology, 32(3): 177−180 (in Chinese with English abstract).

    [6]

    Chung S L, Jahn B M. 1995. Plume−lithosphere interaction in generation of the Emeishan flood basalts at the Permian−Triassic boundary[J]. Geology, 23(10): 559−892.

    [7]

    Deng P, Chen Y M, Ye J H, et al. 2019. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Miming Magazine, 28(4): 63−68 (in Chinese with English abstract).

    [8]

    Du L J, Chen J, Yang R D, et al. 2020. Hydrothermal—volcanic sedimentary and mineralization of the Dachang layer in the Middle−Late Permian, Qinglong, southwestern Guizhou[J]. Geological Review, 66(2): 439−456 (in Chinese with English abstract).

    [9]

    Fan Y H, Qu H J, Wang H, et al. 2012. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China, 39(2): 382−389 (in Chinese with English abstract).

    [10]

    Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance[J]. Geology, 23: 921−924.

    [11]

    Gun M S, Cai G S, Zeng D G, et al. 2021. Discovery and significance of the Sc−Nb−REE−enriched zone in the paleocrust of weathering atop the Permian Emeishan basalt in western Guizhou Province[J]. Acta Mineralogica Sinica, 41: 1−18 (in Chinese with English abstract).

    [12]

    He B, Xu Y G, Huang X L, et al. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post−volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters, 255: 306−323. doi: 10.1016/j.jpgl.2006.12.021

    [13]

    He B, Xu Y G, Xina L, et al. 2003a. Does the Panzhihua−Xichang rift exist?[J]. Geological Review, 49(6): 572−582 (in Chinese with English abstract).

    [14]

    He B, Xu Y G, Xiao L, et al. 2003b. Generation and spatial distribution of the Emeishan large igneous province : New evidence from stratigraphic records[J]. Acta Geologica Sinica, 77(2): 194−202 (in Chinese with English abstract).

    [15]

    He B, Xu Y G, Xiao L, et al. 2006. Sedimentary responses to uplift of Emeishan mantle plume and its implications[J]. Geological Review, 52(1): 30−37 (in Chinese with English abstract).

    [16]

    He, H Y, He M, Li J W. 2018. Analysis of the niobium resources supply and demand pattern in China[J]. China Miming Magazine, 27(11): 1−5 (in Chinese with English abstract).

    [17]

    Hou Z Q, Chen J, Zhai M G. 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(33): 1−2 (in Chinese with English abstract).

    [18]

    Hou Z Q, Lu J R, Wang Y L, et al. 1999. Emei large igneous province: Characteristics and origin[J]. Geological Review, 45(sup.): 885−891 (in Chinese with English abstract).

    [19]

    Hu R Z, Tao Y, Zhong H, et al. 2005. Mineralization systems of a mantle plume: A case study from the Emeishan igneous province, southwest China[J]. Earth Science Frontiers, 12(1): 42−54 (in Chinese with English abstract).

    [20]

    Huang X H. 1997. The Lufang rare earth deposit in Eeining, western Guizhou and its mineralization[J]. Guizhou Geology, 14(4): 328−333 (in Chinese with English abstract).

    [21]

    Ji H L, He Z B, Wei S Y, et al. 2022. Geochemical characteristics of trace elements and its sedimentary implication in Baoquanling Formation, Tangyuan fault depression[J]. World Nuclear Geoscience, 39(1): 27−38 (in Chinese with English abstract).

    [22]

    Li H B, Zhu J. 2013. Contact between the Emeishan basalt and Maokou Formation: Implication for the geodynamic model of the Emeishan mantle plume[J]. Geotectonica et Metallogenian, 37(4): 571−579 (in Chinese with English abstract).

    [23]

    Li H B, Zhang Z C, Lyü L S. 2010. Geometry of the mafic dyke swarms in Emeishan large igneous province: Implications for mantle plume[J]. Acta Mineralogica Sinica, 26(10): 3143−3152 (in Chinese with English abstract).

    [24]

    Li H B, Zhang Z C, Lü L S, et al. 2011. Isopach maps of the Qixia and Maokou formations: Implication for mantle plume model of the Emeishan large igneous province[J]. Acta Mineralogica Sinica, 27(10): 2963−2974 (in Chinese with English abstract).

    [25]

    Li H B, Zhang Z C, Santosh M, et al. 2017. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J]. Journal of Asian Earth Sciences, 134: 293−308. doi: 10.1016/j.jseaes.2016.11.029

    [26]

    Li J K, Li P, Wang D H, et al. 2019. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 64(15): 1545−1566 (in Chinese with English abstract). doi: 10.1360/N972018-00933

    [27]

    Li X L, Zhang X, Lin C M, et al. 2022. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of Chian Universities, 28(1): 51−63 (in Chinese with English abstract).

    [28]

    Li Z M. 2018. Discovery and significance of Huangnipo niobium deposit in Weining of Guizhou[J]. Nonferrous Metals Design, 45(4): 72−74 (in Chinese with English abstract).

    [29]

    Liu D R. 2020. Nb and REE deposits found in the weathering crusts of Emeishan basalt, Xuanwei area, Yunnan Province[J]. Geology in China, 47(2): 540−541 (in Chinese with English abstract).

    [30]

    Liu R, Luo B, Li Y, et al. 2021. Relationship between Permian volcanic rocks distribution and karst paleogeomorphology of Maokou Formation and its significance for petroleum exploration in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 48(03): 575−585 (in Chinese with English abstract).

    [31]

    Luo G, Wang Q W, Qin Y L, et al. 2021. Divisions and their basic characteristics of tectonic units in Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 41(4): 633−647 (in Chinese with English abstract).

    [32]

    Luo Z L, Jin Y Z, Zhu K Y, et al. 1998. On Emei taphrogenesis of the Upper Yangtze platform[J]. Geological Review, 34(1): 11−24 (in Chinese with English abstract).

    [33]

    Mao G Z, Liu C Y. 2011. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 33(4): 337−348 (in Chinese with English abstract).

    [34]

    Mclennan S M. 1993. Weathering and global denudation[J]. The Journal of Geology, 101(2): 295−303. doi: 10.1086/648222

    [35]

    Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis[J]. Geoseience Frontiers, 5(3): 369−394. doi: 10.1016/j.gsf.2013.07.003

    [36]

    Song X Y, Wang Y L, Gao Z M, et al. 1998. Emeishan basalts, Emei tafrogeny and mantle plume[J]. Geology−geochemistry, 1: 47−52 (in Chinese with English abstract).

    [37]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implicationsfor mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society, London, Special Publications, 42: 313−345.

    [38]

    Sun Z M, Bian C R, Liu G X. 2023. Advances on the understanding in the Emeishan Mantle Plume and dynamic mechanism of the Permian Sichuan Basin formation[J]. Geoscience, 37(5): 1089−1099 (in Chinese with English abstract).

    [39]

    Taylor S R, Mclennan S M. 1985. The continental crust: its composition and evolution[J]. The Journal of Geology, 94(4): 57−72.

    [40]

    Tian Y Z, Nie A G, Zhu M J, et al. 2011. The study of the mineralization of basaltic conglomerate and antimony deposit in the middle of the Dachang formation, Qinglong, Guizhou[J]. Journal of Guizhou University(Natural Sciences), 28(5): 25−38 (in Chinese with English abstract).

    [41]

    Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232(12): 12−32.

    [42]

    Tu G C, Gao Z M, Hu R Z, et al. 2004. The geochemistry and ore−forming mechanism of the dispersed elements[M]. Geological Publishing House: 368−395 (in Chinese with English abstract).

    [43]

    Ukstins Peate I, Bryan S E. 2008. Re−evaluating plume−induced uplift in the Emeishan large igneous province[J]. Nature Geoscience, 1(9): 625−629.

    [44]

    Wang D H. 2019. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and dircetion of exploitation[J]. Acta Mineralogica Sinica, 93(6): 1189−1209 (in Chinese with English abstract).

    [45]

    Wang G L, Zhu X Q, Ye F. 2009. Interface ore deposits and Emeishan basalt[J]. Minerals Resource and Geology, 23(3): 204−209 (in Chinese with English abstract).

    [46]

    Wang M F, Huang C Y, Xu Z C, et al. 2006. Review on paleosalinity recovery in sedimentary environment[J]. Xinjiang Oil & Gas, 2(1): 9−12,Ⅰ (in Chinese with English abstract).

    [47]

    Wang R C, Che X D, Wu B, et al. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China[J]. Chinese Science Bulletin, 65(33): 3763−3777 (in Chinese with English abstract). doi: 10.1360/TB-2020-0271

    [48]

    Wang R H, Tan Qi Y, Fu J Y, et al. 2011. The sedimentary−tectonic evolution and sedimentary response of mantle plume in Emeishan[J]. Earth Science Frontiers, 18(3): 201−210 (in Chinese with English abstract).

    [49]

    Wen J, Liu Z C, Zhao J X, et al. 2022. Enrichment regularity, sedimentary environment and metallogenic model of niobium−rare earth polymetallic enrichment layer at the bottom of the Xuanwei Formation in Muchuan area, South Sichuan[J]. Acta Geologica Sinica, 96(2): 592−615 (in Chinese with English abstract).

    [50]

    Xiao L, Xu Y G, He B. 2003. Emei mantle plume−subcontinental lithosphere interaction: Sr−Nd and O isotopic evidences from low−Ti and high−Ti basalts[J]. Geological Journal of Chian Universities, 9(2): 207−217 (in Chinese with English abstract).

    [51]

    Xiong G Q, Jiang X S, Cai X Y, et al. 2010. The characteristics of trace element and REE geochemistry of the cretaceous mudrocks and shales from Southern Tibet and its analysis of redox condition[J]. Advances in Earth Science, 25(7): 730−745 (in Chinese with English abstract).

    [52]

    Xu X T, Shao L Y. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 20(3): 515−522 (in Chinese with English abstract).

    [53]

    Xu Y G. 2002. Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers(China University of Geosciences, Beijing), 9(4): 341−353 (in Chinese with English abstract).

    [54]

    Xu Y G, Cheng S L. 2001. The Emeishan large igneous province: Evidence for mantl plume activety and melting conditions[J]. Geochimica, 30(1): 1−9 (in Chinese with English abstract).

    [55]

    Xu Y G, Chung S L, Jahn B M, et al. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 58: 145−168. doi: 10.1016/S0024-4937(01)00055-X

    [56]

    Xu Y G, Zhong Y T, Wei X, et al. 2017. Permian mantle plumes and earth’s surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3): 359−373 (in Chinese with English abstract).

    [57]

    Yan Z F, Huang Z L, Xu C, et al. 2006. Geochemical fature of Emeishan basalts from Ertan area[J]. Journal of Mineralogy and Petrology, 26(3): 77−84 (in Chinese with English abstract).

    [58]

    Yang R D, Wang W, Bao M, et al. 2006. Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang County, Guizhou Province[J]. Mineral Deposits, 25(S1): 205−208 (in Chinese with English abstract).

    [59]

    Yang S Y, Li C X. 1999. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 14(2): 164−167 (in Chinese with English abstract).

    [60]

    Yang Z S, Duan H M. Wang X J. 2007. Geological features and range of reconnaissance of Nb–Ta deposits in the Panzhihua − Xichang region, Sichuan[J]. Acta Geologica Sichuan, 27(4): 248−254 (in Chinese with English abstract).

    [61]

    Yin F G, Luo L, Ren F. 2022. Reconstructing the tectonics and paleogeography during the ocean−land transition of the "Sanjiang" orogenic belt in southwest China[J]. Geological Bulletin of China, 41(11): 1899−1914 (in Chinese with English abstract).

    [62]

    Yu J, Li P T, Yu H B. 2009. Analysis on trace −element geochemical characteristics and ore – forming environment of bauxite mine in Sanhe town of Jingxi county[J]. Journal of Henan Polytechnic University(Natural Science), 28(3): 289−293.

    [63]

    Zhang Z C, Hou T, Cheng Z G. 2022. Mineralization related to large igneous provinces[J]. Acta Geologica Sinica, 96(1): 134−154 (in Chinese with English abstract).

    [64]

    Zhang Z C, Wang F S, Hao Y L. 2005. Picrites from the Emeishan large igneous province: Evidence for the mantle plume activity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17−22 (in Chinese with English abstract).

    [65]

    Zheng G D, Wnag K, Chen Q S, et al. 2021. The change of world rare earth industrial structure and the problems faced by China's rare earth industry[J]. Acta Geoscientica Sinica, 42(2): 265−272 (in Chinese with English abstract).

    [66]

    Zhou Y X, Lu L Z, Zhang B M. 1986. Paleomagnetic polarity of the permian Emeishan basalt in Sichuan[J]. Geological Review, 32(5): 465−469 (in Chinese with English abstract).

    [67]

    Zhu B, Guo Z J, Liu R, et al. 2014. No pre−eruptive uplift in the Emeishan large igneous province: New evidences from its ‘inner zone’, Dali area, Southwest China[J]. Journal of Volcanology and Geothermal Research, 269: 57−67. doi: 10.1016/j.jvolgeores.2013.11.015

    [68]

    Zhu J, Zhang Z C, Reichow M K, et al. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1018−1034. doi: 10.1002/2017JB015058

    [69]

    Zuo Q C, Ye T Z, Feng Y F, et al. 2006. Spatial database of serial suite−tectonic map−sheets of Mainland China(1: 250, 000)[DB/OL]. Development Research Center of China Geological Survey. (2018−09−10)[2022−12−26]. http://dcc.ngac.org.cn/geologicalData/rest/geologicalData/geologicalDataDetail/8adaeff963f2eb2a0163f335b7600019 (in Chinese).

    [70]

    曹鸿水. 1991. 黔西南“大厂层”形成环境及其成矿作用的探讨[J]. 贵州地质, 8(1): 5−12.

    [71]

    陈智, 侯林洋, 莫兆. 2015. 贵州威宁玉龙铌矿化体的发现及意义[J]. 贵州地质, 32(3): 177−180. doi: 10.3969/j.issn.1000-5943.2015.03.003

    [72]

    迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 1−148.

    [73]

    杜丽娟, 陈军, 杨瑞东, 等. 2020. 黔西南中晚二叠世大厂层火山热水沉积成矿作用[J]. 地质论评, 66(2): 439−456.

    [74]

    范玉海, 屈红军, 王辉, 等. 2012. 微量元素分析在判别沉积介质环境中的应用——以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 39(2): 382−389. doi: 10.3969/j.issn.1000-3657.2012.02.010

    [75]

    冯增昭, 杨玉卿, 金振奎, 等. 1997. 中国南方二叠纪岩相古地理[M]. 东营: 石油大学出版社: 58−88.

    [76]

    衮民汕, 蔡国盛, 曾道国, 等. 2021. 贵州西部二叠系峨眉山玄武岩顶部古风化壳钪-铌-稀土矿化富集层的发现与意义[J]. 矿物学报, 41: 1−18.

    [77]

    何斌, 徐义刚, 肖龙, 等. 2003a. 攀西裂谷存在吗?[J]. 地质论评, 49(6): 572−582.

    [78]

    何斌, 徐义刚, 肖龙, 等. 2003b. 峨眉山大火成岩的形成机制及空间展布: 来自沉积地层的新证据[J]. 地质学报, 77(2): 194−202. doi: 10.3321/j.issn:0001-5717.2003.02.007

    [79]

    何斌, 徐义刚, 肖龙, 等. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义[J]. 地质论评, 52(1): 30−37. doi: 10.3321/j.issn:0371-5736.2006.01.005

    [80]

    胡瑞忠, 陶琰, 钟宏, 等. 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例[J]. 地学前缘, 12(1): 42−54.

    [81]

    黄训华. 1997. 威宁鹿房稀土矿地质特征及成矿作用初步分析[J]. 贵州地质, 14(4): 328−333.

    [82]

    冀华丽, 何中波, 卫三元, 等. 2022. 汤原断陷宝泉岭组微量元素地球化学特征及其对沉积环境的指示意义[J]. 世界核地质科学, 39(1): 27−38. doi: 10.3969/j.issn.1672-0636.2022.01.003

    [83]

    蓝先洪. 1994. 可作为物源区指示剂的陆源碎屑沉积物的Ti/Nb比值(摘要)[J]. 地质地球化学, 4: 73.

    [84]

    黎彤. 1976. 化学元素的地球丰度[J]. 地质化学, (3): 167−174.

    [85]

    李宏博, 张招崇, 吕林素, 等. 2010. 峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义[J]. 岩石学报, 26(10): 3143−3152.

    [86]

    李宏博, 张招崇, 吕林素, 等. 2011. 栖霞组和茅口组等厚图: 对峨眉山地幔柱成因模式的指示意义[J]. 岩石学报, 27(10): 2963−2974.

    [87]

    李宏博, 朱江. 2013. 峨眉山玄武岩与茅口组灰岩的接触关系: 对峨眉山地幔柱动力学模型的指示意义[J]. 大地构造与成矿学, 37(4): 571−579.

    [88]

    李建康, 李鹏, 王登红, 等. 2019. 中国铌钽矿成矿规律[J]. 科学通报, 64(15): 1545−1566.

    [89]

    李绪龙, 张霞, 林春明, 等. 2022. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 28(1): 51−63.

    [90]

    李政明. 2018. 贵州威宁玉黄泥坡铌矿的发现及意义[J]. 有色金属设计, 45(4): 72−74. doi: 10.3969/j.issn.1004-2660.2018.04.021

    [91]

    刘成英, 朱日祥, 潘永信. 2011. 云南峨眉山玄武岩的古地磁研究[C]//中国地球物理学会第二十七届年会论文集. 合肥: 中国科学技术大学出版社: 164.

    [92]

    刘殿蕊. 2020. 云南宣威地区峨眉山玄武岩风化壳中发现铌、稀土矿[J]. 中国地质, 47(2): 540−541. doi: 10.12029/gc20200220

    [93]

    刘冉, 罗冰, 李亚, 等. 2021. 川西地区二叠系火山岩展布与茅口组岩溶古地貌关系及其油气勘探意义[J]. 石油勘探与开发, 48(3): 575−585.

    [94]

    刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学[M]. 北京: 科学出版社: 125−215.

    [95]

    罗改, 王全伟, 秦宇龙, 等. 2021. 四川省大地构造单元划分及其基本特征[J]. 沉 积 与 特 提 斯 地 质, 41(4): 633−647.

    [96]

    罗志立, 金以钟, 朱夔玉, 等. 1988, 试论上扬子地台的峨眉地裂运动[J]. 地质论评, 34(1): 11−24.

    [97]

    骆耀南. 1985. 中国攀枝花-西昌古裂谷带[C]//张云湘. 中国攀西裂谷文集1. 北京: 地质出版社: 1-25.

    [98]

    毛光周, 刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 33(4): 337−348.

    [99]

    莫光员, 黎富当. 2015. 贵州威宁黑石头玄武岩型铌钽矿床地质特征[J]. 有色金属文摘, 30(4): 26−29.

    [100]

    潘杏南, 赵济湘, 张选阳, 等. 1987. 康滇构造与裂谷作用[M]. 重庆: 重庆出版社: 1−298.

    [101]

    潘杏南, 赵济湘. 1986. 峨眉山玄武岩是裂谷成穹期产物[J]. 四川地质学报, 1: 75−80.

    [102]

    四川省地质矿产勘查开发局四〇五地质队. 2022. 峨眉山大火成岩省攀西地区火山沉积-表生淋积型铌等战略性矿产调查报告[R].

    [103]

    宋谢炎, 王玉兰, 曹志敏, 等. 1998. 峨眉山玄武岩、峨眉地裂运动与幔热柱[J]. 地质地球化学, 1: 47−52.

    [104]

    孙自明, 卞昌蓉, 刘光祥. 2023. 峨眉山地幔柱主要研究进展及四川盆地二叠纪成盆动力学机制[J]. 现代地质, 37(5): 1089−1099.

    [105]

    田亚洲, 聂爱国, 祝明金, 等. 2011. 贵州晴隆大厂层中段玄武岩质砾岩与锑矿成矿关系研究[J]. 贵州大学学报(自然科学版), 28(5): 25−38.

    [106]

    涂光炽, 高振敏, 胡瑞忠, 等. 2004. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社: 368−395.

    [107]

    万全, 杨强, 刘勇强, 等. 2021. 矿产资源工业要求参考手册[M]. 北京: 地质出版社: 209, 235, 255.

    [108]

    王甘露, 朱笑青, 叶帆. 2009. 界面矿床与峨眉山玄武岩[J]. 矿产与地质, 23(3): 204−209.

    [109]

    王立亭, 陆彦邦等, 赵时久. 1994. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京: 科学出版社: 72−102.

    [110]

    王敏芳, 黄传炎, 徐志诚, 等. 2006. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2(1): 9−12, Ⅰ.

    [111]

    王汝成, 车旭东, 邬斌, 等. 2020. 中国铌钽锆铪资源[J]. 科学通报, 65(33): 3763−3777.

    [112]

    王瑞华, 谭钦银, 付建元, 等. 2011. 峨眉山地幔柱沉积−构造演化及沉积响应[J]. 地学前缘, 18(3): 201−210.

    [113]

    王中刚, 于学元, 赵振华, 等. 1989. 稀土元素地球化学[M]. 北京: 科学出版社: 321−342.

    [114]

    文俊, 刘治成, 赵俊兴, 等. 2022. 川南沐川地区宣威组底部铌-稀土多金属富集层富集规律、沉积环境与成矿模式[J]. 地质学报, 96(2): 592−615.

    [115]

    肖龙, 徐义刚, 何斌. 2003. 峨眉山地幔柱−岩石圈的相互作用: 来自低钛和高钛玄武岩的Sr−Nd和O同位素证据[J]. 高校地质学报, 9(2): 207−217.

    [116]

    熊国庆, 江新胜, 蔡习尧, 等. 2010. 藏南白垩系泥、页岩微量、稀土元素特征及氧化−还原环境分析[J]. 地球科学进展, 25(7): 730−745.

    [117]

    徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地球学报, 20(3): 515−522.

    [118]

    徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘(中国地质大学, 北京), 9(4): 341−353.

    [119]

    徐义刚, 钟孙霖. 2001. 峨眉山火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地球化学, 30(1): 1−9.

    [120]

    徐义刚, 钟玉婷, 位荀, 等. 2017. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报, 36(3): 359−373.

    [121]

    严再飞, 黄智龙, 许成, 等. 2006. 峨眉山二滩玄武岩地球化学特征[J]. 矿物岩石, 26(3): 77−84. doi: 10.3969/j.issn.1001-6872.2006.03.013

    [122]

    杨瑞东, 王伟, 鲍淼, 等. 2006. 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征[J]. 矿床地质, 25(S1): 205−208.

    [123]

    杨守业, 李从先. 1999. REE示踪沉积物物源研究进展[J]. 地球科学进展, 14(2): 164−167.

    [124]

    杨铸生, 段惠敏, 王秀京. 2007. 四川攀西地区铌钽矿床的地质特征及找矿方向[J]. 四川地质学报, 27(4): 248−254.

    [125]

    尹福光, 罗亮, 任飞. 2022 再造西南“三江”造山带洋陆转换过程中的构造与古地理[J]. 地质通报, 41(11): 1899−1914.

    [126]

    俞缙, 李普涛, 于航波. 2009. 靖西三合铝土矿微量元素地球化学特征与成矿环境研究[J]. 河南理工大学学报(自然科学版), 28(3): 289−293.

    [127]

    张云湘, 骆耀南, 杨崇喜. 1988. 攀西裂谷[M]. 北京: 地质出版社: 1−466.

    [128]

    张招崇, 侯通, 程志国. 2022. 大火成岩省的成矿效应[J]. 地质学报, 96(1): 134−154.

    [129]

    张招崇, 王福生, 郝艳丽. 2005. 峨眉山大火成岩省中苦橄岩: 地幔柱活动证据[J]. 矿物岩石地球化学通报, 24(1): 17−22.

    [130]

    周德忠, 杨国桢, 毛健全. 1980. 贵州晴隆大厂火山沉积−构造改造锑矿床地质特征及成因分析[J]. 贵州工学院学报, (1): 1−18.

    [131]

    周烑秀, 鲁连仲, 张秉铭. 1986. 四川二叠纪峨眉山玄武岩的古地磁极性研究[J]. 地质论评, 32(5): 465−469.

    [132]

    左群超, 叶天竺, 冯艳芳, 等. 2006. 中国陆域1∶25万分幅建造构造图空间数据库[DB/OL]. 中国地质调查局发展研究中心. (2018-09-10)[2022-12-26]. http://dcc.ngac.org.cn/geologicalData/rest/geologicalData/geologicalDataDetail/8adaeff963f2eb2a0163f335b7600019.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  240
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2023-10-25
修回日期:  2024-01-08
刊出日期:  2025-01-15

目录