南天山造山带东段变流纹岩原岩的喷发时代与构造背景:来自锆石U−Pb年龄和微量元素的约束

黄少英, 陈守文, 袁文芳, 罗彩明, 段云江, 亢茜, 章凤奇. 2025. 南天山造山带东段变流纹岩原岩的喷发时代与构造背景:来自锆石U−Pb年龄和微量元素的约束. 地质通报, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015
引用本文: 黄少英, 陈守文, 袁文芳, 罗彩明, 段云江, 亢茜, 章凤奇. 2025. 南天山造山带东段变流纹岩原岩的喷发时代与构造背景:来自锆石U−Pb年龄和微量元素的约束. 地质通报, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015
HUANG Shaoying, CHEN Shouwen, YUAN Wenfang, LUO Caiming, DUAN Yunjiang, KANG Qian, ZHANG Fengqi. 2025. The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements. Geological Bulletin of China, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015
Citation: HUANG Shaoying, CHEN Shouwen, YUAN Wenfang, LUO Caiming, DUAN Yunjiang, KANG Qian, ZHANG Fengqi. 2025. The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements. Geological Bulletin of China, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015

南天山造山带东段变流纹岩原岩的喷发时代与构造背景:来自锆石U−Pb年龄和微量元素的约束

  • 基金项目: 国家自然科学基金面上项目《塔里木板块西南部青白口纪晚期盆地属性与转换过程及其对超大陆聚合的制约》(批准号:42372244)
详细信息
    作者简介: 黄少英(1977− ),男,博士,高级工程师,从事盆地基础地质研究。 E−mail:huangsy-tlm@petrochina.com
    通讯作者: 陈守文(1995− ),男,博士,从事构造地质学研究。 E−mail:csw_0916@163.com
  • 中图分类号: P597.3

The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements

More Information
  • 研究目的

    变质岩的组成和时代是认识造山带基底性质和形成演化的重要窗口。通过南天山造山带东段的哈满沟地区辛格尔组中变流纹岩的时代和锆石微量元素研究,探讨变流纹岩的时代及其对南天山构造演化的意义。

    研究方法

    系统开展南天山造山带东段的哈满沟地区辛格尔组中变流纹岩岩相学、LA−ICP−MS锆石U−Pb定年和锆石微量元素分析,并结合区域研究成果,对南天山造山带的构造背景开展综合研究。

    研究结果

    LA−ICP−MS锆石U−Pb定年结果表明,变流纹岩原岩形成于早泥盆世(418~412 Ma)。锆石轻稀土元素相对亏损,重稀土元素相对富集,显示负Eu异常、正Ce异常的特征。微量元素显示U、Hf正异常,Nb、La、Pr、Ti负异常。根据锆石微量元素分析,推测流纹岩喷发时的地壳厚度小于35 km,且其岩浆源区存在斜长石分离结晶作用,锆石Ti温度计指示其岩浆结晶温度较高(>800℃),属于高温岩浆成因,提出该流纹岩的发育可能与大陆裂谷作用有关。

    结论

    结合前人研究,推测南天山造山带早古生代可能是塔里木克拉通的一部分,其北缘为活动大陆边缘,大致在晚志留世—早泥盆世受北缘俯冲后撤作用影响,南天山地区经历了强烈的弧后伸展,本次识别的流纹岩可能形成于早泥盆世弧后伸展裂谷的构造背景。

  • 加载中
  • 图 1  中亚造山带及邻近克拉通分布简图(a,据Windley et al., 2007修改)和南天山造山带及邻区大地构造简图(b,据Wang et al., 2018a修改)

    Figure 1. 

    图 2  库尔勒北部南天山造山带地质简图(a,据Lin et al., 2013修改)和南天山造山带哈满沟地区地质简图(b,据新疆维吾尔自治区地质局,1959修改)

    Figure 2. 

    图 3  南天山造山带哈满沟地区变流纹岩野外和显微镜下照片

    Figure 3. 

    图 4  南天山造山带哈满沟地区变流纹岩代表性锆石阴极发光(CL)图像及其测点的位置与编号

    Figure 4. 

    图 5  南天山造山带哈满沟地区变流纹岩锆石U−Th图解(a)和锆石结晶温度与Hf含量关系图(b)

    Figure 5. 

    图 6  南天山造山带哈满沟地区变流纹岩的锆石年龄谐和图(a,c)和206Pb/238U年龄分布直方图及其年龄加权平均值(b,d)

    Figure 6. 

    图 7  南天山造山带哈满沟地区变流纹岩锆石球粒陨石标准化稀土元素配分曲线图(a,c)和微量元素蛛网图(b,d)(标准化值据McDonough et al., 1995

    Figure 7. 

    图 8  南天山哈满沟地区变流纹岩锆石来源判别图(据Grimes et al., 2007修改)

    Figure 8. 

    图 9  南天山哈满沟地区变流纹岩锆石微量元素构造背景判别图(据Yang et al., 2012

    Figure 9. 

    图 10  不同构造背景下锆石的判别图解(据Schulz et al., 2006

    Figure 10. 

    表 1  哈满沟变流纹岩LA−ICP−MS锆石U−Th−Pb同位素组成

    Table 1.  LA−ICP−MS zircon U−Th−Pb isotopic composition of metarhyolite from Hamangou

    测点号 含量/10−6 Th/U 同位素比值 同位素年龄/Ma
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    HMG10
    01 49.5 50.3 0.98 0.0551 0.0066 0.509 0.06 0.0672 0.0023 240 240 406 40 419 14
    02 66.7 61.6 1.08 0.0521 0.0058 0.478 0.05 0.0679 0.003 170 210 395 36 423 18
    03 59.4 61.9 0.96 0.0528 0.0057 0.465 0.047 0.0655 0.0028 190 210 386 34 408 17
    04 56.1 53.9 1.04 0.0572 0.0067 0.532 0.065 0.0662 0.0035 360 250 418 44 413 21
    05 53.3 54.9 0.97 0.0563 0.0059 0.517 0.052 0.066 0.0029 350 220 414 35 412 17
    06 47.3 59.5 0.79 0.052 0.01 0.452 0.08 0.0637 0.0037 160 360 367 54 398 22
    07 218 157 1.39 0.0579 0.0043 0.525 0.038 0.0666 0.0019 430 150 429 26 415 11
    08 66.2 64.4 1.03 0.0597 0.0066 0.518 0.056 0.063 0.0025 430 230 414 38 394 15
    09 36.6 46 0.80 0.059 0.0077 0.521 0.064 0.0654 0.0028 340 260 412 42 408 17
    10 87 74.1 1.17 0.0557 0.0058 0.511 0.048 0.0668 0.0028 330 210 411 31 416 17
    11 36.7 45 0.82 0.0568 0.0068 0.498 0.056 0.0648 0.0028 300 240 399 38 404 17
    12 58 70.6 0.82 0.0571 0.0063 0.521 0.06 0.0641 0.0024 370 220 414 39 401 15
    13 53.2 53.5 0.99 0.0538 0.0069 0.485 0.059 0.0656 0.0022 190 240 389 40 410 13
    14 68.8 69.6 0.99 0.0592 0.0088 0.521 0.069 0.0676 0.0039 430 300 432 55 421 24
    15 52.6 53.9 0.98 0.0551 0.0073 0.472 0.06 0.0635 0.0022 270 260 381 40 397 13
    16 41.6 45.8 0.91 0.0607 0.0076 0.567 0.078 0.0666 0.0032 440 260 440 51 415 19
    17 73.6 61.4 1.20 0.0607 0.0096 0.542 0.084 0.0643 0.0034 470 330 430 56 401 20
    18 58.9 57 1.03 0.062 0.0067 0.57 0.055 0.0688 0.0029 500 220 456 38 429 18
    19 70.8 72 0.98 0.0578 0.0052 0.523 0.046 0.0656 0.0022 400 190 420 31 410 13
    20 72.1 61 1.18 0.0511 0.0047 0.472 0.046 0.0665 0.0025 160 180 385 31 415 15
    21 57.1 60.8 0.94 0.0562 0.0052 0.503 0.049 0.0646 0.0027 340 190 405 33 403 16
    22 205 270 0.76 0.0548 0.0025 0.532 0.025 0.0699 0.0015 363 98 431 17 435.5 8.7
    23 474 393 1.21 0.0557 0.0022 0.577 0.022 0.0743 0.0017 421 91 461 14 462 10
    24 85.9 75.1 1.14 0.0561 0.0055 0.504 0.052 0.0648 0.0028 370 210 412 36 404 17
    25 93.5 70.4 1.33 0.0591 0.0066 0.537 0.06 0.0659 0.0022 400 230 425 39 411 13
    26 74.5 63.5 1.17 0.0514 0.0055 0.497 0.053 0.0688 0.0025 190 220 400 36 428 15
    27 56.9 57.6 0.99 0.0557 0.0064 0.495 0.054 0.0655 0.0027 280 230 398 36 409 17
    28 79 79.2 1.00 0.0539 0.0061 0.479 0.052 0.0648 0.0025 220 230 387 36 405 15
    29 63 64.2 0.98 0.0585 0.0062 0.524 0.052 0.0651 0.0022 390 220 418 35 406 14
    30 45.7 49.5 0.92 0.0574 0.0071 0.506 0.058 0.0646 0.0025 380 260 405 40 404 15
    HMG12
    01 297 183 1.62 0.0575 0.0041 0.53 0.037 0.067 0.0019 430 160 427 25 418 11
    02 163 120 1.36 0.055 0.0049 0.503 0.042 0.0669 0.0022 300 180 408 28 417 13
    03 197 142 1.39 0.0697 0.0046 0.694 0.056 0.0684 0.0023 920 160 533 35 427 14
    04 111 94.5 1.17 0.077 0.01 0.74 0.11 0.0675 0.0027 930 250 538 60 421 16
    05 158 135 1.17 0.0566 0.0039 0.53 0.038 0.0678 0.0022 400 140 427 25 423 14
    06 318 209 1.52 0.0529 0.0037 0.493 0.038 0.0661 0.0018 290 150 402 25 412 11
    07 127 87 1.46 0.0584 0.0058 0.528 0.052 0.066 0.0027 400 200 422 34 412 16
    08 297 200 1.49 0.0561 0.0026 0.527 0.028 0.0679 0.0021 410 100 427 18 423 13
    09 465 256 1.82 0.0554 0.0034 0.501 0.028 0.0662 0.0017 360 130 413 20 413 10
    10 223 166 1.34 0.0562 0.0042 0.524 0.041 0.0669 0.0016 370 160 422 27 417 10
    11 213 116 1.84 0.0571 0.0044 0.53 0.044 0.0672 0.0023 400 160 426 28 419 14
    12 89 86.3 1.03 0.0526 0.0049 0.47 0.037 0.0658 0.0023 240 180 386 26 411 14
    13 324 221 1.47 0.0562 0.0032 0.516 0.03 0.0662 0.0015 400 130 419 20 413 9
    14 381 198 1.92 0.0603 0.0052 0.563 0.051 0.0678 0.0028 530 190 449 33 423 17
    15 245 189 1.30 0.0531 0.0038 0.478 0.032 0.0663 0.0021 260 150 397 23 413 12
    16 289 180 1.61 0.0556 0.0042 0.508 0.037 0.0659 0.0018 350 150 413 25 411 11
    17 214 126.4 1.69 0.057 0.0048 0.531 0.045 0.0676 0.0024 380 170 426 29 422 15
    18 312 183 1.70 0.0548 0.0037 0.505 0.034 0.0666 0.002 330 140 411 23 415 12
    19 683 250 2.73 0.053 0.0033 0.489 0.028 0.0674 0.0021 270 130 402 19 420 12
    20 404 245 1.65 0.0555 0.0033 0.538 0.034 0.07 0.0019 370 130 434 22 436 11
    21 239 160 1.49 0.0556 0.0038 0.529 0.037 0.0678 0.0018 390 150 426 25 423 11
    22 167 122 1.37 0.052 0.0042 0.482 0.041 0.0667 0.002 210 160 394 28 416 12
    23 322 214 1.50 0.0551 0.0038 0.501 0.031 0.0673 0.002 350 150 409 21 419 12
    24 230 132 1.74 0.056 0.0043 0.493 0.036 0.0651 0.002 360 160 403 24 407 12
    25 699 296 2.36 0.0543 0.0028 0.523 0.031 0.0687 0.0018 360 120 424 20 428 11
    26 548 280 1.96 0.0612 0.0042 0.554 0.035 0.0657 0.0021 570 150 445 23 410 12
    27 187 127.9 1.46 0.0572 0.0047 0.521 0.044 0.0659 0.0017 390 170 419 29 411 10
    28 209 141 1.48 0.0592 0.0047 0.548 0.039 0.0674 0.0023 480 160 439 25 421 14
    29 222 160 1.39 0.0594 0.0044 0.554 0.039 0.068 0.0022 490 160 443 25 424 13
    下载: 导出CSV

    表 2  哈满沟变流纹岩LA−ICP−MS锆石微量和稀土元素组成

    Table 2.  LA−ICP−MS zircon trace elements and REE composition of metarhyolite from Hamangou 10−6

    测点号 Sc Ti Y Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Th U Eu /Eu* Ce /Ce* TZr/℃
    HMG10
    1 218 616 0.19 22.3 0.011 1.15 1.5 0.42 11.2 4.4 50.7 20.4 84.7 19.9 204 37 9240 0.17 49.5 50.3 0.31 0.93
    2 203 60 889 0.26 23.3 0.133 2.12 4.07 0.87 17.8 6.5 79.3 34.2 144 33.1 305 50.4 9050 0.5 66.7 61.6 0.31 1.07 927
    3 171 8 980 25.1 1.39 3.6 0.52 17.8 6.2 78.2 30 131 30.2 274 48.3 9690 0.53 59.4 61.9 0.20 0.93 722
    4 258 24 520 0.32 0.56 21.9 0.76 6.9 5 0.72 9.8 3.49 46.1 19 82.7 18.4 202 36.2 9410 0.46 56.1 53.9 0.31 8.23 824
    5 248 49 744 21.4 0.042 1.67 2.9 0.63 16.3 6.4 63.1 25.1 107 24.8 275 39.9 8300 0.8 53.3 54.9 0.28 0.69 903
    6 297 20 628 3.7 23.1 0.84 3.5 0.33 12.4 3.76 46.5 18.6 91 18.8 197 36.8 9300 0.29 47.3 59.5 0.15 0.73 806
    7 219 27 1890 3.1 0.27 35.9 0.51 7 12 1.84 50.5 16.2 182 72.2 283 57.9 547 100.6 8130 0.43 218 157 0.23 23.72 837
    8 247 50 663 0.67 2.6 29.9 1.02 6.3 5.5 0.98 16.8 4.84 59.4 22.5 97 23.7 231 39.2 9370 0.39 66.2 64.4 0.31 4.50 905
    9 230 19 570 18.7 0.021 0.65 1.33 0.45 9.4 3.8 45.4 20.8 94 20.3 185 38.4 8860 0.65 36.6 46 0.39 801
    10 208 1020 0.86 25.4 0.18 2.9 5.6 1.07 25.9 9.5 104 35.1 157 37.3 320 58.2 9900 0.6 87 74.1 0.27
    11 170 40 589 0.7 18.6 0.63 1.78 0.44 13.2 3.94 50.2 22 92.2 19.2 209 36.6 8770 0.44 36.7 45 0.28 879
    12 159 668 1.1 30.8 0.012 1.83 2.71 0.22 13.7 4.4 52.4 21.2 100 21.4 213 41.3 8770 0.73 58 70.6 0.11
    13 274 58 680 0.39 24.3 0.048 0.58 2.17 0.59 15.2 5.18 58.8 23.4 108 23.9 235 42.4 8420 0.33 53.2 53.5 0.314 923
    14 242 58 847 0.51 26.3 0.25 3 3.7 0.62 17.8 6.2 79 29.9 132 26.6 253 54.6 9320 0.18 68.8 69.6 0.234 18.06 923
    15 252 28 715 2.5 23.1 0.053 2.2 3.05 0.57 14.4 6.6 65.2 27 120 28 253 45.7 9260 0.59 52.6 53.9 0.263 840
    16 220 32 559 20.3 0.019 1.09 1.4 0.51 15.5 4.41 54.1 25.4 95 19.7 195 36.4 8770 0.55 41.6 45.8 0.33 855
    17 251 22 996 0.32 64 187 19 108 25.6 2.87 44.9 9.9 107 40.8 157 30.7 302 51.8 8520 0.51 73.6 61.4 0.259 1.31 815
    18 189 9 738 1.5 0.2 24.9 0.056 0.64 2.74 0.59 19.5 7.5 71.6 27.9 118 27.3 261 47.5 8650 0.24 58.9 57 0.247 57.69 732
    19 296 26 787 28 0.083 0.99 3.32 0.92 15.4 6 71.9 29.4 125 28.5 300 49.2 9710 0.61 70.8 72 0.393 833
    20 238 21 967 0.34 22.8 2.1 3.5 1.04 25.4 7.9 84 37.3 164 32.6 314 61.8 9530 0.65 72.1 61 0.34 811
    21 270 1 672 2.5 22.6 0.016 1.07 2.54 0.5 16.9 5.1 64.6 24.6 103 21.3 216 41.1 9000 0.45 57.1 60.8 0.233 572
    22 178 871 2.3 39.3 1.29 2.34 0.75 14.2 5.2 65.5 33.1 148 37.5 367 75 10300 1.97 205 270 0.398
    23 415 23 2080 1.6 20.8 79 5.6 27.6 12.3 2.06 51.1 14.4 191 79.3 374 71.5 693 136 8950 1.04 474 393 0.251 1.79 820
    24 287 68 896 0.38 25.3 0.062 2.1 3.8 0.56 22.1 7.3 84.9 32.8 147 30.3 303 54.7 9290 0.56 85.9 75.1 0.19 943
    25 236 45 919 0.028 27 0.32 3.2 6.5 0.71 25.6 8.1 103 36.4 157 34.8 285 57.9 8150 0.56 93.5 70.4 0.168 69.93 893
    26 158 14 922 21.9 0.85 5.4 0.97 22.9 6.83 103 35.1 148 30.7 322 54.4 8870 0.64 74.5 63.5 0.267 771
    27 239 38 569 0.8 0.39 22.9 0.075 1.76 2.61 0.43 12 4.01 59.6 23.5 111 21.9 210 41.3 8390 0.54 56.9 57.6 0.235 32.83 874
    28 271 990 1.5 28.5 0.1 3 5.4 1.07 27 9.3 103 41.9 149 29.6 329 58.7 9370 0.58 79 79.2 0.27
    29 206 25 620 21.4 1.85 2.71 0.69 17.7 5.5 65 24.5 125 28.5 243 46.9 8190 0.33 63 64.2 0.305 828
    30 219 611 0.096 20.3 0.9 2.11 0.4 13.9 4.32 60.8 24.5 99 19.5 198 38.1 8540 0.4 45.7 49.5 0.226 18.43
    HMG12
    1 236 12 1650 3.6 78.6 0.24 3.8 6.8 2.7 44.5 13.7 150 64 277 55 504 95.8 7500 0.76 297 183 0.47 0.93 757
    2 274 2 1920 0.33 41.9 0.29 6.3 11.1 3.23 47.9 16.7 179 65 304 63.3 560 96.6 7230 0.7 163 120 0.43 1.07 617
    3 330 24 2130 2.7 440 920 120 600 118 17 137 22.9 207 68 287 57 560 103 8000 0.8 197 142 0.41 0.98 824
    4 324 49 1440 3.5 0.03 53.5 0.3 3.2 7.7 2.59 39.4 10.6 130 47.8 224 43.6 428 80 8930 0.67 111 94.5 0.45 138.27 903
    5 280 13 1620 0.7 0.2 60 0.18 3.6 6.2 2.32 31.1 11 136 53.8 273 47.9 499 100 8370 1.25 158 135 0.51 77.53 765
    6 316 2390 3.2 6.6 95 1.73 7.1 10.7 3.83 56 19.3 193 83 378 71 730 131 7350 1.36 318 209 0.48 6.89
    7 254 12 995 0.69 31.6 0.57 4.2 5.2 2.09 25.5 7 83.6 35 165 31.2 292 56.7 7050 0.48 127 87 0.55 12.35 757
    8 238 25 1610 2.3 77.6 0.17 2.8 6.5 2.08 39.2 11.7 134 53.1 248 45.6 464 81.3 7370 1.19 297 200 0.40 4.50 828
    9 286 42 2070 7.1 86.6 0.18 5.3 7.1 2.73 49.7 15.2 194 71.6 319 65.4 548 114.3 7490 1.01 465 256 0.44 885
    10 174 2 2070 1.9 0.036 69.9 0.18 3.8 10 3.32 52.8 14.4 192 70.5 327 62.9 597 108 8080 1.43 223 166 0.44 212.90 617
    11 323 17 2690 0.36 0.034 36.4 0.55 9.1 15.8 9.7 93 25.4 254 89.6 428 86 727 145 6770 0.42 213 116 0.77 65.26 790
    12 274 10 1260 0.39 35.1 0.106 1.81 6.3 2.02 24.1 9.2 101 43.7 220 42.7 429 79.8 7510 0.64 89 86.3 0.50 741
    13 261 3 3330 0.34 52 198 16.2 75 28.5 6.47 96 28.7 302 107 476 102 896 155 8860 0.91 324 221 0.378 1.67 645
    14 221 19 1570 1.1 0.42 77.1 0.24 4 7.7 2.45 41.5 13.1 145 53.3 233 50.5 430 86.8 6940 1.32 381 198 0.419 59.54 801
    15 267 2450 2.2 0.017 76.3 0.42 4.2 11.9 4.14 63.8 21.8 227 89 372 74.7 663 121 8440 1.13 245 189 0.459 221.39
    16 254 21 3030 0.33 57.4 0.36 10.2 16.2 6.38 82 25.6 248 97.3 444 85 877 157 7690 0.68 289 180 0.54 811
    17 298 45 2090 51.8 0.35 2.5 9 3.92 48.4 11.5 171 64.2 298 61.1 554 104.6 6660 0.55 214 126.4 0.574 1.31 893
    18 356 22 2830 2.6 0.014 65.6 0.48 5.6 15.6 6.11 80 24.3 240 94.3 422 92 850 154 6230 0.83 312 183 0.529 196.20 815
    19 293 7 4360 1.5 101 0.49 13.4 22.5 11.9 140 40.4 394 142 644 118 1050 193 7480 0.81 683 250 0.648 711
    20 293 20 2430 1.9 42.6 193 12.8 64 23.8 5.58 71 21.4 211 83 369 78 675 118 8600 1.05 404 245 0.41 2.03 806
    21 323 2920 0.9 0.062 55.5 0.64 8.3 15.7 6.33 79 21.8 264 93 461 88 793 144 7050 0.75 239 160 0.549 68.31
    22 251 48 2370 0.8 0.022 45.3 0.19 6.2 12.8 5.62 63 19 214 84.1 364 69.5 720 121 7670 0.29 167 122 0.605 171.79 901
    23 276 18 1910 2.4 0.053 81.8 0.016 3.9 7.2 2.6 42.6 13.2 160 65.6 293 60.8 570 105 8120 1.17 322 214 0.454 688.72 795
    24 244 15 3070 0.017 70.8 0.6 12.5 24.3 8.55 106 29.7 320 106 495 94 840 139 6930 1.02 230 132 0.52 171.88 778
    25 271 2 3440 0.8 39 231 12.6 60 30 8.2 95 30 317 112 463 95 860 142 7200 1.38 699 296 0.47 2.55 617
    26 292 2720 2.3 19.6 150 6.9 36.8 19.6 5.73 83.1 20.8 281 93 385 78.2 790 140 7620 0.96 548 280 0.434 3.16
    27 263 25 2180 0.34 44.3 0.51 7.1 12.6 5.49 57.9 18.9 206 72.3 351 64.4 650 114.2 7290 0.44 187 127.9 0.621 32.83 828
    28 265 76 1570 2.1 0.087 53.4 0.11 2.4 6.3 2.56 38.6 10.8 151 52.5 229 48.5 496 88 7500 0.83 209 141 0.50 133.84 957
    29 360 3 1780 0.48 18 96 5.8 31.5 11.9 3.29 41.3 12.8 152 57.5 271 57.4 572 108 7200 0.93 222 160 0.454 2.30 645
      注:空白表示低于检测线
    下载: 导出CSV
  • [1]

    Bai J K, Li Z P, Xu X Y, et al. 2015. Tectonic Environment of Western Tianshan during the Early Carboniferous: Sedimentary and stratigraphical evidence from the bottom of the Dahalajunshan Formation[J]. Acta Sedimentological Sinica, 33(3): 459−469 (in Chinese with English abstract).

    [2]

    Barth A P, Wooden J L. 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas[J]. Chemical Geology, 277(1/2): 149−159. doi: 10.1016/j.chemgeo.2010.07.017

    [3]

    Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity[J]. Geochimica et Cosmochimica Acta, 95: 196−212. doi: 10.1016/j.gca.2012.07.034

    [4]

    Carley T L, Miller C F, Wooden J L, et al. 2014. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record[J]. Earth and Planetary Science Letters, 405: 85−97. doi: 10.1016/j.jpgl.2014.08.015

    [5]

    Claiborne L L, Miller C F, Wooden J L. 2010. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada[J]. Contributions to Mineralogy and Petrology, 160(4): 511−531. doi: 10.1007/s00410-010-0491-5

    [6]

    Dai L Q, Zhao Z F, Zheng Y F, et al. 2011. Zircon Hf−O isotope evidence for crust−mantle interaction during continental deep subduction[J]. Earth and Planetary Science Letters, 308(1/2): 229−244.

    [7]

    El−Bialy M Z, Ali K A. 2013. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600−614 Ma) post−collisional Dokhan volcanics and Younger granites of SE Sinai, NE Arabian−Nubian Shield[J]. Chemical Geology, 360−361: 54−73. doi: 10.1016/j.chemgeo.2013.10.009

    [8]

    Gao J, Qian Q, Long L, l, et al. 2009. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 28(12): 1804−1816 (in Chinese with English abstract).

    [9]

    Ge R F, Zhu W B, Wu H L, et al. 2012. The Paleozoic northern margin of lhe Tarim Craton: Passive or active?[J]. Lithos, 142/143: 1−15. doi: 10.1016/j.lithos.2012.02.010

    [10]

    Grimes C B, John B E, Kelemen P B, et al. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 35(7): 643−646. doi: 10.1130/G23603A.1

    [11]

    Grimes C B, Wooden J L, Cheadle M J, et al. 2015. “Fingerprinting”tectono−magmatic provenance using trace elements in igneous zircon[J]. Contritions to Mineralogy and Petrology, 170(5): 46.

    [12]

    Guo R Q, Qin Q, Muhetaer Z R, et al. 2013. Geological characteristics and tectonic significance of Ordovician granite intrusions in the western segment of Quruqtagh, Xinjiang[J]. Earth Science Frontiers, 20(4): 251−263 (in Chinese with English abstract).

    [13]

    Han Y G, Zhao G C, Sun M, et al. 2015. Paleozoic accretionary orogenesis in the Paleo−Asian Ocean: insights from detrital zircons from Silurian to Carboniferous strata at the north−western margin of the Tarim Craton[J]. Tectonics, 34: 334−351. doi: 10.1002/2014TC003668

    [14]

    Han Y G, Zhao G C, Sun M, et al. 2016. Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian orogenic belt along the South Tianshan suture zone[J]. Lithos, 246: 1−12.

    [15]

    Han Y G, Zhao G C. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

    [16]

    Hoskin P W O, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 28(7): 627−630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    [17]

    Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27−62. doi: 10.2113/0530027

    [18]

    Huang H, Wang T, Tong Y, et al. 2020. Rejuvenation of ancient micro−continents during accretionary orogenesis: insights from the Yili block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth−Science Reviews, 208: 103255.

    [19]

    Huang H, Zhang Z C, Santosh M, et al. 2018. Crustal evolution in the South Tianshan Terrane: Constraints from detrital zircon geochronology and implications for continental growth in the Central Asian orogenic belt[J]. Geological Journal, 54(3): 1379−1400.

    [20]

    Huang Y G, Luo G, Zhang T, et al. 2019. LA−CP−MS zircon U−Pb dating and trace element geochemistry of Xiaoqiaotou porphyry in Lijiang, western Yunnan[J]. Journal of Guilin University of Technology, 39(1): 26−37 (in Chinese with English abstract).

    [21]

    Jahn, B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society. London: Special Publications, 226(1): 73−100. doi: 10.1144/GSL.SP.2004.226.01.05

    [22]

    Jiang T, Gao J, Klemd R, et al. 2014. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: Geological, geochemical and geochronological implications for the geodynamic setting[J]. Tectonophysics, 612: 106−127.

    [23]

    Jiang T, Gao J, Klemd R, et al. 2015. Genetically and geochronologically contrasting plagiogranites in South Central Tianshan ophiolitic mélange: Implications for the breakup of Rodinia and subduction zone processes[J]. Journal of Asian Earth Sciences, 113: 266−281. doi: 10.1016/j.jseaes.2014.10.015

    [24]

    Kaczmarek M A, Müentener O, Rubatto D. 2008. Trace element chemistry and U−Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps)[J]. Contributions to Mineralogy and Petrology, 155(3): 295−312. doi: 10.1007/s00410-007-0243-3

    [25]

    Kemp A I S, Hawkesworth C J, Paterson B A, et al. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 439(7076): 580−583. doi: 10.1038/nature04505

    [26]

    Klemd R, Gao J. 2015. Metamorphic evolution of(ultra)−high−pressure subduct ion−related transient crust in the South Tianshan Orogen (Central Asian orogenic belt): geodynamic implications[J]. Gondwana Research, 28(1): 1−25. doi: 10.1016/j.gr.2014.11.008

    [27]

    Klemd R, John T, Scherer E, et al. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP−UHP rocks (Tianshan, NW−China)[J]. Earth and Planetary Science Letters, 310(1/2): 9−20. doi: 10.1016/j.jpgl.2011.07.022

    [28]

    Konopelko D, Biske G, Setmann R, et al. 2007. Hercynian post−collisional A−type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan[J]. Lithos, 97(1/2): 140−160. doi: 10.1016/j.lithos.2006.12.005

    [29]

    Konopelko D, Seltmann R, Biske G, et al. 2009. Possible source dichotomy of contemporaneous post−collisional barren I−type versus tin−bearing A−type granites, lying on opposite sides of the South Tien Shan suture[J]. Ore Geology Reviews, 35(2): 206−216. doi: 10.1016/j.oregeorev.2009.01.002

    [30]

    Lei W Y, Shi G H, Liu Y X. 2013. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 20(4): 273−284 (in Chinese with English abstract).

    [31]

    Li N, Chen Y J, Pirajno F, et al. 2012. LA-ICP−MS zircon U−Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono−magmatic evolution[J]. Lithos, 142/143: 34−47. doi: 10.1016/j.lithos.2012.02.013

    [32]

    Li T Y, Jin C, Tian Z H, et al. 2022. Hf Isotopic and geochronological characteristics of Mesozoic granites and xenoliths in Rushan area and its implication on crustal evolution of Jiaodong Peninsula[J]. Earth Science, 47(8): 2951−2967 (in Chinese with English abstract).

    [33]

    Li Y J, Yang H J, Zhao Y, et al. 2009. Tectonic framework and evolution of South Tianshan, NW China[J]. Geotectonica et Metallogenia, 33(1): 94−104 (in Chinese with English abstract).

    [34]

    Li Z, Li X Y, Zhang P, et al. 2022. Zircon trace elemental characteristics and its geological significance of the Miocene intermediate−acid magmatic rocks in the Pusangguo deposit in Xizang[J]. Geological Review, 68(4): 1236−1260 (in Chinese with English abstract).

    [35]

    Lin W, Chu Y, Ji W B, et al. 2013. Geochronological and geochemical constraints for a middle Paleozoic continental arc on the northern margin of the Tarim block: Implications for the Paleozoic tectonic evolution of the South Chinese Tianshan[J]. Lithosphere, 5(4): 355−381. doi: 10.1130/L231.1

    [36]

    Liu G P, Guo R Q, Cai H M, et al. 2020. U−Pb geochronology of detrital zircon in sediments from Kizil River South Tianshan, Xinjiang and its geological significance[J]. Chinese Journal of Geology, 56(1): 210−236 (in Chinese with English abstract).

    [37]

    Liu G P. 2021. Paleozoic crustal growth and evolution in the South Tianshan Orogenic Belt—Constraits from geochronology and Hf isotopic composition of detrital zircons from the modern river[D]. PhD Dissertation of China University of Mining and Technology (in Chinese with English abstract).

    [38]

    Loucks R R, Fiorentini M L, Hendquez G J. 2020. New magmatic oxybammeter using trace elements in zircon[J]. Joumal of Petrology, 61(3): gaa034. doi: 10.1093/petrology/egaa034

    [39]

    McDonough W F, Sun S S. 1995. The composition of the earth[J]. Chemical Geology, 120(3/4): 223−253. doi: 10.1016/0009-2541(94)00140-4

    [40]

    Ning J, Jiang Y D, Schulmann K, et al. 2023. Silurian−Devonian lithospheric thinning and thermally softening along the northern margin of the Tarim Craton: Geological mapping, petro−structural analysis and geochronological constraints[J]. Tectonics, e2023TC007792.

    [41]

    Paton C, Woodhead J D, Hellstrom J C, et al. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry Geophysics Geosystems, 11: Q0AA06.

    [42]

    Schoene B. 2014. U−Th−Pb geochronology−ScienceDirect[C]//Treatise on Geochemistry (Second Edition). New York: Elsevier, 4: 341−378.

    [43]

    Schulz B, Klemd R, Brätz H. 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 70(3): 697−710. doi: 10.1016/j.gca.2005.10.001

    [44]

    Smythe D J, Brenan J M. 2015. Cerium oxidation state in silicate melts: Combined ${f}_{{\mathrm{O}}_2} $, temperature and compositional effects[J]. Geochimica et Cosmochimica Acta, 170: 173−187. doi: 10.1016/j.gca.2015.07.016

    [45]

    Smythe D I, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon−melt partitioning of cerium[J]. Earth and Planetary Science Letlters, 453: 260−266. doi: 10.1016/j.jpgl.2016.08.013

    [46]

    Tang M, Ji W Q, Chu X, et al. 2020. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons[J]. Geology, 49(1): 76−80.

    [47]

    Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 97: 70−87. doi: 10.1016/j.gca.2012.08.032

    [48]

    Wang B, Shu L S, Faure M, et al. 2011. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China)[J]. Tectonophysics, 497(1/4): 85−104. doi: 10.1016/j.tecto.2010.11.004

    [49]

    Wang B, Shu L S, Faure M, et al. 2013. Tectonic evolution of Tarim active continental margin and Southern Tianshan in Early Paleozoic[J]. Acta Geological Sinica, 87(S1): 82−83 (in Chinese with English abstract).

    [50]

    Wang B, Song F, Ni X H, 2022. Paleozoic accretionary orogenesis and major transitional tectonic events of the Tianshan orogen[J]. Acta Geological Sinica, 96(10): 3514−3540 (in Chinese with English abstract).

    [51]

    Wang B, Zhai Y Z, Kapp P, et al. 2018b. Accretionary tectonics of back−arc oceanic basins in the South Tianshan: insights from structural, geochronological and geochemical studies of the Wuwamen ophiolite mélange[J]. GSA Bulletin, 130(1/2): 284−306. doi: 10.1130/B31397.1

    [52]

    Wang M, Zhou H R, Zhang H. 2019. Detrital zircon geochronology and tectonic implications of the Mesoproterozoic Gaoshanhe Group in south margin of North China Craton[J]. Journal of Palaeoceography, 22(1): 39−55 (in Chinese with English abstract).

    [53]

    Wang X S, Klemd R, Gao J, et al. 2018a. Final assembly of the southwestern Central Asian Orogenic Belt as constrained by the evolution of the South Tianshan Orogen: Links with Gondwana and Pangea[J]. Journal of Geophysical Research: Solid Earth, 123: 7361−7388. doi: 10.1029/2018JB015689

    [54]

    Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on conrliest earth[J]. Science, 308(5723): 841−844. doi: 10.1126/science.1110873

    [55]

    Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    [56]

    Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrological Sinica, 23(6): 1217−1238 (in Chinese with English abstract).

    [57]

    Wu F Y, Yang J H, Liu X M, et al. 2005. Hf isotopic characteristics of 3.8 Ga zircon from eastern Hebei Province and the early crustal age of North China Craton[J]. Chinese Science Bulletin, 50(18): 1996−2003 (in Chinese with English abstract). doi: 10.1360/csb2005-50-18-1996

    [58]

    Wu Y B, Zheng Y F. 2004. Genetic mineralogy of zircon and its restriction on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    [59]

    Xiao W J, Santosh M. 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 25(4): 1429−1444. doi: 10.1016/j.gr.2014.01.008

    [60]

    Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477−507. doi: 10.1146/annurev-earth-060614-105254

    [61]

    Xiao W J, Windley B F, Yuan C, et al. 2009. Paleozoic multiple subduction−accretion processes of the southern Altaids[J]. American Journal of Science, 309(3): 221−270. doi: 10.2475/03.2009.02

    [62]

    Yan L L, He Z Y, Beier C, et al. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China[J]. Lithos, 320/321: 28−34. doi: 10.1016/j.lithos.2018.08.040

    [63]

    Yan L L, He Z Y, Klemd R, et al. 2020. Tracking crystal−melt segregation and magma recharge using zircon trace element data[J]. Chemical Geology, 542: 119596. doi: 10.1016/j.chemgeo.2020.119596

    [64]

    Yang J H, Cawood P A, Du Y S, et al. 2012. Large Igneous Province and magmatic arc sourced Permian−Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 261/262: 120−131. doi: 10.1016/j.sedgeo.2012.03.018

    [65]

    Yang J S, Xu X Z, Li T F, et al. 2010. U−Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin[J]. Acta Petrological Sinica, 27(1): 77−95 (in Chinese with English abstract).

    [66]

    Yang S H, Zhou M F. 2009. Geochemistry of the similar to 430 Ma Jingbulake mafic−ultram afic intrusion in Western Xinjiang. NW China: Implications for subduction related magmatism in the South Tianshan orogenic belt[J]. Lithos, 113(1): 259−273.

    [67]

    Yu X H, Qin Q, Huang H, et al. 2020. Genesis and tectonic significance of the Mangqisu pluton in the South Tianshan; evidence from geochronology, geochemistry, and Nd−Hf isotopes[J]. Acta Geological Sinica, 94(10): 2893−2918 (in Chinese with English abstract).

    [68]

    Zhao Z Y, Zhang Z C, Santosh M, et al. 2015. Early Paleozoic magmatic− record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian orogenic belt[J]. Gondwana Research, 28(1): 328−347.

    [69]

    Zhou A R G L, Dai J G, Li Y L, et al. 2017. Zircon trace element geochemical characteristics of Late Silurian−Earl Jurassic granitoids from Eastern Kunlun Range and its geological significance[J]. Acta Petrological Sinica, 33(1): 173−190 (in Chinese with English abstract).

    [70]

    Zhu Z X, Li J Y, Dong L H, et al. 2008. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang[J]. Acta Petrological Sinica, 24(12): 2761−2766 (in Chinese with English abstract).

    [71]

    高俊, 钱青, 龙灵利, 等. 2009. 西天山的增生造山过程[J]. 地质通报, 28(12): 1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

    [72]

    郭瑞清, 秦切, 木合塔尔, 等. 2013. 新疆库鲁克塔格西段奥陶纪花岗岩体地质特征及构造意义[J]. 地学前缘, 20(4): 251−263.

    [73]

    黄永高, 罗改, 张彤, 等. 2019. 滇西丽江小桥头岩体时代与成因: 锆石U−Pb定年与微量元素证据[J]. 桂林理工大学学报, 39(1): 26−37. doi: 10.3969/j.issn.1674-9057.2019.01.003

    [74]

    雷玮琰, 施光海, 刘迎新. 2013. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 20(4): 273−284.

    [75]

    李同宇, 金超, 田忠华, 等. 2022. 乳山地区中生代花岗岩及捕虏体年代学、Hf同位素特征对胶东半岛地壳演化的启示[J]. 地球科学, 47(8): 2951−2967. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208021

    [76]

    李曰俊, 杨海军, 赵岩, 等. 2009. 南天山区域大地构造与演化[J]. 大地构造与成矿学, 33(1): 94−104. doi: 10.3969/j.issn.1001-1552.2009.01.012

    [77]

    李壮, 李兴怡, 张鹏, 等. 2022. 西藏浦桑果矿区中新世中酸性侵入岩锆石微量元素特征及地质意义[J]. 地质论评, 68(4): 1236−1260.

    [78]

    刘桂萍, 郭瑞清, 蔡宏明, 等. 2020. 新疆南天山克孜尔河沉积物碎屑锆石U−Pb年代学研究及其地质意义[J]. 地质科学, 56(1): 210−236.

    [79]

    刘桂萍. 2021. 南天山造山带古生代地壳生长与演化——来自现代河流碎屑锆石年代学及Hf同位素的约束[D]. 中国矿业大学博士学位论文.

    [80]

    王博, 舒良树, Faure M, 等. 2013. 塔里木早古生代活动陆缘与南天山构造演化[J]. 地质学报, 87(S1): 82−83.

    [81]

    王博, 宋芳, 倪兴华, 等. 2022. 天山古生代增生造山作用及其构造转换事件[J]. 地质学报, 96(10): 3514−3540. doi: 10.3969/j.issn.0001-5717.2022.10.014

    [82]

    王淼, 周洪瑞, 张恒. 2019. 华北南缘中元古界高山河群碎屑锆石U−Pb年代学及其地质意义[J]. 古地理学报, 22(1): 39−55.

    [83]

    吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [84]

    吴福元, 杨进辉, 柳小明, 等. 2005. 冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代[J]. 科学通报, 50(18): 1996−2003. doi: 10.3321/j.issn:0023-074X.2005.18.013

    [85]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [86]

    新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社.

    [87]

    新疆维吾尔族自治区地质局. 1959. 1∶20万库尔勒福地图[R].

    [88]

    杨经绥, 徐向珍, 李天福, 等. 2010. 新疆中天山南缘库米什地区蛇绿岩的锆石U−Pb同位素定年: 早古生代洋盆的证据[J]. 岩石学报, 27(1): 77−95.

    [89]

    于新慧, 秦切, 黄河, 等. 2020. 南天山盲起苏花岗岩体的成因及构造意义: 来自年代学、地球化学及Nd−Hf同位素证据[J]. 地质学报, 94(10): 2893−2918. doi: 10.3969/j.issn.0001-5717.2020.10.009

    [90]

    周敖日格勒, 戴紧根, 李亚林, 等. 2017. 东昆仑山脉晚志留世—早侏罗世花岗类岩石中锆石微量元素地球化学特征及地质意义[J]. 岩石学报, 33(1): 173−190.

    [91]

    朱志新, 李锦轶, 董连慧, 等. 2008. 新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定[J]. 岩石学报, 24(12): 2761−2766.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  42
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2024-01-11
修回日期:  2024-04-15
刊出日期:  2025-03-15

目录