Occurrences and migration behavior of tin: Implications for the genesis of the Xitieshan deposit
-
摘要:
研究目的 青海锡铁山矿床是中国最大的铅锌矿之一,其围岩发育大量基性火山岩,但金属元素组合以Pb和Zn为主,缺乏与围岩特征对应的Cu、Sn等成矿元素,造成前人对其原始成因类型是火山岩容矿的块矿硫化物矿床(VMS)还是碎屑岩容矿的块状硫化物矿物(SEDEX)存在分歧。
研究方法 通过细致的显微镜岩相学观察,结合矿物自动分析系统(TIMA)和电子探针(EPMA)分析,对锡铁山矿床中不同类型的矿石开展综合分析研究。
研究结果 锡铁山矿床层状/似层状矿体中的主要矿石分为纹层状、薄层状和厚层状矿石3类,分别代表原始沉积矿层、轻度重结晶矿层和变质再活化矿层。锡在代表喷流沉积阶段的纹层状矿石中主要赋存于与胶黄铁矿共生的铁氧化物中;在代表轻度重结晶的薄层状矿石中主要赋存于黄铁矿层伴生的石英中,少数分布于黄铁矿晶格缺陷的他形锡石中;而在遭受变质再活化的厚层状矿石中主要分布于后期闪锌矿细脉和方铅矿细脉中,其中方铅矿细脉中主要为自形粒状黄锡矿和他形—半自形粒状锡石。
结论 结合区域地质演化和矿石成分变化特征,提出锡铁山矿床为VMS,并经历了三阶段演化,即喷流沉积阶段、成岩重结晶阶段和变质改造阶段。在上述演化过程中,矿床中的锡经历了早期喷流沉积富集和随后的变质再活化迁移,形成了如今贫锡的现状。研究认为,锡铁山矿床形成后经历强烈的变质改造作用是锡铁山富铅锌而贫锡等亲镁铁质岩成矿元素的主要原因。
Abstract:Objective The Xitieshan deposit in Qinghai Province is one of the largest lead–zinc (Pb−Zn) deposits in China. Although its host rocks are dominated by mafic volcanic rocks, the ore exhibits a metal assemblage primarily composed of Pb and Zn, with a notable deficiency in copper (Cu) and tin (Sn)—elements typically associated with mafic−hosted mineralization. This compositional mismatch has led to long−standing controversy regarding the deposit’s primary genetic type as Volcanic−hosted Massive Sulfide deposit (VMS) or Sedimentary Exhalative deposit (SEDEX).
Methods This study conducted a comprehensive analysis of ores from the Xitieshan deposit through detailed petrographic observations under the microscope, combined with automated mineralogy using TESCAN Integrated Mineral Analyzer (TIMA) and electron probe microanalysis (EPMA).
Results The main ore types in the stratiform/sub−stratiform orebodies of the Xitieshan deposit are classified into three categories: laminated ores, thin−layered ores, and thick−layered ores, which respectively represent primary syngenetic sedimentary layers, weakly recrystallized layers, and metamorphically reactivated layers. Tin in the laminated ores, representing the exhalative sedimentary stage, is mainly hosted in iron oxides associated with gel−textured goethite. In the thin−layered ores, which reflect weak recrystallization, tin is predominantly hosted in quartz intergrown with pyrite layers, and partially occurs as anhedral cassiterite associated with lattice defects in pyrite. In the thick−layered ores, which have undergone metamorphic reactivation, tin is mainly distributed in late−stage sphalerite and galena micro−veins, with stannite occurring as euhedral grains and cassiterite as anhedral to subhedral grains within galena veins.
Conclusions Based on the regional geological evolution and the compositional variation of the ores, this study proposes a three−stage evolutionary model for the Xitieshan deposit, such as the volcanic exhalation stage, the diagenetic−recrystallization stage, and the metamorphic overprint stage. Due to the complicated formation and subsequent overprinting processes, Sn underwent early−stage exhalative sedimentary enrichment followed by remobilization during a later stage of metamorphism, ultimately resulting in Sn depletion in the current orebodies of the deposit. This study suggests that the intense metamorphic transformation experienced after the formation is the primary reason for the enrichment of Pb–Zn and the concurrent depletion of Sn and other ore−forming elements typically associated with mafic host rocks in the Xitieshan deposit.
-
Key words:
- tin /
- ore fabric /
- occurrence /
- VMS /
- Xitieshan deposit /
- Qinghai Province
-
-
图 1 柴达木北缘造山带位置(a)及其主要构造单元和主要矿床分布(b)(据Feng et al., 2022修改)
Figure 1.
图 2 锡铁山矿床矿区地质图(据Feng et al., 2022修改)
Figure 2.
表 1 锡铁山矿床中锡石电子探针分析结果
Table 1. Electron probe microanalysis (EPMA) results of cassiterite from the Xitieshan deposit
% 矿石 锡石产状 样品编号 编号 SiO2 Nb2O5 ZrO2 In2O3 SnO2 TiO2 WO3 Ta2O5 Al2O3 FeO MnO Cr2O3 HfO2 总计 层状矿石
XT-74包裹于黄铁矿 Cst-1-1 1 0.134 - 0.018 - 96.128 0.014 0.149 - 0.003 2.775 0.003 - 0.052 99.276 Cst-1-2 3 0.116 - 0.04 0.081 96.522 - - 0.102 0.009 2.648 - - - 99.518 Cst-1-3 4 0.121 0.011 0.085 0.192 95.233 - 0.223 0.019 0.017 3.261 0.043 0.055 0.021 99.281 Cst-1-1 5 0.237 - - 0.133 94.873 0.028 0.333 0.148 0.083 3.163 - 0.184 0.157 99.339 Cst-1-2 6 0.097 0.018 0.054 0.128 94.809 1.161 0.283 - - 2.662 - 0.06 0.099 99.371 Cst-1-3 7 0.069 0.011 0.089 0.165 95.117 0.511 0.015 - 0.009 1.799 0.02 0.095 0.172 98.072 铅锌硫化物脉
XT-72与方铅脉共生 Cst-2-4 8 0.06 0.085 - 0.074 98.619 0.242 - 0.018 - 0.032 0.03 0.02 0.005 99.185 Cst-2-5 9 0.085 0.029 - 0.189 99.255 - 0.198 - - - 0.023 0.01 0.078 99.867 Cst-2-6 10 0.136 - 0.071 0.15 98.230 0.043 - - 0.002 0.289 - - - 98.921 Cst-2-7 11 0.079 - 0.093 0.122 99.280 - - - - - 0.007 - 0.172 99.753 Cst-2-8 12 0.082 - 0.058 0.139 99.238 - 0.035 0.194 0.008 0.005 - - - 99.759 Cst-2-9 13 0.071 0.052 - 0.193 97.866 0.014 - - - 0.088 0.017 - 0.078 98.379 Cst-2-10 14 0.076 - - 0.162 98.648 - 0.173 - 0.007 0.088 - 0.055 0.114 99.323 Cst-2-11 15 0.059 0.022 - 0.146 98.291 0.527 0.045 0.009 0.007 0.008 0.09 - 0.01 99.214 Cst-2-12 16 0.061 - 0.022 0.176 98.663 0.185 0.104 0.065 0.015 0.046 - 0.045 - 99.382 Cst-2-13 17 0.097 0.022 0.009 0.16 97.66 - 0.148 0.065 0.022 0.63 0.033 - - 98.846 Cst-2-14 18 0.103 - 0.004 0.157 98.129 0.242 - - - 0.751 0.047 - - 99.433 Cst-2-15 19 0.117 0.018 0.004 0.121 99.892 0.188 - - - 0.048 0.023 0.052 - 100.463 包裹于赤铁矿 Cst-2H-1 20 0.065 - - 0.117 97.99 0.025 0.034 - 0.02 2.355 - - 0.018 100.624 Cst-2H-2 21 0.046 0.022 0.088 0.112 98.784 0.15 - - 0.046 1.589 0.07 0.033 0.089 101.029 包裹于黄锡矿 Cst-2S-1 22 0.123 - 0.053 0.04 98.975 0.025 - 0.302 - 1.986 0.02 - - 101.524 Cst-2S-2 23 0.125 - 0.022 0.147 99.52 0.013 - 0.097 0.002 0.873 0.04 - - 100.839 Cst-2S-3 24 0.137 0.044 0.035 0.144 99.691 0.075 - 0.004 - 0.688 - 0.122 - 100.940 注:“-”为低于检测限 -
[1] Barrie C T, Hannington M D. 1999. Classification of volcanic−associated massive sulfide deposits based on host−rock composition[J]. Reviews in Economic Geology, 8: 2−10.
[2] Bradshaw G D, Rowins S M, Peter J M, et al. 2008. Genesis of the Wolverine volcanic sediment−hosted massive sulfide deposit, Finlayson Lake District, Yukon, Canada: Mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 103(1): 35−60. doi: 10.2113/gsecongeo.103.1.35
[3] Chen J. 2000. Geochemistry of tin[M]. Nanjing: Nanjing University Press (in Chinese).
[4] Chu F Y, Chen L R. 1995. Characteristics and genesis of Colloform pyrite from the Mid−Atlantic Ridge[J]. Oceanologia et Limnologia Sinica, 26(4): 350−354 (in Chinese).
[5] Craig J R. 1983. Metamorphic features in Appalachian massive sulphides[J]. Mineralogical Magazine, 47(4): 515−525.
[6] Dai L G. 2019. Metallogenic System of Au−Pb−Zn Deposit in Tanjianshan‒Xitieshan Area in Qinghai Province[D]. Ph. D. Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).
[7] Deng D W, Kong H, Xi X S. 2003. Geochemisrry of the hydrothermal sedimentary Xitieshan Pb−Zn deposit, Qinghai Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 22(4): 310−313 (in Chinese with English abstract).
[8] Dubosq R, Lawley C J M, Rogowitz A, et al. 2018. Pyrite deformation and connections to gold mobility: Insight from micro−structural analysis and trace element mapping[J]. Lithos, 310(2018): 86−104.
[9] Eldridge C S, Bourcier W L, Ohmoto H, et al. 1988. Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite[J]. Economic Geology, 83(5): 978−989. doi: 10.2113/gsecongeo.83.5.978
[10] Emsbo P, Seal R R, Breit G N, et al. 2016. Sedimentary exhalative (sedex) zinc−lead−silver deposit model[R]. Reston, VA: US Geological Survey.
[11] Feng Z, Yang T, Yao X, et al. 2022. Ore forming and reworking processes in the Xitieshan Pb−Zn deposit, Qinghai Province, China: Constraints from in situ trace−element and S isotope compositions of sulfides[J]. Ore Geology Reviews, 149: 105103. doi: 10.1016/j.oregeorev.2022.105103
[12] Franklin J M, Gibson L, Jonasson I, et al. 2005. One hundredth anniversary volume[M]. Society of Economic Geologists: 523−560.
[13] Fu J, Liang X, Wang C, et al. 2017. The Xitieshan volcanic sediment−hosted massive sulfide deposit, North Qaidam, China: Geology, structural deformation and geochronology[J]. Ore Geology Reviews, 80: 923−946. doi: 10.1016/j.oregeorev.2016.08.027
[14] George L L, Cook N J, Ciobanu C L. 2016. Partitioning of trace elements in co−crystallized sphalerite−galena−chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 77: 97−116. doi: 10.1016/j.oregeorev.2016.02.009
[15] George L L, Cook N J, Crowe B B P, et al. 2018. Trace elements in hydrothermal chalcopyrite[J]. Mineralogical Magazine, 82(1): 59−88. doi: 10.1180/minmag.2017.081.021
[16] Gu L X, Tang X Q, Zheng Y C, et al. 2004. Metamorphism, deformation, and remobilization of ore−forming components in the Hongtoushan Cu−Zn massive sulfide deposit, Liaoning[J]. Acta Petrologica Sinica, 20(4): 923−934 (in Chinese with English abstract).
[17] Gu L X, Xu K Q. 1986. On the Carboniferous submarine massive sulphide deposits in the lower reaches of the Changjiang (Yangzi) River[J]. Acta Geologica Sinica, 7(2): 176−188 (in Chinese with English abstract).
[18] Han F, Zhong K H, Bao X C. 2017. Discovery of stannite in the Mengya'a Pb−Zn deposit, Tibet[J]. Xinjiang Non−ferrous Metals, 40(2): 60−61,64 (in Chinese).
[19] Heinrich C A. 1996. Geochemical evolution and hydrothermal mineral deposition in Sn (−W−base metal) and other granite−related ore systems: Some conclusions from Australian examples[J]. Short Course Handbook, 23: 203−220.
[20] Hou Z, Deng J, Sun H, et al. 1999. Volcanogenic massive sulfide deposits in China: Setting, feature, and style[J]. Exploration & Mining Geology, 8(3): 149−175.
[21] Huang P Y. 2012. Morphological and geochemical studies of the cassiterite in the Taoxikeng tin deposit, Jiangxi Province[D]. Master Thesis of Nanjing University (in Chinese with English abstract).
[22] Huston D L, Relvas J M, Gemmell J B, et al. 2011. The role of gregites in volcanic−hosted massive sulphide ore−forming systems: an assessment of magmatic−hydrothermal contributions[J]. Mineralium Deposita, 46: 473−507. doi: 10.1007/s00126-010-0322-7
[23] Kumar A A, Sanislav I V, Cathey H E, et al. 2023. Geochemistry of indium in magmatic−hydrothermal tin and sulfide deposits of the Herberton Mineral Field, Australia[J]. Mineralium Deposita, 58(7): 1297−1316. doi: 10.1007/s00126-023-01179-7
[24] Leach D L, Song Y. 2019. Sediment−hosted zinc−lead and copper deposits in China[M]. Society of Economic Geologists: 325−409.
[25] Lehmann B. 2014. Metallogeny of tin[M]. Springer.
[26] Lehmann B. 2021. Formation of tin ore deposits: A reassessment[J]. Lithos, 402/203: 105756.
[27] Lentz D R, McCutcheon S R. 2006. The Brunswick No. 6 massive sulfide deposit, Bathurst mining camp, northern New Brunswick, Canada: A synopsis of the geology and hydrothermal alteration system[J]. Exploration and Mining Geology: Journal of the Geological Society of Cim, 15(3/4): 1−34.
[28] Li X Y, Chen N S, Xia X P, et al. 2007. Onstraints on timing of the Early−Paleoproterozoic magmatism and crustal evolution of the Oulongbuluke microcontinent: U−Pb and Lu−Hf isotope systematics of zircons from Mohe granitie pluton[J]. Acta Petrologica Sinica, 23(2): 513−522 (in Chinese with English abstract).
[29] Linnen R L, Pichavant M, Holtz F O. 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts[J]. Geochimica et Cosmochimica Acta, 60(24): 4965−4976. doi: 10.1016/S0016-7037(96)00295-5
[30] Liu Y S. 1990. Experimental study on the genesis of stannite in sulfide−type Cassiterite deposits[J]. Mineral Deposits, 9(1): 49−55 (in Chinese).
[31] Lydon J W, Hay T, Slack J F, et al. 2000. The geological environment of the Sullivan deposit, British Columbia[M]. St. John's, Nfld.: geological association of Canada, Mineral Deposits Division.
[32] Lydon J W. 1984. Ore deposit models−8. Volcanogenic massive sulphide deposits Part I: A descriptive model[J]. Geoscience Canada, 11(4): 195−202.
[33] MacLellan K L, Lentz D R, McClenaghan S H. 2006. Petrology, geochemistry, and genesis of the copper zone at the Brunswick No. 6 volcanogenic massive sulfide deposit, Bathurst mining camp, New Brunswick, Canada[J]. Exploration and Mining Geology: Journal of the Geological Society of Cim, 15(3/4): 53−75.
[34] Meng F C, Zhang J X, Yang J S. 2005. Tectono−thermal event of post−HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: Isotopic and geochemical evidence of granite and gneiss[J]. Acta Petrologica Sinica, 21(1): 47−58 (in Chinese with English abstract).
[35] Meng F C, Zhang J X. 2008. Contemporaneous of Early Paleozoic granite and high temperature metamorphism, North Qaidam Mountains, western China[J]. Acta Petrologica Sinica, 24(7): 1585−1594 (in Chinese with English abstract).
[36] Peng M S, Lu W H, Zou Z G. 1985. Spectroscopic study of cassiterite from four types of tin deposits in China[J]. Mineral Deposits, 4(2): 69−76 (in Chinese).
[37] Piercey S J. 2011. The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 46: 449−471. doi: 10.1007/s00126-011-0341-z
[38] Raiswell R. 1982. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science (1880), 282(8): 1244−1263. doi: 10.2475/ajs.282.8.1244
[39] Relvas J M R S, Barriga F J A S, Ferreira A, et al. 2006. Hydrothermal alteration and mineralization in the Neves−Corvo Volcanic−hosted massive sulfide deposit, Portugal. I. geology, mineralogy, and geochemistry[J]. Economic Geology, 101(4): 753−790. doi: 10.2113/gsecongeo.101.4.753
[40] Relvas J M R S, Barriga F J A S, Pinto A, et al. 2002. The Neves−Corvo Deposit, Iberian pyrite belt, Portugal; impacts and future, 25 years after the discovery[J]. Society of Economic Geologists, 155−176.
[41] Schmidt C. 2018. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species[J]. Geochimica et Cosmochimica Acta, 220: 499−511. doi: 10.1016/j.gca.2017.10.011
[42] Shimizu M, Tsunoda K. 2008. Physicochemical environment of formation of tin sulfide−bearing[D]. Far Eastern Studies FES, 7: 23−40.
[43] Shumway S G, Wilson J, Lilova K, et al. 2022. The low−temperature heat capacity and thermodynamic properties of greigite (Fe3S4)[J]. The Journal of Chemical Thermodynamics, 173: 106836. doi: 10.1016/j.jct.2022.106836
[44] Sillitoe R H, Lehmann B. 2022. Copper−rich tin deposits[J]. Mineralium Deposita, 57(1): 1−11. doi: 10.1007/s00126-021-01078-9
[45] Song S, Niu Y, Su L, et al. 2013. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378−1401. doi: 10.1016/j.gr.2012.02.004
[46] Sun H S, Zhao L J, Ning J T, et al. 2012. Metallogenic tectonic setting and ore−finding potential of Xitieshan massive sulfide lead−zinc deposit: Evidence from lithochemistry and geochemistry of ore−hosted volcanic strata, Tanjianshan Group[J]. Acta Petrologica Sinica, 28(2): 652−664 (in Chinese with English abstract).
[47] Sun H, Li H, Evans N J, et al. 2017. Volcanism, mineralization and metamorphism at the Xitieshan Pb−Zn deposit, NW China: Insights from zircon geochronology and geochemistry[J]. Ore Geology Reviews, 88: 289−303. doi: 10.1016/j.oregeorev.2017.05.010
[48] Walker R R, Matulich A, Amos A C, et al. 1975. The geology of the Kidd Creek Mine[J]. Economic Geology, 70(1): 80−89. doi: 10.2113/gsecongeo.70.1.80
[49] Wang C, Yu S, Sun D, et al. 2021. Mesoproterozoic tectonic−thermal events in the Oulongbuluke Block, NW China: Constraints on the transition from supercontinent Columbia to Rodinia[J]. Precambrian Research, 352: 106010. doi: 10.1016/j.precamres.2020.106010
[50] Wang L J, Peng Z G, Zhu X Y, et al. 2009. Source and evolution of ore−fluid of the Xitieshan sedimentary−exhalative lead−zinc system, Qinghai province: Evidence from fluid inclusion and isotope geochemistry[J]. Acta Petrologica Sinica, 25(11): 3007−3015 (in Chinese with English abstract).
[51] Wu C Z, Gu L X, Feng H, et al. 2008. Genetic types of orebodies in the Xitieshan lead−zinc deposit, Qinghai Province, Western China[J]. Geology in China, 35(6): 1185−1196 (in Chinese with English abstract).
[52] Wu J R. 1985. Geological characteristics of the Xitieshan massive sulfide deposit, Qinghai[J]. Mineral Deposits, (2): 1−12 (in Chinese).
[53] Xu Z Q, Yang J S, Wu C L, et al. 2003. Timing and mechanism of formation and exhumation of the Qaidam ultra−pressure metamorphic belt[J]. Acta Geologica Sinica, 77(2): 163−176 (in Chinese with English abstract).
[54] Yang J S, Song S G, Xu Z Q, et al. 2001. Discovery of coesite in the North Qaidam Early Paleozoic ultrahigh−high pressure (UHP−HP) metamorphic belt, NW china[J]. Acta Geologica Sinica, 75(2): 175−179 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2001.tb00519.x
[55] Yang J, Xu Z, Li H, et al. 1998. Discovery of eclogite at northern margin of Qaidam Basin, NW China[J]. Chinese Science Bulletin, 43(20): 1755−1760. doi: 10.1007/BF02883981
[56] Yao X Z, Yang T, Zhu Z Y, et al. 2019. Characteristics of LA−ICP−MS trace elements in pyrite: Implications for the genesis of Xitieshan deposit in Qinghai Province[J]. Geological Journal of China Universities, 25(6): 888−900 (in Chinese with English abstract).
[57] Zhang B M. 2006. Genetic mineralogy and fluid inclusion study of Cassiterite from the Qianlishan−Qitianling−Furong tin ore field, Hunan Province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[58] Zhang D Q, Wang F C, Li D X, et al. 2005. Two types of massive sulfide deposits on northern margin of Qaidam basin, Qinghai Province: I. Xitieshan style SEDEX lead−zinc deposits[J]. Mineral Deposits, 24(5): 471−480 (in Chinese with English abstract).
[59] Zhang G, Zhang L, Christy A G. 2013. From oceanic subduction to continental collision: An overview of HP–UHP metamorphic rocks in the North Qaidam UHP belt, NW China[J]. Journal of Asian Earth Sciences, 63: 98−111. doi: 10.1016/j.jseaes.2012.07.014
[60] Zhang Z J, Xia W H, Zhang W H, et al. 1995. Organic inclusions in the Xitieshan Pb−Zn deposit and their geological significance[J]. Journal of Earth Science, (2): 225−230 (in Chinese).
[61] Zhao Z, Leach D L, Wei J, et al. 2021. Origin of the Xitieshan Pb−Zn deposit, Qinghai, China: Evidence from petrography and S−C−O−Sr isotope geochemistry[J]. Ore Geology Reviews, 139: 104429. doi: 10.1016/j.oregeorev.2021.104429
[62] Zhao Z, Wei J, Santosh M, et al. 2017. Late Devonian postcollisional magmatism in the ultrahigh−pressure metamorphic belt, Xitieshan terrane, NW China[J]. GSA Bulletin, 130(5/6): 999−1016.
[63] Zhu X Y, Deng J N, Wang J B, et al. 2006. Study of two types of ore bodies in Xitieshan lead−zinc SEDEX deposit, Qinghai Province[J]. Mineral Deposits, (3): 252−262 (in Chinese with English abstract).
[64] Zhu X Y, Deng J N, Wang J B, et al. 2007. Study on Marble of the Xitieshan Lead−Zinc SEDEX Deposit, Qinghai Province: Interaction between Exhaled Brine and Seawater[J]. Geological Review, 53(1): 52−64 (in Chinese with English abstract).
[65] 陈骏. 2000. 锡的地球化学[M]. 南京: 南京大学出版社.
[66] 初凤友, 陈丽蓉. 1995. 大西洋中脊胶状黄铁矿的特征及其成因[J]. 海洋与湖沼, 26(4): 350−354. doi: 10.3321/j.issn:0029-814X.1995.04.002
[67] 戴荔果. 2019. 青海省滩间山—锡铁山地区金铅锌成矿系统[D]. 中国地质大学(武汉)博士学位论文.
[68] 邓达文, 孔华, 奚小双. 2003. 青海锡铁山热水沉积型铅锌矿床的地球化学特征[J]. 矿物岩石地球化学通报, 22(4): 310−313.
[69] 顾连兴, 汤晓茜, 郑远川, 等. 2004. 辽宁红透山铜锌块状硫化物矿床的变质变形和成矿组分再活化[J]. 岩石学报, 20(4): 923−934. doi: 10.3321/j.issn:1000-0569.2004.04.014
[70] 顾连兴, 徐克勤. 1986. 论长江中、下游中石炭世海底块状硫化物矿床[J]. 地质学报, 7(2): 176−188.
[71] 韩飞, 钟康惠, 包相臣. 2017. 西藏蒙亚啊铅锌矿床中黄锡矿的发现[J]. 新疆有色金属, 40(2): 60−61,64.
[72] 黄品赟. 2012. 江西淘锡坑锡矿中两期锡石的形态学和地球化学研究[D]. 南京大学硕士学位论文.
[73] 李晓彦, 陈能松, 夏小平, 等. 2007. 莫河花岗岩的锆石U‒Pb和Lu‒Hf同位素研究: 柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束[J]. 岩石学报, 23(2): 513−522.
[74] 刘玉山. 1990. 锡石硫化物型矿床中黄锡矿成因的实验研究[J]. 矿床地质, 9(1): 49−55.
[75] 孟繁聪, 张建新, 杨经绥. 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据[J]. 岩石学报, 21(1): 47−58.
[76] 孟繁聪, 张建新. 2008. 柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性[J]. 岩石学报, 24(7): 1585−1594.
[77] 彭明生, 卢文华, 邹正光. 1985. 我国四种锡矿床中的锡石的谱学研究[J]. 矿床地质, 4(2): 69−76.
[78] 孙华山, 赵立军, 宁钧陶, 等. 2012. 锡铁山块状硫化物铅锌矿床成矿构造环境及矿区南部找矿潜力: 来自滩间山群火山岩岩石化学、地球化学证据[J]. 岩石学报, 28(2): 652−664.
[79] 王莉娟, 彭志刚, 祝新友, 等. 2009. 青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化: 流体包裹体及同位素地球化学证据[J]. 岩石学报, 25(11): 3007−3015.
[80] 邬介人. 1985. 青海锡铁山块状硫化物矿床地质特征[J]. 矿床地质, (2): 1−12.
[81] 吴昌志, 顾连兴, 冯慧, 等. 2008. 青海锡铁山铅锌矿床的矿体成因类型讨论[J]. 中国地质, 35(6): 1185−1196.
[82] 许志琴, 杨经绥, 吴才来, 等. 2003. 柴达木北缘超高压变质带形成与折返的时限及机制[J]. 地质学报, 77(2): 163−176.
[83] 杨经绥, 宋述光, 许志琴, 等. 2001. 柴达木盆地北缘早古生代高压—超高压变质带中发现典型超高压矿物——柯石英[J]. 地质学报, 75(2): 175−179.
[84] 姚希柱, 杨涛, 朱志勇, 等. 2019. 黄铁矿LA−ICP−MS微量元素特征: 对青海锡铁山矿床成因的启示[J]. 高校地质学报, 25(6): 888−900.
[85] 张必敏. 2006. 湖南千里山−骑田岭芙蓉锡矿田锡石的成因矿物学及流体包裹体研究[D]. 中国地质大学(北京)硕士学位论文.
[86] 张德全, 王富春, 李大新, 等. 2005. 柴北缘地区的两类块状硫化物矿床——Ⅰ. 锡铁山式SEDEX型铅锌矿床[J]. 矿床地质, 24(5): 471−480.
[87] 张志坚, 夏卫华, 张文淮, 等. 1995. 锡铁山铅锌矿床有机包裹体及其研究意义[J]. 地球科学, (2): 225−230.
[88] 祝新友, 邓吉牛, 王京彬, 等. 2006. 锡铁山矿床两类喷流沉积成因的铅锌矿体研究[J]. 矿床地质, (3): 252−262.
[89] 祝新友, 邓吉牛, 王京彬, 等. 2007. 锡铁山喷流沉积矿床卤水与海水的相互作用[J]. 地质论评, 53(1): 52−64.
-