2000—2030年云贵高原碳储量和生境质量时空格局演变

郭佳晖, 刘晓煌, 李洪宇, 邢莉圆, 杨朝磊, 雒新萍, 王然, 王超, 赵宏慧. 2024. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报, 43(9): 1485-1497. doi: 10.12097/gbc.2023.11.016
引用本文: 郭佳晖, 刘晓煌, 李洪宇, 邢莉圆, 杨朝磊, 雒新萍, 王然, 王超, 赵宏慧. 2024. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报, 43(9): 1485-1497. doi: 10.12097/gbc.2023.11.016
GUO Jiahui, LIU Xiaohuang, LI Hongyu, XING Liyuan, YANG Chaolei, LUO Xinping, WANG Ran, WANG Chao, ZHAO Honghui. 2024. Evolution of spatial and temporal patterns of carbon stocks and habitat quality on the Yunnan-Guizhou Plateau during 2000—2030. Geological Bulletin of China, 43(9): 1485-1497. doi: 10.12097/gbc.2023.11.016
Citation: GUO Jiahui, LIU Xiaohuang, LI Hongyu, XING Liyuan, YANG Chaolei, LUO Xinping, WANG Ran, WANG Chao, ZHAO Honghui. 2024. Evolution of spatial and temporal patterns of carbon stocks and habitat quality on the Yunnan-Guizhou Plateau during 2000—2030. Geological Bulletin of China, 43(9): 1485-1497. doi: 10.12097/gbc.2023.11.016

2000—2030年云贵高原碳储量和生境质量时空格局演变

  • 基金项目: 中国地质调查局项目《自然资源要素监测与综合观测工程》(编号:DD20230112)、《云南中北部干热河谷区土壤侵蚀调查监测与评价》(编号:DD20220888)、《自然资源观测监测一体化技术体系研究》(编号:DD20230514),中国地质科学院基础科研业务费用专项资金《黄河三角洲滨海盐土植被对浅层地下水变化的响应》(编号:JKYQN202362),荒漠−绿洲生态监测与修复工程技术创新中心开放基金课题《开孔河流域绿洲耕地扩张的水土资源匹配与生态格局优化研究》(编号:2023KFKTA001)
详细信息
    作者简介: 郭佳晖(1998− ),男,在读硕士生,从事自然资源学和地理信息科学。E-mail:734908307@qq.com
    通讯作者: 刘晓煌(1972− ),男,博士,正高级工程师,从事自然资源观测研究。E-mail:15313256806@mail.cgs.gov.cn
  • 中图分类号: X171.1; P96

Evolution of spatial and temporal patterns of carbon stocks and habitat quality on the Yunnan-Guizhou Plateau during 2000—2030

More Information
  • 云贵高原岩溶地质条件导致当地的石漠化严重、生态环境脆弱,对该地区的生态系统服务功能进行评价有助于改善生态环境问题。基于InVEST模型和PLUS模型定量评估了云贵高原2000—2030年的碳储量和生境质量,结合自然资源区划,分析该地区2000—2030年碳储量和生境质量的时空变化特征及驱动因子。结果表明: 2000—2030年云贵高原碳储量均值为7.323×109 t,多年呈现下降趋势,共减少0.471×109 t,空间上呈西部高、东部低的特征,最高的四级区划是丽江市东部楚雄北部小区;碳储量贡献率最高的地类是林地(>60%),其次是耕地(>28%);碳储量空间分异解释力最强的因子是高程,交互作用最强的因子是土地利用和坡向。 2000—2030年云贵高原生境质量均值为0.755,多年呈下降趋势,共减少0.016,空间上呈现西部高、中部和东部低的特征,最高的四级区划是丽江市西部—怒江傈僳族自治州东南部小区;林地的生境质量最高,指数为0.83。研究结果揭示了云贵高原碳储量与生境质量演变规律及分布格局,可为该区生态环境建设提供科学依据。

  • 加载中
  • 图 1  研究区地理位置及高程

    Figure 1. 

    图 2  技术流程图

    Figure 2. 

    图 3  云贵高原2000—2030年碳储量空间分布(碳储量单位为t/km2

    Figure 3. 

    图 4  云贵高原2000—2020年不同区划碳储量

    Figure 4. 

    图 5  各土地利用类型的碳储量

    Figure 5. 

    图 6  碳储量驱动因子交互探测结果

    Figure 6. 

    图 7  云贵高原2000—2030年生境质量等级空间分布

    Figure 7. 

    图 8  云贵高原2000—2020年各四级区划生境质量指数雷达图

    Figure 8. 

    图 9  云贵高原2000—2020年各地类生境质量指数

    Figure 9. 

    图 10  云贵高原不同海拔下生境质量指数分布

    Figure 10. 

    表 1  数据来源信息

    Table 1.  Information sheet on data sources

    数据类型 数据名称 数据来源 年份
    气候环境数据 年平均实际蒸散量 国家青藏高原数据中心(http://data.tpdc.ac.cn 2000—2020年
    年降水数据 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI 2000—2020年
    NDVI
    土地利用数据
    高程数据 地理空间数据云(http://www.gscloud.cn/home 2020年
    流域数据 https://www.hydrosheds.org/ 2020年
    土壤数据 国家地球系统科学数据中心(http://soil.geodata.cn/ 2020年
    社会经济数据 国内生产总值、人口数据 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI 2019年
    铁路数据 全国地理信息资源目录服务系统(https://www.webmap.cn 2020年
    高速公路数据
    国道/二级道路数据
    下载: 导出CSV

    表 2  云贵高原不同土地利用类型碳密度

    Table 2.  Carbon intensity of different land use types on the         Yunnan−Guizhou Plateau     t/hm2

    土地类型地上碳密度地下碳密度土壤碳密度死亡有机物碳密度
    耕地1.970.3823.931.00
    林地20.3667.72171.507.80
    草地6.4817.8371.000
    建设用地0.08000
    未利用地0.04000
    下载: 导出CSV

    表 3  各威胁源的敏感性及生境适宜度

    Table 3.  Sensitivity and habitat suitability of each threat source

    生境类型 生境适宜度 D耕地 D建设用地 D未利用地
    耕地 0.5 0.3 0.4 0.4
    林地 1 0.45 0.8 0.2
    草地 0.7 0.45 0.6 0.3
    水域 0.9 0.6 0.8 0.3
    建设用地 0 0 0 0
    未利用地 0.2 0.2 0.2 0.2
    下载: 导出CSV

    表 4  胁迫因子最大影响距离及权重

    Table 4.  Maximum impact distance and weight of stressors

    威胁因子耕地建设用地未利用地
    最大胁迫距离/km4102
    权重0.610.5
    空间衰退类型指数指数指数
    下载: 导出CSV

    表 5  驱动因子探测结果

    Table 5.  Driver detection results

    因子 产水量 高程 坡度 坡向 蒸散发 降雨 NDVI 土地利用
    q 0.041 0.372 0.190 0.293 0.110 0.243 0.184 0.243
    下载: 导出CSV
  • [1]

    Babbar D, Areendran G, Sahana M, et al. 2021. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India[J]. Journal of Cleaner Production, 278: 123333. doi: 10.1016/j.jclepro.2020.123333

    [2]

    Chen H P, Dou M. 2017. Study on carbon storage and spatial pattern based on InVEST model in Xiaojiang River Basin of Yunnan Province[J]. Journal of Anhui Agriculture Sciences, 45(12): 51−54(in Chinese with English abstract).

    [3]

    Chen Y, Wu R, Ma Y W, et al. 2022. Spatial and temporal differentiation and simulation of habitat quality in typical karst areas[J]. Journal of Ecology and Rural Environment, 38(12): 1593−1603(in Chinese with English abstract).

    [4]

    Dai Z Y, Liao L R, Liang J H, et al. 2022. Blue carbon stocks of mangrove from 1988 to 2018 in Beihai, Guangxi[J]. Marine Environmental Science, 1: 8−15(in Chinese with English abstract).

    [5]

    Fu Y J, Tan C H, Liu X H, et al. 2022. Definition, classification, observation and monitoring of natural resources and their application in territorial planning and governance[J]. Geology in China, 49(4): 1048−1063.

    [6]

    Fu Y J, Liu X H, Sun X L, et al. 2024. Spatial−temporal variation of ecosystem carbon storage driven by land use in northwest inland desert resource region in recent 30 years[J]. Geological Bulletin of China, 43(2/3): 451−462 (in Chinese with English abstract).

    [7]

    Han Y, Mao Y F, Yang L, et al. 2023. Dynamic responses of habitat quality to LUCC in the Dongting Lake Basin[J]. Journal of Central South University of Forestry & Technology, 43(6): 148−157(in Chinese with English abstract).

    [8]

    Houghton R A. 2003. The contemporary carbon cycle[J]. Treatise on Geochemistry, 8: 473−513.

    [9]

    Hu F, Zhang Y, Guo Y, et al. 2022. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 45(4): 1125−1136(in Chinese with English abstract).

    [10]

    Jing X W, Zhao Q J. 2021. Research on temporal and spatial changes of habitat quality in Guizhou Province based on InVEST Model[J]. Territory & Natural Resources Study, 2021,(5): 1−5(in Chinese with English abstract).

    [11]

    Lai M, Wu S Y, Zhang H Y, et al. 2021. Analysis on the characteristics of natural resources dynamic changes in Southwest China based on comprehensive regionalization[J]. Geological Survey of China, (2): 83−91(in Chinese with English abstract).

    [12]

    Li J, Yang D H, Wu F Z, 2023. Dynamic simulation of land use changes and assessment of carbon storage in Kunming City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 43(1): 378−387(in Chinese with English abstract).

    [13]

    Li X X. 1997. Evaluation system of ecological environment quality in Beijing mountain area[J]. Resources Science, 19(5): 31−35(in Chinese with English abstract).

    [14]

    Li Y E, Wang H Q, Liu J, et al. 2023. Spatial and temporal distribution and driving factors of ecosystem carbon sink in Northwest China[J]. Northwestern Geology, 56(4): 185−195(in Chinese with English abstract).

    [15]

    Li Z, Zhang Y F. 2021. Spatiotemporal evolution of ecosystem services in the main and tributaries of Weihe River Basin based on InVEST model[J]. Journal of Soil and Water Conservation, 35(4): 178−185 (in Chinese with English abstract).

    [16]

    Liang X, Guan Q, Clarke K C, et al. 2021. Understanding the drivers of sustainable land expansion using a patch−generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 85: 101569.

    [17]

    Liang X, Liu X, Chen G, et al. 2020. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones[J]. International Journal of Geographical Information Science, 34(10): 1930−1952. doi: 10.1080/13658816.2020.1741591

    [18]

    Liu G, Li G Q, Li J, et al. 2021. Study on change in carbon storage and its spatial pattern in Mata Watershed from 1999 to 2016 based on InVEST model[J]. Arid Zone Research, 38(1): 267−274 (in Chinese with English abstract).

    [19]

    Liu J J, Li X, Peng P H. 2023. Landscape ecological risk assessment of Ya’an−Kangding Expressway based on PLUS model[J]. Bulletin of Soil and Water Conservation, 43(3): 148−158 (in Chinese with English abstract).

    [20]

    Liu X H. 2022. Preface to the album of integrated observations and studies of natural resource elements[J]. Pratacultural Science, 39(12): 2470(in Chinese with English abstract).

    [21]

    Liu X Y, Li X Y, Gao Y F, et al. 2019. Changes of rainfall threshold for sediment producing in the loess hilly and gully region of the Loess Plateau[J]. J. Hydraul. Eng, 50: 1177−1188(in Chinese with English abstract).

    [22]

    Liu X Y, Li S J, He H Y, et al. 2024. Analysis of land use change and habitat quality evolution based on InVEST and PLUS models: Example from Hanzhong Basin[J]. Northwestern Geology, 57(4): 271−284(in Chinese with English abstract).

    [23]

    Liu Y, Zhang J, Zhou D M, et al. 2021. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecol. Sin., 41: 4052−4065 (in Chinese with English abstract).

    [24]

    Lu Y Y, Xu X L, Li J C, et al. 2022. Research on the spatio−temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research, 39(6): 1896−1906 (in Chinese with English abstract).

    [25]

    Sharp R, Douglass J, Wolny S, et al. 2020. InVEST 3.8.7 User’s Guide[R]. The Natural Capital Project, Standford University, University of Minnesota, the nature conservancy, and World Wildlife Fund: Standford, CA, USA.

    [26]

    Sun F H, Fang F M, Hong W L, et al. 2023. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model[J]. J. Soil Water Conserv, 37: 151−158 (in Chinese with English abstract).

    [27]

    Sun X X, Xue J H, Dong L N. 2023. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model[J]. Journal of Ecology and Rural Environment, 39(1): 41−51(in Chinese with English abstract).

    [28]

    Tang J J, Yu C, Zhang W W, et al. 2023. Habitat quality assessment and prediction in Suzhou based on CLUE−S and InVEST models[J]. J. Environ. Eng. Technol., 13(1): 1−13 (in Chinese with English abstract).

    [29]

    Wang J F, Xu C D. 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116−134 (in Chinese with English abstract).

    [30]

    Wang Y L, Lin K M, Song C S, et al. 2022. Short−term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J]. Journal of Nanjing Forestry University, 46(3): 65−73(in Chinese with English abstract).

    [31]

    Wu Y X, Liu F N, Chen B T. 2023. Spatial and Temporal Evolution and Drivers of Habitat Quality of UrbanAgglomeration in Lower Yellow River Basin[J]. Bulletin of Soil and Water Conservation, 43(4): 396−404 (in Chinese with English abstract).

    [32]

    Xu K P, Wang J J, Chi Y Y, et al. 2016. Spatial optimization and sustainable use of land based on an integrated ecological risk in the Yun-Gui plateau region[J]. Acta Ecologica Sinica, 36(3): 821−827(in Chinese with English abstract).

    [33]

    Xu L, Guo C S, Luo S L. 2023. Predicted habitat quality of Kunming City based on PLUS and InVEST Model[J]. Ecology and Environmental Monitoring of Three Gorges, 8(1): 102−112(in Chinese with English abstract).

    [34]

    Xu X L. 2018. Spatial distribution dataset of annual Vegetation index (NDVI) in China[DS]. Resource and environmental science data registration and publication system (http://www.resdc.cn/DOI). DOI: 10.12078/2018060601 (in Chinese).

    [35]

    Xu X L. 2018. Dataset of river basin and river network in China extracted based on DEM[DS]. Resource and environmental science data registration and publication system(http://www.resdc.cn/DOI). DOI:10.12078/2018060101(in Chinese).

    [36]

    Xu Y F, Chen C, Chen H S. 2018. Dynamic variations of land use of Yunnan−Guizhou Plateau in the period of 2001—2013[J]. Soil and Water Conservation in China, 2018, (11): 44−48(in Chinese with English abstract).

    [37]

    Yang J, Huang X. 2021. The 30 m annual landcover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 13(8): 3907−3925. doi: 10.5194/essd-13-3907-2021

    [38]

    Yang L X. 2015. Temporal−spatial characterization of atmospheric environment and climatic resources over the Yunnan−Guizhou Plateau[D]. Master's thesis, Nanjing University of Information Science and Technology (in Chinese with English abstract).

    [39]

    Yuan B D, Fu L N, Zou Y A, et al. 2021. Spatio temporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI[J]. Journal of Cleaner Production, (Suppl 1): 126995.

    [40]

    Yuan C C, Gao Y, Liu X H. 2021. Current situation and consummate suggestions for natural resources classification systems in China[J]. Geological Survey of China, 8(2): 14−19(in Chinese with English abstract).

    [41]

    Zeng X Y, Song Y H. 2023. Temporal and spatial evolution of habitat quality in Kunming based on InVEST model[J]. Agriculture and Technology, 43(8): 47−51(in Chinese with English abstract).

    [42]

    Zeng Z, Ai J W, Chen L Y. 2023. Research on the temporal and spatial evolution of habitat quality and terrain gradient effect in mountainous city: Taking the urban area of Sanming as an example[J]. Journal of Nanjing Normal University (Natural Science Edition), 46(1): 100−109(in Chinese with English abstract).

    [43]

    Zhan Z D, Xi G Y, Ren B Z, et al. 2024. A Study on the spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province[J/OL]. Geological Bulletin of China, 1−18[2024−08−26]. http://kns.cnki.net/kcms/detail/11.4648.P.20240322.1127.004.html(in Chinese with English abstract).

    [44]

    Zhang B, Xia Q Y, Dong J, et al. 2023. Research on the lmpact of land use change on the spatio−temporal pattern of carbon storage in metropolitan suburbs: Taking Huangpi District of Wuhan City as an example[J]. Journal of Ecology and Rural Environment, 39(6): 699−712(in Chinese with English abstract).

    [45]

    Zhang H Y, Fan J W, Huang L, et al. 2020. Theories and technical methods for the comprehensive regionalization of natural resources in China[J]. Resources Science, 42(10): 1870−1882(in Chinese with English abstract).

    [46]

    Zhang K Q, Chen J J, Hou J K, et al. 2022. Study on sustainable development of carbon storage in Guilin coupled with InVEST and GeoSOS−FLUS model[J]. China Environ. Sci, 42(6): 2799−2809(in Chinese with English abstract).

    [47]

    Zhao B X, Li S J, Ma J, et al. 2022. Evaluation of habitat quality in Jilin Province based on InVEST model[J]. Journal of Northeast Normal University(Natural Science Edition), 54(2): 132−141(in Chinese with English abstract).

    [48]

    Zhao H, Zhao C Q, Yuan H, et al. 2023. Determination of peak age of carbon storage in Larix kaempferi plantations in Western Hubei[J]. Journal of Forest and Environment, 43(2): 132−138(in Chinese with English abstract).

    [49]

    Zhao Z Y, Wu G S, Lin H H. 2022. Research on the habitat quality of Changting County based on LUCC and InVEST model[J]. Journal of Subtropical Resources and Environment, 17(4): 37−45(in Chinese with English abstract).

    [50]

    Zheng J L, Cai Y L, Guo X Y, et al. 2024. Study on land use change and carbon stock in northern Shanxi Province based on InVEST model[J]. Geological Bulletin of China, 43(1): 173−180(in Chinese with English abstract).

    [51]

    Zheng Y W, Liu X H, Xiong M Q, et al. 2022. Spatial−temporal characteristics of ecological−living−productive land and its carbon emissions in Xinjiang from 1990 to 2018[J]. Pratacultural Science, 39(12): 2565−2577(in Chinese with English abstract).

    [52]

    Zhu M. 2020. Study on the Carbon Fixation Evaluate of the Green−land System in the Xi'an Chanba Eco−region[D]. Xi'an University of Architecture and Technology master's degree thesis (in Chinese with English abstract).

    [53]

    陈海鹏, 窦苗. 2017. 基于InVEST模型的云南小江流域生态系统碳储量及空间格局研究[J]. 安徽农业科学, 45(12): 51−54. doi: 10.3969/j.issn.0517-6611.2017.12.018

    [54]

    陈艳, 吴睿, 马月伟, 等. 2022. 典型喀斯特地区生境质量的时空分异与模拟研究[J]. 生态与农村环境学报, 38(12): 1593−1603.

    [55]

    戴子熠, 廖丽蓉, 梁嘉慧, 等. 2022. 1988—2018年广西北海红树林蓝碳储量变化分析[J]. 海洋环境科学, 41(1): 8−15,23.

    [56]

    付宇佳, 谭昌海, 刘晓煌, 等. 2022. 自然资源定义、分类, 观测监测及其在国土规划治理中的应用[J]. 中国地质, 49(4): 1048−1063. doi: 10.12029/gc20220402

    [57]

    付宇佳, 刘晓煌, 孙兴丽, 等. 2024. 近30年西北内陆荒漠资源大区土地利用驱动下生态系统碳储量时空变化[J]. 地质通报, 43(2/3): 451−462.

    [58]

    韩宇, 毛逸飞, 杨伶, 等. 2023. 洞庭湖流域生境质量对LUCC的动态响应[J]. 中南林业科技大学学报, 43(6): 148−157.

    [59]

    胡丰, 张艳, 郭宇, 等. 2022. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 45(4): 1125−1136. doi: 10.12118/j.issn.1000-6060.2021.510

    [60]

    景晓玮, 赵庆建. 2021. 基于InVEST模型的贵州省生境质量时空变化研究[J]. 国土与自然资源研究, 2021,(5): 1−5. doi: 10.3969/j.issn.1003-7853.2021.05.001

    [61]

    赖明, 吴淑玉, 张海燕, 等. 2021. 基于综合区划的中国西南地区自然资源动态变化特征分析[J]. 中国地质调查, 8(2): 83−91.

    [62]

    李俊, 杨德宏, 吴锋振, 等. 2023. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 43(1): 378−387.

    [63]

    李晓秀. 1997. 北京山区生态环境质量评价体系初探[J]. 资源科学, 19(5): 31−35.

    [64]

    李彦娥, 王化齐, 刘江, 等. 2023. 西北地区生态系统碳汇时空分布特征及相关驱动因子分析[J]. 西北地质, 56(4): 185−195. doi: 10.12401/j.nwg.2023072

    [65]

    李子, 张艳芳. 2021. 基于InVEST模型的渭河流域干支流生态系统服务时空演变特征分析[J]. 水土保持学报, 35(4): 178−185.

    [66]

    刘冠, 李国庆, 李洁, 等, 2021. 基于InVEST模型的1999−2016年麻塔流域碳储量变化及空间格局研究[J]. 干旱区研究, 38(1): 267−274.

    [67]

    刘静静, 李旭, 彭培好. 2023. 基于PLUS模型的雅康高速路段景观生态风险评价[J]. 水土保持通报, 43(3): 148−158.

    [68]

    刘晓煌. 2022. 自然资源要素综合观测和研究专辑序言[J]. 草业科学, 39(12): 2470.

    [69]

    刘晓燕, 李晓宇, 高云飞, 等. 2019. 黄土丘陵沟壑区典型流域产沙的降雨阈值变化[J]. 水利学报, 50(10): 1177−1188.

    [70]

    刘小玉, 李士杰, 何海洋, 等. 2024. 基于InVEST和PLUS模型下的土地利用变化及生境质量演变分析: 以汉中盆地为例[J]. 西北地质, 57(4): 271−284. doi: 10.12401/j.nwg.2024048

    [71]

    刘洋, 张军, 周冬梅, 等. 2021. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 41(10): 4052−4065.

    [72]

    卢雅焱, 徐晓亮, 李基才, 等. 2022. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 39(6): 1896−1906.

    [73]

    孙方虎, 方凤满, 洪炜林, 等. 2023. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测[J]. 水土保持学报, 37(1): 151−158.

    [74]

    孙欣欣, 薛建辉, 董丽娜. 2023. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 39(1): 41−51.

    [75]

    唐娇娇, 余成, 张委伟, 等. 2023. 基于CLUE−S和InVEST模型的苏州市生境质量评估及预测[J]. 环境工程技术学报, 13(1): 377−385. doi: 10.12153/j.issn.1674-991X.20210657

    [76]

    王劲峰, 徐成东. 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116−134. doi: 10.11821/dlxb201701010

    [77]

    王有良, 林开敏, 宋重升, 等. 2022. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 46(3): 65−73.

    [78]

    吴艳霞, 刘方南, 陈宝童. 2023. 黄河流域下游城市群生境质量时空演变及其驱动因素[J]. 水土保持通报, 43(4): 396−404.

    [79]

    胥丽, 国朝胜, 罗绍龙. 2023. 基于PLUS模型和InVEST模型的昆明市生境质量研究[J]. 三峡生态环境监测, 8(1): 102−112.

    [80]

    许开鹏, 王晶晶, 迟妍妍, 等. 2016. 基于综合生态风险的云贵高原土地利用优化与持续利用对策[J]. 生态学报, 36(3): 821−827.

    [81]

    许玉凤, 陈宸, 陈洪升. 2018. 2001—2013年云贵高原土地利用动态变化分析[J]. 中国水土保持, 2018(11): 44−48. doi: 10.3969/j.issn.1000-0941.2018.11.018

    [82]

    徐新良. 2018a. 基于DEM提取的中国流域、河网数据集[DS]. 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI). DOI: 10.12078/2018060101.

    [83]

    徐新良. 2018b. 中国年度植被指数(NDVI)空间分布数据集[DS]. 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI). DOI: 10.12078/2018060601.

    [84]

    杨乐心. 2015. 云贵高原区域大气环境及气候资源时空特征分析[D]. 南京信息工程大学硕士学位论文.

    [85]

    袁承程, 高阳, 刘晓煌. 2021. 我国自然资源分类体系现状及完善建议[J]. 中国地质调查, 8(2): 14−19.

    [86]

    曾欣怡, 宋钰红. 2023. 基于InVEST模型的昆明市生境质量时空演变分析[J]. 农业与技术, 43(8): 47−51.

    [87]

    曾真, 艾婧文, 陈凌艳, 等. 2023. 山地城市生境质量时空演变及地形梯度效应研究——以三明市区为例[J]. 南京师大学报(自然科学版), 46(1): 100−109.

    [88]

    詹泽东, 西广越, 任柄璋, 等. 2024. 黑龙江省齐齐哈尔五县碳存储量空间变化规律及固碳潜力研究[J/OL]. 地质通报, 1−18[2024−08−26]. http://kns.cnki.net/kcms/detail/11.4648.P.20240322.1127.004.html.

    [89]

    张斌, 夏秋月, 董捷, 等. 2023. 大都市郊区土地利用变化对碳储量时空格局影响研究: 以武汉市黄陂区为例[J]. 生态与农村环境学报, 39(6): 699−712.

    [90]

    张海燕, 樊江文, 黄麟, 等. 2020. 中国自然资源综合区划理论研究与技术方案[J]. 资源科学, 42(10): 1870−1882.

    [91]

    张凯琪, 陈建军, 侯建坤, 等. 2022. 耦合InVEST与GeoSOS−FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学, 42(6): 2799−2809. doi: 10.3969/j.issn.1000-6923.2022.06.035

    [92]

    赵博轩, 李淑杰, 马剑, 等. 2022. 基于InVEST模型的吉林省生境质量评价[J]. 东北师大学报(自然科学版), 54(2): 132−141.

    [93]

    赵虎, 杜超群, 袁慧, 等. 2023. 鄂西日本落叶松人工林碳储量成熟龄研究[J]. 森林与环境学报, 43(2): 132−138.

    [94]

    赵智源, 武国胜, 林惠花. 2022. 基于LUCC和InVEST模型的长汀县生境质量研究[J]. 亚热带资源与环境学报, 17(4): 37−45. doi: 10.3969/j.issn.1673-7105.2022.04.007

    [95]

    郑吉林, 蔡艳龙, 郭晓宇, 等. 2024. 基于InVEST模型的晋北土地利用变化与碳储量研究[J]. 地质通报, 43(1): 173−180. doi: 10.12097/gbc.2022.05.038

    [96]

    郑艺文, 刘晓煌, 熊茂秋, 等. 2022. 1990−2018年新疆"三生"用地时空变化特征及其碳排放效应[J]. 草业科学, 39(12): 2565−2577.

    [97]

    朱敏. 2020. 西安浐灞生态区城市绿地空间植被碳储量估算研究[D]. 西安建筑科技大学硕士学位论文.

  • 加载中

(10)

(5)

计量
  • 文章访问数:  792
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2023-11-08
修回日期:  2024-04-11
刊出日期:  2024-09-15

目录