基于无人机倾斜摄影的地震勘探创新应用技术

卓武, 陈松, 冯美娜, 赵秋茹, 陈艳君. 2025. 基于无人机倾斜摄影的地震勘探创新应用技术. 地质通报, 44(7): 1350-1358. doi: 10.12097/gbc.2024.01.039
引用本文: 卓武, 陈松, 冯美娜, 赵秋茹, 陈艳君. 2025. 基于无人机倾斜摄影的地震勘探创新应用技术. 地质通报, 44(7): 1350-1358. doi: 10.12097/gbc.2024.01.039
ZHUO Wu, CHEN Song, FENG Meina, ZHAO Qiuru, CHEN Yanjun. 2025. Innovative application technology of seismic exploration based on UAV tilt photography. Geological Bulletin of China, 44(7): 1350-1358. doi: 10.12097/gbc.2024.01.039
Citation: ZHUO Wu, CHEN Song, FENG Meina, ZHAO Qiuru, CHEN Yanjun. 2025. Innovative application technology of seismic exploration based on UAV tilt photography. Geological Bulletin of China, 44(7): 1350-1358. doi: 10.12097/gbc.2024.01.039

基于无人机倾斜摄影的地震勘探创新应用技术

  • 基金项目: 中国石油天然气股份有限公司重大科技专项课题《辽河油田千万吨稳产关键技术研究与应用》 (编号:2017E-1602)
详细信息
    作者简介: 卓武(1986− ),男,硕士,工程师,从事地球物理勘探与研究工作。E−mail:zhuowu2007@163.com
    通讯作者: 陈松(1986− ),男,硕士,高级工程师,从事地震处理与解释工作。E−mail:anhuisongchen@163.com
  • 中图分类号: P631.4; P315.61

Innovative application technology of seismic exploration based on UAV tilt photography

  • Fund Project: Supported by Major Science and Technology Special Project of China National Petroleum Corporation "Research and Application of Key Technologies for Stable Production of Ten Million Tons in Liaohe Oilfield" (No. 2017E-1602)
More Information
    Author Bio: ZHUO Wu, male, born in 1986, master, engineer, mainly engaged in geophysical exploration and research; E−mail: zhuowu2007@163.com .
    Corresponding author: CHEN Song, male, born in 1986, master, senior engineer, mainly engaged in seismic data processing and interpretation. E−mail: anhuisongchen@163.com
  • 研究目的

    现今地震勘探的复杂程度逐步加大,同时也亟需提高地震勘探的野外施工效率。随着无人机技术的快速发展,其在地震勘探中的应用范围逐步扩大,且取得了较好的实际效果。

    研究方法

    主要论述了无人机倾斜摄影技术的原理方法、三维建模技术及通过三维实景模型,对各类地理和地物信息进行识别提取,并且全局优化与共享提取的各类信息。

    研究结果

    基于上述方法,可实现无人机仿地飞行进行激发井口的巡查和地震勘探无线节点质控数据的回收,以及复杂地震勘探区域工序人员行进路径的优化选择,切实提高了生产效率。

    结论

    在复杂环境下地震生产当中,该方法促进了地震野外数据采集的高效生产与管理,在智能油气地震勘探中具有广泛的应用前景。

  • 加载中
  • 图 1  倾斜摄影方式

    Figure 1. 

    图 2  像片内方位元素

    Figure 2. 

    图 3  像片外方位元素

    Figure 3. 

    图 4  像控点位置图

    Figure 4. 

    图 5  三维建模流程图

    Figure 5. 

    图 6  三维数字地表模型(局部)

    Figure 6. 

    图 7  无人机仿地飞行示意图

    Figure 7. 

    图 8  无人机仿地飞行巡井

    Figure 8. 

    图 9  照片对比分析

    Figure 9. 

    图 10  无人机仿地飞行视频巡查

    Figure 10. 

    图 11  无人机回收节点质控数据流程图

    Figure 11. 

    图 12  无人机回收节点数据方式

    Figure 12. 

    图 13  无人机回收节点数据效率

    Figure 13. 

    图 14  地物信息优化共享

    Figure 14. 

    表 1  未加像控点精度

    Table 1.  Accuracy without image control points

    序号 平面坐标差/m 原高程/m 处理成果高程/m 高程差/m 备注
    k1 0.172 7.481 11.313 3.832 像控点
    k13 0.217 5.192 8.889 3.697 像控点
    k14 0.261 6.432 9.702 3.270 像控点
    k15 0.089 5.523 9.037 3.514 检核点
    k16 0.110 4.688 8.254 3.566 像控点
    下载: 导出CSV

    表 2  加入像控点精度

    Table 2.  Accuracy with image control points

    序号 平面坐标差/m 测量高程/m 处理成果高程/m 高程差/m 备注
    k1 0.000 7.481 7.365 0.116 像控点
    k13 0.000 5.192 5.268 0.076 像控点
    k14 0.000 6.432 6.437 0.005 像控点
    k15 0.244 5.523 5.530 0.007 检核点
    k16 0.000 4.688 4.641 0.047 像控点
    下载: 导出CSV

    表 3  工序效率对比

    Table 3.  Comparison of process efficiency

    工序 优化前效率
    /(点·组−1·d−1
    优化后效率
    /(点·组−1·d−1
    节约时间
    /h
    包药 18 22 2
    排列 70 100 2.5
    放炮 60 85 1.5
    下载: 导出CSV
  • [1]

    Huang X Q, Yi B J, Zhong M W, et al. 2015. QC datacollection of HAWK node seismic data acquisition system[J]. EGP, 25(2): 136−139 (in Chinese with English abstract).

    [2]

    Li S S. 2019. Improving deployment effect of peripheral seismic exploration using QC method[J]. Technology Supervision in Petroleum Industry, 35(3): 18−19,27 (in Chinese with English abstract).

    [3]

    Li Y D, Wang Q, Gao S W. 2018. Analysis of factors influencing aerial survey accuracy[J]. Journal of Beijing Polytechnic College, 17(2): 5−8 (in Chinese with English abstract).

    [4]

    Shi X Q, Chang Y, Si H X, et al. 2016. The optimization design of seismic line with UAV photo graphs[J]. Equipment for Geophysical Prospecting, 26(4): 265−267,272 (in Chinese with English abstract).

    [5]

    Shu Y, Sun X D, Li J P. 2021. Application of UAV aerial photography in 3D high−precision seismic acquisition[J]. Natural Gas and Oil, 39(6): 69−74 (in Chinese with English abstract).

    [6]

    Song W, Mao W, Zhang Y Z. 2023. Achievements and opportunities in the development of GNSS RTK positioning technology[J]. World Sci−Tech R& D, 45(3): 294−305 (in Chinese with English abstract).

    [7]

    Sun B, Zhang J X, Chai J B, et al. 2023. Application of PPK in vibroseis seismic survey[J]. EGP, 33(4): 224−227 (in Chinese with English abstract).

    [8]

    Tian W B, Ji Z Q. 2023. Application value of UAV tilt photogrammetry in seismic exploration[J]. EGP, 33(3): 181−184 (in Chinese with English abstract).

    [9]

    Wang Y M, Zheng Y M, Gu Y R, et al. 2013. Application of high−resolution image acquired by UAV in geophysical exploration production[J]. Geophysical Equipment, 23(1): 19−25 (in Chinese with English abstract).

    [10]

    Wang Y W, Wang M Y, Xu W R, et al. 2022. Wireless node acquisition technology and its applications[J]. Geophysical Prospecting for Petroleum, 61(6): 975−984,1005 (in Chinese with English abstract).

    [11]

    Xiao G H, Zhang W, Zhuo W, et al. 2022. Application of UAV aerial survey technology in seismic exploration in complex area[J]. Equipment for Geophysical Prospecting, 32(2): 106−111 (in Chinese with English abstract).

    [12]

    Yuan J G, Zhang B. 2020. Application of high definition aerial survey image in the design of 3D object detection point[J]. Petrochemical Industry Technology, 27(11): 148−149 (in Chinese with English abstract).

    [13]

    Zhai J W, Ning H X, Fu Q. 2014. Application of the UAV high resolution image and DEM data for geophysical prospecting in complex areas[J]. EGP, (1): 55−60 (in Chinese with English abstract).

    [14]

    Zhang K P, Yu G R, Gu G J. 2017. The use of differential GNSS to obtain high−precision UAV image line of exterior orientation elements[J]. Engineering of Surveying and Mapping, 26(7): 5−11 (in Chinese with English abstract).

    [15]

    Zhang L J, Huang X, Rao W D, et al. 2023. NRTK PPK aided 3D modeling analysis of image free UAV tilt photogrammetry for water conservancy projects[J]. Bulletin of Surveying and Mapping, (4): 115−120 (in Chinese with English abstract).

    [16]

    黄兴琦, 易碧金, 仲明帷, 等. 2015. HAWK节点式地震仪QC数据回收[J]. 物探装备, 25(2): 136−139. doi: 10.3969/j.issn.1671-0657.2015.02.017

    [17]

    李珊珊. 2019. 运用QC方法提高外围地震勘探部署成效[J]. 石油工业技术监督, 35(3): 18−19,27.

    [18]

    李亚东, 王强, 高绍伟. 2018. 无人机航测精度的影响因子分析[J]. 北京工业职业技术学院学报, 17(2): 5−8. doi: 10.3969/j.issn.1671-6558.2018.02.002

    [19]

    史小奇, 畅毅, 司海新, 等. 2016. 利用无人机航测影像进行物探测线优化设计[J]. 物探装备, 26(4): 265−267,272. doi: 10.3969/j.issn.1671-0657.2016.04.015

    [20]

    舒艳, 孙向东, 吕金蓬. 2021. 无人机航拍在三维高精度地震勘探采集中的应用[J]. 天然气与石油, 39(6): 69−74. doi: 10.3969/j.issn.1006-5539.2021.06.011

    [21]

    宋伟, 毛威, 张益泽. 2023. GNSS RTK定位技术的发展历程和机遇[J]. 世界科技研究与发展, 45(3): 294−305.

    [22]

    孙斌, 张浚显, 柴军兵, 等. 2023. PPK在可控震源地震勘探中的应用[J]. 物探装备, 33(4): 224−227. doi: 10.3969/j.issn.1671-0657.2023.04.004

    [23]

    田文斌, 季志强. 2023. 无人机倾斜摄影测量在地震勘探中应用探讨[J]. 物探装备, 33(3): 181−184. doi: 10.3969/j.issn.1671-0657.2023.03.011

    [24]

    王艳梅, 郑永明, 谷艳如, 等. 2013. 利用无人机获取高分辨率影像在物探生产中的应用[J]. 物探装备, 23(1): 19−25. doi: 10.3969/j.issn.1671-0657.2013.01.005

    [25]

    王玉伟, 王铭义, 徐文瑞, 等. 2022. 无线节点采集技术及应用[J]. 石油物探, 61(6): 975−984, 1005. doi: 10.3969/j.issn.1000-1441.2022.06.003

    [26]

    肖关华, 张伟, 卓武, 等. 2022. 无人机航测技术在复杂地表区地震勘探中的应用[J]. 物探装备, 32(2): 106−111.

    [27]

    袁建国, 张波. 2020. 高清航测影像在三维物探测点设计中的应用[J]. 石化技术, 27(11): 148−149. doi: 10.3969/j.issn.1006-0235.2020.11.063

    [28]

    翟俊伟, 宁宏晓, 付强, 等. 2014. 无人机航拍影像及DEM数据在复杂区地震勘探中的应用[J]. 物探装备, 24(1): 55−60.

    [29]

    张坤鹏, 于广瑞, 顾广杰. 2017. 利用差分GNSS获取高精度无人机影像外方位线元素[J]. 测绘工程, 26(7): 5−11.

    [30]

    张林杰, 黄筱, 饶维冬, 等. 2023. 网络RTK和PPK辅助水利工程免像控无人机倾斜摄影测量三维建模分析[J]. 测绘通报, (4): 115−120.

  • 加载中

(14)

(3)

计量
  • 文章访问数:  34
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-01-24
修回日期:  2024-10-08
刊出日期:  2025-07-15

目录