Diagenetic, evolutionary characteristics and hydrocarbon generation potential evaluation of tight sandstone reservoirs in Ansai oilfield: A case from the Chang 6 of Yanchang Formation at the Huaziping area
-
摘要:
研究目的 鄂尔多斯盆地安塞油田长6储层的储集物性差,各类成岩作用在优质储层形成中的控制作用尚不清晰,限制了研究区优质储层的精准预测及剩余油分布规律预测。
研究方法 为解决这一问题,综合应用岩心、铸体薄片、扫描电镜、阴极发光、X射线衍射及高压压汞资料,对研究区延长组长6段储层的微观孔隙发育类型、孔喉结构特征和成岩作用类型进行了研究。
研究结果 研究结果显示,长6段岩石类型主要为细粒长石砂岩,含有少量极细粒岩屑长石砂岩,储集空间类型包括原生孔隙、次生孔隙和微裂缝,孔隙结构主要为中孔—细孔、微细喉道类型,总体上属于低孔—特低孔、低渗—特低渗储层。
结论 成岩演化阶段处于中成岩A期,压实作用和硅质胶结、碳酸盐岩胶结作用较强烈,这是导致储层致密的主要原因,溶蚀作用和绿泥石胶结作用一定程度上改善了储层物性。长6段原油与区域长7段暗色泥岩、泥页岩存在显著的地质关联,但生烃潜力有限,主要依赖于长7段烃源岩供烃,开发潜力受储层条件制约。
Abstract:Objective The Chang 6 reservoir at the Ansai oilfield of the Ordos Basin is one dense type, and the role of various types of diagenesis in the formation of high−quality reservoirs is not clear, However, there has been limited research on the diagenetic and its evolution history of this reservoir, which hampers the accurate prediction of the distribution of residual oil in the area.
Methods To address this problem, the data of core, casting sheet, scanning electron microscope, cathode luminescence, X−ray diffraction and high pressure mercury pressure were comprehensively studied on the microscopic pore development type, pore structure characteristic and diagenesis type of Chang 6 reservoir.
Results The research results show that the rock types are mainly fine−grained feldspar sandstone, containing a small amount of extremely fine−grained lithic feldspar sandstone. The reservoir space types include primary pores, secondary pores and micro−fractures, and the pore structure is mainly meso−fine pores and micro−fine pipes. In general, the reservoir belongs to the type of low porosity−ultra−low porosity, low permeability−ultra−low permeability.
Conclusions The diagenetic evolution stage is in the middle diagenetic stage A, which is formed by strong compaction and siliceous cementationand carbonate cementation, which is the main reason for low porosity and low permeability of the reservoir. To some extent, the corrosion and chlorite cementation improve the physical properties of the reservoir. The crude oil of the Chang 6 section has significant geological correlation with the dark mudstone and mud shale of the regional Chang 7 section, but the hydrocarbon potential is limited, and the development potential is constrained by the reservoir conditions as it mainly relies on the supply of hydrocarbons from its hydrocarbon source rock.
-
Key words:
- tight reservoir /
- pores structure /
- diagenesis /
- Chang 6 /
- Ansai oilfiled /
- Ordos Basin
-
-
图 12 长6成岩阶段、埋藏史与孔隙演化史示意图(据朱毅秀,2013修改)
Figure 12.
表 1 研究区样品压汞参数
Table 1. Parameters of sample mercury pressure
样品号 层位 深度/m 排驱压力/MPa 中值压力/MPa 孔喉中值半径/μm 最大进汞饱和度/% 分选系数 歪度系数 孔隙度/% 渗透率/mD H500-214 长6 1207.52 2.313 11.171 0.067 69.0 0.06 1.9 11.861974 0.24 H500-315 长6 1243.13 0.879 3.721 0.202 73.2 0.18 1.5 0.108000 8.69 H500-303 长6 1241.93 1.322 6.589 0.114 67.0 0.11 1.9 9.110000 0.07 H500-292 长6 1215.32 2.754 16.864 0.045 60.4 0.05 2.3 10.172061 0.20 H500-232 长6 1209.32 1.657 10.836 0.069 67.0 0.08 2.0 9.375214 0.09 H500-262 长6 1212.32 1.289 6.178 0.121 68.9 0.11 1.8 10.953976 0.32 H500-334 长6 1245.03 1.183 8.852 0.085 69.2 0.12 2.2 11.599119 0.29 H151-2 长6 1312.1 1.068 14.404 0.004 54.2 5.30 1.5 2.437567 2.15 H62-5-1 长6 1326.2 0.495 14.404 0.067 77.5 3.10 1.7 8.972612 0.67 H62-5-3 长6 1242.3 0.486 14.404 0.051 74.4 3.30 1.7 7.855082 0.77 H500-366 长6 1248.23 5.,618 15.225 0.049 73.4 0.02 1.8 5.120166 0.00 H500-222 长6 1208.22 4.124 16.221 0.046 65.7 0.04 1.7 5.461997 0.01 表 2 碎屑岩成岩阶段划分标准(SY/T5477—2003)
Table 2. The division of diagenetic stages in clastic rocks
成岩阶段 同生阶段 早成岩阶段 中成岩阶段 晚成岩阶段 A期 B期 A期 B期 古地温/℃ 常温 常温~65 65~85 85~140 140~170 170~200 Ro/% / <0.35 0.35~0.50 0.50~1.30 1.30~2.00 2.00~4.00 I/S中的S/% / >70 70~50 50~15 <15 消失 颗粒接触关系 / 点状 点-线状 点-线状 线-缝合线状 线-缝合线状 自生碳酸盐矿物 泥晶 微晶 亮晶 含铁碳酸岩 含铁碳酸岩 含铁碳酸岩 自生石英 / 未见 Ⅰ级加大 Ⅱ级加大 Ⅲ级加大 Ⅳ级加大 自生粘土矿物 / 蒙脱石
绿泥石膜蒙脱石、高岭石、
伊/蒙混层伊/蒙混层、伊利石、高岭石、绿泥石,
部分可见方沸石、片沸石等伊/蒙混层
伊利石
绿泥石
浊沸石
方沸石伊利石
绿泥石孔隙 原生孔 原生粒间孔 原生孔 次生孔 裂缝 缝合线 注:古地温中的常温一般指20℃ -
[1] Bjorlykke K, Jahren J. 2012. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraint on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, (12): 96.
[2] Cao Y C, Yang T, Song M S, et al. 2018. Characteristics of low−permeability clastic reservoirs and genesis of relatively high−quality reservoirs in the continental rift lake basin: A case study of Paleogene in the Dongying sag, Jiyang depression[J]. Acta Petrolei Sinica, 39(7): 727−743 (in Chinese with English abstract).
[3] Chao H D, Chen J Z, Wang J, et al. 2022. Diagenesis of Triassic shale and its influence on reservoir in East Kunlun, Northern Qinghai−Tibetan Plateau[J]. Geoscience, 36(4): 1052−1064 (in Chinese with English abstract).
[4] Chen H Q, Zhu Y S, Li Q Y, et al. 2006. Sedimentary microfacies in Chang 6 oil−bearing formation of Yanchang Formation of Xinghe district in Ansai oilfield[J]. Journal of Northwest University(Natural Science Edition), (2): 295−300 (in Chinese with English abstract).
[5] Chen Y G, Feng C J, Wei D F, et al. 2025. Formation, distribution, and exploration strategies of tight oil in the Member 6 of Triassic Yanchang Formation in southeastern Ordos Basin[J]. Acta Petrolei Sinica, 46(2): 335−354 (in Chinese with English abstract).
[6] Cowan G, Shaw H. 1991. Diagenesis of Namurian fluvio−deltaic sandstones from the Trumfleet Field, South Yorkshire[J]. Marine & Petroleum Geology, 8(2): 212−224.
[7] Cui J W, Zhang Z Y, Liu J L, et al. 2021. Hydrocarbon generation and expulsion quantification and hydrocarbon accumulation contribution of multiple source beds in Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 32(10): 1514−1531 (in Chinese with English abstract).
[8] Ding X Q, Han M M, Zhang S N. 2013. The role of provenance in the diagenesis of siliciclastic reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Petroleum Science, 10(2): 149−160.
[9] Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity−depth and porosity−permeability relationships[J]. AAPG Bulletin, 89(4): 435−445.
[10] Fu J H, Dong G D, Zhou X P, et al. 2021. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 26(3): 19−40 (in Chinese with English abstract).
[11] Fu Q, Xiao D S. 2023. Favorable reservoir characteristies and diagenetie facies of tight sandstone gas reservoir of Sanjianfang Formation in Shengbei Subsag[J]. Fault−Block Oil & Gas Field, 30(1): 9−16,30 (in Chinese with English abstract).
[12] Gao Z D. 2017. Characteristics of Chang 6 Low−permeability Reservoir in Huaziping Area of Xingzichuan Oilfield, Northern Shaanxi[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 32(6): 51−55 (in Chinese with English abstract).
[13] Guan L Q, Qu H J, Hu C H, et al. 2010. The relationship of heterogeneity and oil−bearing property of Chang 6 reservoir at H area in Ansai Oilfield[J]. Lithologic Reservoirs, 22(3): 26−30, 37(in Chinese with English abstract).
[14] Guo H, Zhao H G, Chen J M, et al. 2024. Fracture characteristics of Triassic Yanchang Formation in the Gufengzhuang area, Western Ordos Basin and its control on low permeability reservoirs[J]. Geology in China, 2024, 51(1): 73−88 (in Chinese with English abstract).
[15] Guo Y Q, Li W H, Chen Q H, et al. 2006. Oil accumulation factors of Chang 6 oil reservoir of Yanchang Formation of Upper Triassic in Ansai Oilfield[J]. Journal of Northwest University(Natural Science Edition), (4): 639−642 (in Chinese with English abstract).
[16] Hendry J P, Wilkinson M, Fallick A E, et al. 2000. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea[J]. Journal of Sedimentary Research, 70(1): 227-239.
[17] Jiang T H, Song F X, Deng B K et al. 2020. Sedimentary microfacies of Chang 6 oil−bearing formation and its control on reservoir in Wugi oilfield, Ordos Basin[J]. Northwestern Geology, 53(4): 130−139 (in Chinese with English abstract).
[18] Jioa K, Ye Y H, Liu S G, et, al. 2018. Characterization and evolution of nanoporosity in superdeeply buried shales: A case study of the Longmaxi and Qiongzhusi shales from MS Well #1, North Sichuan Basin, China[J]. Energy & Fuels, 32(1): 191-203.
[19] Leng D F, Wang X J, Chen T S, et al. 2010. Sedimentary microfacies and hydrocarbon distribution in the lower member of the Chang−6 oil measures in the Wangyao−Houshui−Xinghe−Pingqiao zone, Ansai Oil Field, Shaanxi[J]. Sedimentary Geology and Tethyan Geology, 30(1): 49−53 (in Chinese with English abstract).
[20] Li J F, Li X B, Ma B, et al. 2024. Palynofacies and sedimentary paleoenvironment reconstruction of Triassic Yanchang Formation in southern Ordos Basin[J]. Acta Petrolei Sinica, 45(7): 1092−1103 (in Chinese with English abstract).
[21] Liu J K, Peng J, Liu J J, et al. 2009. Pore−preserving mechanism of chlorite rims in tight sandstone——An example from the T3x Formation of Baojie area in the transitional zone from the central to southern Sichuan Basin[J]. Oil & Gas Geology, 30(1): 53−58 (in Chinese with English abstract).
[22] Luo J L, Zhang X L, Zhang Y X, et al. 2001. The diagenetic impact on reservoir−quality evolution of fluvial−deltaic sandstones: Taking an example from the Upper Triassic sandstones of Chang 2 Formation in the Yanchang oil field[J]. Acta Sedimentologica Sinica, (4): 541−547 (in Chinese with English abstract).
[23] Pan G F, Liu Z, Zhao S, et al. 2011. Quantitative simulation of sandstone porosity evolution: A case from Yanchang Formation of the Zhenjing area, Ordos Basin[J]. Acta Petrolei Sinica, 32(2): 249−256 (in Chinese with English abstract).
[24] Petroleum and Natural Gas Industry Standard of the People's Republic of China. 2016. SY/T 5368—2016. Identification for thin section of rocks. [M]. Beijing: Petroleum Industry Press: 3-5 (in Chinese).
[25] Petroleum and Natural Gas Industry Standard of the People's Republic of China. 2003. SY/T 5477T5477—2003. The division of diagenetic stages in clastic rocks[M]. Beijing: Petroleum Industry Press: 1-5 (in Chinese).
[26] Ryan P C, Reynolds R C. 1996. The origin and diagenesis of grain−coating serpentine−chlorite in Tuscaloosa Formation sandstones, U. S. Gulf Coast[J]. American Mineralogist, 81(1/2): 213−225.
[27] Sarkisyan S G. 1972. Origin of authigenic clay minerals and their significance in petroleum geology[J]. Sedimentary Geology, 7(1): 1−22.
[28] Schmid S, Worden R H, Fisher Q J. 2004. Diagenesis and reservoir quality of the Sherwood sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland[J]. Marine & Petroleum Geology, 21(3): 299−315.
[29] Shang B B, Liao X W, Lu N, et al. 2014. Optimization design of injection and production parameters for water−alternating−CO2 flooding: A case study of Chang 6 reservoir of Wangyao block in Ansai oilfield[J]. Petroleum Geology and Recovery Efficiency, 21(3): 70−72, 77, 115−116 (in Chinese with English abstract).
[30] Shen K, Li B, Huang Z W, et al. 2013. Application of composite indigenous microorganism oil displacement technology in low−permeability reservoirs[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 28(3): 63−69, 2 (in Chinese with English abstract).
[31] Soeder D J, Randolph P L. 1987. Porosity, permeability, and pore structure of the tight mesaverde sandstone, Piceance Basin, Colorado[J]. SPE Formation Evaluation, 2(2): 129−136.
[32] Song K, Lyu J W, Du J L, et al. 2002. Source direction analysis and delta depositional systems of Yanchang formation of the Upper Triassic in the central Ordos basin[J]. Journal of Palaeogeography(Chinese Edition), 4(3): 59−66 (in Chinese with English abstract).
[33] Sun M. 2009. The fine deseription of reservoir and the distributing of remaining oil of Yuancheng oilfield[D]. Doctor Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
[34] Surdam R C, Crossey L J, Hagen E S, et al. 1989. Organic−inorganic interactions and sandstone diagenesis[J]. Amer. Assoc. Petrol. Geol. Bull., 73(1): 1−23.
[35] Tang X P, Huang W H, Li M, et al. 2013. Diagenetic environment evolution of deep sandstones in the Upper Es4 of the Palaeogene in Lijin Sag[J]. Earth Science, 38(4): 843−852 (in Chinese with English abstract).
[36] Wang P, Sun L H, Wang H, et al. 2020. Reservoir characteristics and controlling factors of Chang 6 of Yanchang Formation in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 32(5): 63−72 (in Chinese with English abstract).
[37] Wang X C, Luo J L, Li W H, et al. 2017. Diagenesis characteristics and quantitative analysis of porosity evolution of reservoir of Shan23 Formation in Su77−Zhao51 Well region, Ordos Basin[J]. Geoscience, 31(3): 565−573 (in Chinese with English abstract).
[38] Wang X X, Hou J G, Song S H, et al. 2018. Combining pressure−controlled porosimetry and rate−controlled porosimetry to investigate the fractal characteristics of full−range pores in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 171: 353−361.
[39] Wang X, Fu G M, Li Y J, et al. 2018. Analysis on controlling factors and characteristics of sandstone reservoir of Chang 6 in Zengcha area in Wuqi oilfield, Ordos Basin[J]. Xinjiang Geology, 36(1): 115−119 (in Chinese with English abstract).
[40] Wang Y S, Zhang S. 2023. Formation mechanism of high−quality reservoirs in deep strata of Paleogene, Bonan subsag, Zhanhua Sag, Bohai Bay Basin[J]. Geology & Experiment, 45(1): 11−19 (in Chinese with English abstract).
[41] Wei S X, Fu Q, Dan W D, et al. 2018. Diagenesis fluid stagnation effect and genesis of tight sandstone reservoir in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 39(8): 858−868 (in Chinese with English abstract).
[42] Wu F L, Li W H, Li Y H, et al. 2004. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin[J]. Journal of Palaeogeography(Chinese Edition), 6(3): 307−315 (in Chinese with English abstract).
[43] Xiao Z L, Liu X R, Zhang Z Y, et al. 2025. Geochemical characteristics and accumulation models of the Chang-8 oil reservoir in western Tianhuan Depression, Ordos Basin: A case study of the Hongde area, Gansu Province[J/OL]. Geological Bulletin of China: 1-8[2025-05-21] (in Chinese with English abstract).
[44] Xie J B, Long G Q, Tian C B, et al. 2015. Genetic mechanism of dynamic fracture and its influence on water flooding development in extra−low permeability sandstone reservoir: A case of Chang 6 member in Wangyao area, Ansai oilfield[J]. Petroleum Geology and Recovery Efficiency, 22(3): 106−110 (in Chinese with English abstract).
[45] Xi K L, CaoY C, Liu, K Y, et, al. 2019. Diagenesis of tight sandstone reservoirs in the Upper Triassic Yanchang Formation, southwestern Ordos Basin, China[J]. Marine and Petroleum Geology, 99: 548−562.
[46] Yang H, Zhong D K, Yao J L, et al. 2013. Pore genetic types and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong Area, Ordos Basin[J]. Earth Science Frontiers, 20(2): 69−76 (in Chinese with English abstract).
[47] Yang S, Wang W, Zhang L, et al. 2020. Control factors and distribution of chlorite−cemented facies in the Xujiahe sandstone, Yuanba and Tongnanba area[J]. Earth Science, 45(2): 479−488 (in Chinese with English abstract).
[48] Yin Y S, Ding W G, An X P, et al. 2023. Configuration characterization of Triassic Chang 611reservoir in Sai 160 well area of Ansai oilfield, Ordos Basin[J]. Lithologic Reservoirs, 35(4): 37−49 (in Chinese with English abstract).
[49] Zhang H, Zhong X Y, Dang Y C, et al. 2018. Microscopie pore structure of Chang 6 reservoir in Ansai Oilfield, Ordos Basin[J]. Fault−Block Oil & Gas Field, 25(1): 34−38 (in Chinese with English abstract).
[50] Zhang H L, Deng N T, et al. 2015. Distribution and geochemistry characteristic of the source rocks from Yanchang Formation in the Southern part of Ordos Basin[J]. Journal of Lanzhou University(Natural Sciences), 51(1): 31−36, 43 (in Chinese with English abstract).
[51] Zhang H, An M S, Wang B, et al. 2014. Interface identification and delineation method of single sand body in Chang 611(2) layer of Ansai oilfield[J]. Journal of Oil and Gas Technology, 36(8): 34−36, 4 (in Chinese with English abstract).
[52] Zhang J L, Lin H, Si X Q, et al. 2004. Diagenesis of Chang−6 reservoir in Wangyao area of Ansai oilfield[J]. Periodical of Ocean University of China, (4): 625−635 (in Chinese with English abstract).
[53] Zhang X C, Sun W, Gu Z F, et al. 2016. The optimization in enhanced micro foam system in high water cut in low permeability reservoir[J]. Journal of Shaanxi Normal University(Natural Science Edition), 44(5): 64−69 (in Chinese with English abstract).
[54] Zhang X, Lin C M, Chen Z Y. 2011. Characteristics of chlorite minerals from Upper Triassic Yanchang Formation in the Zhenjing area, Ordos Basin[J]. Acta Geologica Sinica, 85(10): 1659−1671 (in Chinese with English abstract).
[55] Zhang Y L, Bao Z D, Zhao Y, et, al. 2017. Diagenesis and its controls on reservoir properties and hydrocarbon potential in tight sandstone: a case study from the Upper Triassic Chang 7 oil group of Yanchang Formation, Ordos Basin, China[J]. Arabian Journal of Geosciences, 10(11): 1−16.
[56] Zhang Y Y, Gao J W, Zhao J Z, et al. 2021. Diagenesis and pore evolution of Chang 6 tight sandstone reservoir in southeastern Ordos Basin[J]. Lithologic Reservoirs, 33(6): 29−38 (in Chinese with English abstract).
[57] Zhao H, Dang B, Jin W Q, et al. 2004. Fine strata classification and correlation of Chang 6 oil−bearing formation of Yanchang Formation in Ansai Oilfield[J]. Journal of Northwest University(Natural Science Edition), (4): 461−464 (in Chinese with English abstract).
[58] Zhao X S, Yang H, Chen L L, et al. 2019. Analysis of CO2 flooding and storage potential of Chang 6 reservoir in Huaziping area of Yanchang Oilfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 34(1): 62−68 (in Chinese with English abstract).
[59] Zhao X Y, Zeng L B, Jin B G, et al. 2018. Characteristics and formation mechanisms of waterflood induced fractures in low−permeability reservoirs: A case study from Chang 6 reservoir in Ansai oilfield, Ordos Basin[J]. Oil & Gas Geology, 39(4): 696−705 (in Chinese with English abstract).
[60] Zhao Z Q, Shi Y M, Li H. 2016. Stress sensitivity anisotropy and its microscopic mechanism of tight oil and gas reservoirs: A case from the Chang−6 reservoir in Ansai oilfield of Ordos Basin[J]. Oil & Gas Geology, 37(1): 117−124 (in Chinese with English abstract).
[61] Zhao H W, Ning Z F, Wang Q, et al. 2015. Petrophysical characterization of tight oil reservoirs using pressure−controlled porosimetry combined with rate−controlled porosimetry[J]. Fuel, 154: 233−242.
[62] ZhaoJ Z, Meng X G, Han Z H. 2020. Near−source hydrocarbon accumulation: Geochemical evidence of lacustrine crude oil from the Member 6 of Yanchang Formation, eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 41(12): 1513−1526. (in Chinese with English abstract).
[63] Zheng Y H, Qu H J, Feng Y W, et al. 2011. Microscopic pore structure characteristics of Chang 6 reservoir in H area of Ansai Oilfield[J]. Lithologic Reservoirs, 23(5): 28−32 (in Chinese with English abstract).
[64] Zhu Y S, Qu Z H, Kong L, et al. 2000. Analysis of oil displacement efficiency of Chang 6 reservoir in Wangyao and Pingqiao areas of Ansai oilfield[J]. Acta Sedimentologica Sinica, (2): 279−283 (in Chinese with English abstract).
[65] Zhu Y X, Yang C Y, Chen M X, et al. 2013. Diagenesis of Chang 6 reservoirs of Xinghe area in Ansai oilfield and its influence on reservoir pores[J]. Special Oil & Gas Reservoirs, 20(3): 51−55 (in Chinese with English abstract).
[66] 操应长, 杨田, 宋明水, 等. 2018. 陆相断陷湖盆低渗透碎屑岩储层特征及相对优质储层成因——以济阳坳陷东营凹陷古近系为例[J]. 石油学报, 39(7): 727−743. doi: 10.7623/syxb201807001
[67] 晁海德, 陈建洲, 王瑾, 等. 2022. 青藏高原北部东昆仑地区三叠系页岩成岩作用及其对储层的影响[J]. 现代地质, 36(4): 1052−1064.
[68] 陈欢庆, 朱玉双, 李庆印, 等. 2006. 安塞油田杏河区长6油层组沉积微相研究[J]. 西北大学学报(自然科学版), (2): 295−300.
[69] 陈义国, 封从军, 魏登峰, 等. 2025. 鄂尔多斯盆地东南部三叠系延长组6段致密油的形成、分布与勘探对策[J]. 石油学报, 46(2): 335−354. doi: 10.7623/syxb202502004
[70] 崔景伟, 张忠义, 刘建良, 等. 2021. 鄂尔多斯盆地延长组多烃源层生排烃定量及成藏贡献厘定[J]. 天然气地球科学, 32(10): 1514−1531. doi: 10.11764/j.issn.1672-1926.2021.05.011
[71] 付金华, 董国栋, 周新平, 等. 2021. 周国晓. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 26(3): 19−40.
[72] 付强, 肖冬生. 2023. 胜北洼陷三间房组致密砂岩气藏有利储层特征与成岩相[J]. 断块油气田, 30(1): 9−16, 30.
[73] 高振东. 2017. 陕北杏子川油田化子坪区长6低渗储层特征[J]. 西安石油大学学报(自然科学版), 32(6): 51−55.
[74] 关利群, 屈红军, 胡春花, 等. 2010. 安塞油田H区长6油层组储层非均质性与含油性关系研究[J]. 岩性油气藏, 22(3): 26−30,37. doi: 10.3969/j.issn.1673-8926.2010.03.006
[75] 郭惠, 赵红格, 陈江萌, 等. 2024. 鄂尔多斯盆地西部古峰庄地区三叠系延长组裂缝特征及其对低渗透油藏的控制作用[J]. 中国地质, 51(1): 73−88. doi: 10.12029/gc20210802002
[76] 郭艳琴, 李文厚, 陈全红, 等. 2006. 安塞油田上三叠统延长组长6油藏储集因素[J]. 西北大学学报(自然科学版), (4): 639−642.
[77] 蒋天昊, 宋方新, 邓宝康, 等. 2020. 鄂尔多斯盆地吴起油田长6段沉积微相特征及其对储层的控制[J]. 西北地质, 53(4): 130−139.
[78] 冷丹凤, 王小军, 陈堂锁, 等. 2010. 安塞油田王侯杏坪地区长6下段沉积微相特征与油气分布[J]. 沉积与特提斯地质, 30(1): 49−53. doi: 10.3969/j.issn.1009-3850.2010.01.008
[79] 李剑锋, 李相博, 马博, 等. 2024. 鄂尔多斯盆地南部三叠系延长组孢粉相及其沉积古环境恢复[J]. 石油学报, 45(7): 1092−1103. doi: 10.7623/syxb202407005
[80] 刘金库, 彭军, 刘建军, 等. 2009. 绿泥石环边胶结物对致密砂岩孔隙的保存机制——以川中-川南过渡带包界地区须家河组储层为例[J]. 石油与天然气地质, 30(1): 53−58. doi: 10.3321/j.issn:0253-9985.2009.01.008
[81] 罗静兰, 张晓莉, 张云翔, 等. 2001. 成岩作用对河流—三角洲相砂岩储层物性演化的影响——以延长油区上三叠统延长组长2砂岩为例[J]. 沉积学报, (4): 541−547. doi: 10.3969/j.issn.1000-0550.2001.04.011
[82] 潘高峰, 刘震, 赵舒, 等. 2011. 砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例[J]. 石油学报, 32(2): 249−256.
[83] 尚宝兵, 廖新维, 卢宁, 等. 2014. CO2驱水气交替注采参数优化——以安塞油田王窑区块长6油藏为例[J]. 油气地质与采收率, 21(3): 70−72, 77, 115−116. doi: 10.3969/j.issn.1009-9603.2014.03.018
[84] 申坤, 李斌, 黄战卫, 等. 2013. 复合本源微生物驱油技术在低渗透油藏的应用研究[J]. 西安石油大学学报(自然科学版), 28(3): 63−69, 2.
[85] 宋凯, 吕剑文, 杜金良, 等. 2002. 鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系[J]. 古地理学报, 4(3): 59−66. doi: 10.3969/j.issn.1671-1505.2002.03.008
[86] 孙明. 2009. 元城油田精细油藏描述与剩余油分布研究[D]. 中国地质大学(北京)博士学位论文.
[87] 孙世华. 2008. 安塞油田长6储层有利沉积微相研究[J]. 石油天然气学报, (2): 225−228.
[88] 唐鑫萍, 黄文辉, 李敏, 等. 2013. 利津洼陷沙四上亚段深部砂岩的成岩环境演化[J]. 地球科学(中国地质大学学报), 38(4): 843−852.
[89] 王朋, 孙灵辉, 王核, 等. 2020. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 32(5): 63−72. doi: 10.12108/yxyqc.20200507
[90] 王霞, 付国民, 李永军, 等. 2018. 鄂尔多斯盆地吴起曾岔地区长6油层组储层特征及控制因素分析[J]. 新疆地质, 36(1): 115−119. doi: 10.3969/j.issn.1000-8845.2018.01.018
[91] 王晓晨, 罗静兰, 李文厚, 等. 2017. 鄂尔多斯盆地苏77、召51区块山23段储层成岩作用与孔隙演化定量分析[J]. 现代地质, 31(3): 565−573. doi: 10.3969/j.issn.1000-8527.2017.03.013
[92] 王永诗, 张顺. 2023. 渤海湾盆地沾化凹陷渤南洼陷古近系深层优质储层形成机制[J]. 石油实验地质, 45(1): 11−19. doi: 10.11781/sysydz202301011
[93] 魏新善, 傅强, 淡卫东, 等. 2018. 鄂尔多斯盆地延长组成岩流体滞留效应与致密砂岩储层成因[J]. 石油学报, 39(8): 858−868. doi: 10.7623/syxb201808002
[94] 武富礼, 李文厚, 李玉宏, 等. 2004. 席胜利. 鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J]. 古地理学报, 6(3): 307−315. doi: 10.3969/j.issn.1671-1505.2004.03.005
[95] 肖正录, 刘孝锐, 张忠义, 等. 2025. 鄂尔多斯盆地天环坳陷西缘长8油藏地球化学特征及成藏模式——以甘肃洪德地区为例[J/OL]. 地质通报: 1−8 [2025-05-21].
[96] 谢景彬, 龙国清, 田昌炳, 等. 2015. 特低渗透砂岩油藏动态裂缝成因及对注水开发的影响——以安塞油田王窑区长6油组为例[J]. 油气地质与采收率, 22(3): 106−110. doi: 10.3969/j.issn.1009-9603.2015.03.019
[97] 杨华, 钟大康, 姚泾利, 等. 2013. 鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J]. 地学前缘, 20(2): 69−76.
[98] 杨烁, 王威, 张莉, 等. 2020. 元坝—通南巴地区须家河组绿泥石膜胶结相砂岩发育控制因素与分布规律[J]. 地球科学, 45(2): 479−488.
[99] 尹艳树, 丁文刚, 安小平, 等. 2023. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 35(4): 37−49.
[100] 张海林, 邓南涛, 李强, 等. 2015. 鄂尔多斯盆地南部延长组烃源岩分布及其地球化学特征[J]. 兰州大学学报(自然科学版), 51(1): 31−36, 43.
[101] 张浩, 仲向云, 党永潮, 等. 2018. 鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J]. 断块油气田, 25(1): 34−38.
[102] 张欢, 安明胜, 王波, 等. 2014. 安塞油田长611(2)小层单砂体界面识别及划分方法[J]. 石油天然气学报, 36(8): 34−36, 4. doi: 10.3969/j.issn.1000-9752.2014.08.007
[103] 张金亮, 林辉, 司学强, 等. 2004. 鄂尔多斯盆地王窑地区上三叠统长6油层成岩作用研究[J]. 中国海洋大学学报(自然科学版), (4): 625−635.
[104] 张霞, 林春明, 陈召佑. 2011. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征[J]. 地质学报, 85(10): 1659−1671.
[105] 张相春, 孙卫, 古正富, 等. 2016. 低渗透油藏高含水期强化微泡沫体系研究[J]. 陕西师范大学学报(自然科学版), 44(5): 64−69.
[106] 张玉晔, 高建武, 赵靖舟, 等. 2021. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 33(6): 29−38. doi: 10.12108/yxyqc.20210604
[107] 张志强, 师永民, 李鹤. 2016. 致密油气藏储层应力敏感各向异性及其微观机制——以鄂尔多斯盆地安塞油田长6油层为例[J]. 石油与天然气地质, 37(1): 117−124.
[108] 赵虹, 党犇, 靳文奇, 等. 2004. 安塞油田长6油层组精细地层划分与对比[J]. 西北大学学报(自然科学版), (4): 461−464.
[109] 赵靖舟, 孟选刚, 韩载华. 2020. 近源成藏——来自鄂尔多斯盆地延长组湖盆东部“边缘”延长组6段原油的地球化学证据[J]. 石油学报, 41(12): 1513−1526. doi: 10.7623/syxb202012006
[110] 赵习森, 杨红, 陈龙龙, 等. 2019. 延长油田化子坪油区长6油层CO2驱油与封存潜力分析[J]. 西安石油大学学报(自然科学版), 34(1): 62−68.
[111] 赵向原, 曾联波, 靳宝光, 等. 2018. 低渗透油藏注水诱导裂缝特征及形成机理——以鄂尔多斯盆地安塞油田长6油藏为例[J]. 石油与天然气地质, 39(4): 696−705.
[112] 郑艳荣, 屈红军, 冯杨伟, 等. 2011. 安塞油田H区长6油层组储层微观孔隙结构特征[J]. 岩性油气藏, 23(5): 28−32.
[113] 中华人民共和国石油天然气行业标准. 2003. SY/T 5477T5477—2003碎屑岩成岩阶段划分[M]. 北京: 石油工业出版社: 1-5.
[114] 中华人民共和国石油天然气行业标准. 2016. SY/T 5368—2016. 岩石薄片鉴定[M]. 北京: 石油工业出版社: 3-5.
[115] 朱毅秀, 杨程宇, 陈明鑫, 等. 2013. 安塞油田杏河区长6储层成岩作用及对孔隙的影响[J]. 特种油气藏, 20(3): 51−55. doi: 10.3969/j.issn.1006-6535.2013.03.011
[116] 朱玉双, 曲志浩, 孔令荣, 等. 2000. 安塞油田坪桥区、王窑区长6油层储层特征及驱油效率分析[J]. 沉积学报, (2): 279−283. doi: 10.3969/j.issn.1000-0550.2000.02.019
-