Sporopollen record during Mid-Late Pleistocene from West Ujimqin Banner, Inner Mongolia, and its paleoclimatic significance
-
摘要:
为重建内蒙古西乌旗地区巴音华盆地中—晚更新世之交古气候,探讨其变化规律及对全球古气候的响应,对该盆地ZK03钻孔和ZK04钻孔孢粉化石进行系统鉴定,利用有序聚类分析划分孢粉组合,结合共存因子分析法对孢粉组合定量化建立研究区的古气候参数值。鉴定出孢粉68个科属,自下而上划分出(Ⅰ)松属(Pinus)−桦属(Betula)−香蒲属(Typha)孢粉组合;(Ⅱ)栎属(Quercus)−麻黄属(Ephedra)−蒿属(Artemisia)孢粉组合;(Ⅲ)莎草科(Cyperaceae)−香蒲属(Typha)− 水龙骨科(Polypodiaceae)孢粉组合。其中,组合Ⅰ、组合Ⅱ时代为中更新世,组合Ⅲ时代为晚更新世。植被类型经历了阔叶林−草原型兼有少量针叶林→阔叶林−草原型→稀树−草原型的转变。古气候经历了由相对温暖的湿润型气候到相对温凉的半干旱型气候再到相对温暖的湿润型气候的3期转变,各期分别对应的年均气温和年降雨量在数值上也体现了由高到低再到高的变化过程。其中,在中更新世/晚更新世之交,气候经历由凉到温的变化趋势,与格陵兰冰芯氧同位素所指示的全球平均温度变化趋势相耦合。
Abstract:In order to reconstruct the paleoclimate and explore its evolution model and response to the global paleoclimate during the Mid−Late Pleistocene in the Bayinhua Basin, West Ujimqin Banner, Inner Mongolia, the sporopollen of ZK03 and ZK04 in the basin were systematically identified. Combining Coniss analyze with Co−existence Approach, we quantitatively reconstruct the palaeoclimate parameters in research area. 68 genera are identified and divided into 3 assemblages as: (Ⅰ) Pinus−Betula−Typha assemblage; (Ⅱ) Quercus−Ephedra−Artemisia assemblage;(Ⅲ) Cyperaceae−Typha−Polypodiaceae assemblage. The age of assemblage Ⅰ and assemblage Ⅱ was Middle Pleistocene, while the age of assemblage Ⅲ was Late Pleistocene. The vegetation types experienced the transformation as broadleaved − steppe type with a small amount of coniferous forest vegetation→broadleaved − steppe type vegetation→savanna− steppe vegetation. Palaeoclimate experienced three periods of transition from relatively warm and humid climate to relatively warm and cool semi−arid climate and then to relatively warm and humid climate. The annual average temperature and annual rainfall corresponding to each period also showed a numerical process of change from high to low and then to high. The trend from cool to warm at the turn of the Middle Pleistocene/Late Pleistocene can be well coupled with the trend of global mean temperature that indicated by the oxygen isotopes of Greenland ice core.
-
-
表 1 巴音华盆地中—晚更新世孢粉植物群及其气候参数
Table 1. Palynofloras in the Mid-Late Pleistocene in Bayinhua Basin and their climatic parameter
孢粉类型 年均温/℃ 年降雨量/mm 孢粉类型 年均温/℃ 年降雨量/mm 最小 最大 最小 最大 最小 最大 最小 最大 木本针叶植物 木犀属 −4.9 25.5 61.5 2394.5 松属 −5.2 24.7 170.5 2822.7 芸香科 −5.2 25.5 61.5 1869.9 铁杉属 −0.4 23.8 279.4 2394.5 柳属 −5.2 23.8 16.4 1942.5 杉科 5.7 24.7 459.5 2447.1 榛属 −3.2 21.9 318.5 2394.5 云杉 −4.9 22.7 291.6 1815.6 苗榆属 −4.9 23.2 291.6 1815.6 油杉属* 11.2 24.7 613.8 1815.6 胡颓子属 −4.1 25.5 7.6 2822.7 雪松属 10.2 20.9 33.4 1663.9 杜鹃科# −4.9 24.7 403.4 1869.9 罗汉松属 8.5 24.7 797.5 1653.5 忍冬属 −4.1 25.5 303.9 1869.9 柏科 −7.3 23.8 10.0 2447.1 冬青属# −1.2 25.5 201.6 2822.7 木本阔叶植物 麻黄属 −4.9 19.8 16.4 1113.3 桦属 −4.9 23.2 291.6 1815.6 黄杞属 −1.6 24.7 257.5 1653.5 榆属 −5.2 25.5 16.4 1900.3 金缕梅科 8.5 25.5 531.0 1293.7 胡桃属 −1.6 23.0 257.5 2074.4 山核桃 11.3 22.6 601.1 1942.5 栎属 −5.2 25.5 209.1 1900.3 草本植物 栗属 5.4 25.5 613.8 2822.7 蒿属 −4.9 25.5 303.9 1869.9 枫香# 8.5 23.2 474.6 1942.5 藜科 −5.2 25.5 303.9 1869.9 桤木属 −5.2 23.8 355.2 2394.5 菊科 −4.9 24.7 303.9 1869.9 鹅耳栎属 2.3 25.5 570.3 1785.2 禾本科 −4.9 25.5 303.9 2447.1 朴属 4.9 25.5 318.5 1869.9 莎草科# −4.9 25.5 303.9 2394.5 榉属 9.0 23.8 573.9 2822.7 蓼属# −4.9 24.7 16.4 1785.2 枫杨属 5.7 23.8 257.5 1540.2 蔷薇属 −4.9 24.7 303.9 2072.8 椴属 −5.2 22.6 209.1 2394.5 唇形科 −4.9 24.7 16.4 1942.5 山毛榉属# 5.7 18.5 554.9 2394.5 大戟科 −5.2 25.5 33.4 2822.7 楝属 7.6 25.5 475.0 1870.0 苦苣苔科 2.3 25.5 474.6 1815.60 漆树属 −0.4 23.8 277.6 2394.5 白刺属@ −1.6 14.9 0 1031 木兰属 −0.4 25.5 318.5 2822.7 石竹科 −4.9 25.5 601.1 1942.5 杨梅属* 11.3 24.7 613.8 2074.4 狐尾藻属# 0.9 25.5 340.5 2822.7 紫树属△ −1.1 23.9 305.0 2645.0 十字花科# −5.2 24.7 16.4 2129.5 槭树属 −1.1 24.0 115.0 2559.0 香蒲属# −4.9 24.7 16.4 1815.6 桑科 3.97 27.17 - - 注:*据李相传,2010;#据杨毅,2015;△据王浩飞,2019;@据徐增连,2015;其他据徐景先,2002 -
[1] Clark P U, Archer D, Pollard D, et al. 2008. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long−term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 25(23): 3150−3184.
[2] Cohen K M, Finney S C, Gibbard P L, et al. 2018. The ICS International Chronostratigraphic Chart. http://www.stratigraphy.org/ICSchart/ChronostratChart2018-08Chinese.
[3] Demenocal P B. 2004. African climate change and faunal evolution during the Pliocene−Pleistocene[J]. Earth and Planetary Science Letters, 220(1/2): 3−24.
[4] Guiot J, Pons A, De Beaulieu L, et al. 1989. A 140000 year continental climate reconstruction from two European pollen records[J]. Nature, 338: 309−313. doi: 10.1038/338309a0
[5] Johnsen S J, Clausen H B, Dansgaard W, et al. 1997. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability[J]. Journal of Geophysical Research Atmospheres, 1022(C12): 26397−26410.
[6] Mosbrugger V, Utescher T. 1997. The coexistence approach: a method for quantitative reconstruction of Tertiary terrestrial paleoclimate data using plant fossils[J]. Palaeogeogr, Palaeoclimatol, Palaeoecol, 134: 61−86.
[7] Wang P X, Tian J, Cheng X R, et al. 2003. Carbon reservoir changes preceded major ice−sheer expansion at the mid−Brunhes event[J]. Geology, 31(3): 239−242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2
[8] 崔海超. 2009. 西乌珠穆沁旗地区第四纪沉积物特征及其环境变化意义[D]. 吉林大学硕士学位论文: 1−87.
[9] 何付兵, 马学利, 吴超, 等. 2020. 北京平原区中更新世晚期以来古环境演变——以平谷Zk09钻孔为例[J]. 城市地质, 15(3): 288−295.
[10] 吉云平, 杨振京, 赵华, 等. 2016. 河北阳原盆地井儿洼剖面常量元素地球化学特征揭示的中更新世晚期以来气候变化[J]. 古地理学报, 18(3): 487−496. doi: 10.7605/gdlxb.2016.03.034
[11] 寇香玉. 2005. 新生代孢粉分析与古气候定量重建的研究[D]. 中国科学院植物研究所博士学位论文: 1−98.
[12] 李博, 文雪峰, 赵斌, 等. 2015. 南阳盆地更新世以来的孢粉分析及其古气候记录[J]. 地质科技情报, 34(1): 49−56.
[13] 李文漪, 姚祖驹. 1990. 表土中松属花粉与植物间数量关系的研究[J]. 植物学报, 32(12): 943−950.
[14] 李相传. 2010. 浙江东部晚新生代植物群及其古气候研究[D]. 兰州大学博士学位论文: 1−150.
[15] 刘博华, 吴芳, 张绪教, 等. 2024. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J]. 地质通报, 43(1): 33−45. doi: 10.12097/gbc.2023.05.023
[16] 刘凯, 宋运红, 杨凤超, 等. 2023. 松嫩平原北部全新世黑土剖面孢粉组合及其对环境演化的制约[J]. 地质通报, 42(12): 2121−2131. doi: 10.12097/j.issn.1671-2552.2023.12.008
[17] 雒聪文, 马玉贞, 王凯, 等. 2019. 东亚地区MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 34(5): 540−551. doi: 10.11867/j.issn.1001-8166.2019.05.0540
[18] 史冀忠, 刘招君, 柳蓉, 等. 2008. 辽宁抚顺盆地始新世古气候定量研究[J]. 吉林大学学报(地球科学版), 38(1): 50−55.
[19] 王浩飞, 郑军, 付孝红, 等. 2019. 贵州盘州地区早渐新世古气候定量重建[J]. 地质科技情报, 38(1): 90−99.
[20] 王丽媛, 辛蔚, 程捷. 2014. 腾格里沙漠西北缘青土湖晚第四纪孢粉组合特征与环境变迁[J]. 古地理学报, 16(2): 239−248. doi: 10.7605/gdlxb.2014.02.022
[21] 王丽鑫, 代友旭, 王利鹏, 等. 2023. 新疆色帕巴依—柯坪地区中—晚更新世孢粉组合特征及其对古气候的指示[J]. 中国地质, 50(4): 1268−1276. doi: 10.12029/gc20210422001
[22] 王婷, 孙有斌, 刘星星. 2017. 中更新世气候转型: 特征、机制和展望[J]. 科学通报, 62(33): 3861−3872.
[23] 王伟铭, 张大华. 1990. 内蒙古商都-化德盆地第三纪孢粉组合——兼论中国草原植被的形成[J]. 微体古生物学报, 7(3): 239−253.
[24] 王永, 姚培毅, 迟振卿, 等. 2010. 内蒙古黄旗海全新世中晚期环境演变的沉积记录[J]. 矿物岩石地球化学通报, 29(2): 149−156. doi: 10.3969/j.issn.1007-2802.2010.02.006
[25] 韦一, 杨兵, 夏浩东, 等. 2021. 抚顺盆地中-晚始新世古植被与古气候[J]. 地球科学, 46(5): 1848−1861.
[26] 韦一, 杨兵, 邓会娟. 2022. 百色盆地渐新世古植被与古气候[J]. 地质科技通报, 41(4): 197−206.
[27] 萧家仪, 王丹, 吕海波, 等. 2005. 苏北盆地晚更新世以来的孢粉记录与气候地层学的初步研究[J]. 古生物学报, 44(4): 591−598.
[28] 萧家仪. 1996. 圩墩遗址第五次发掘植物孢粉和硅酸体分析[J]. 东南文化, 1: 47−50.
[29] 徐景先. 2002. 云南中西部地区晚第三纪孢粉植物群及其古植被和古气候研究[D]. 中国科学院植物研究所博士学位论文: 1−168.
[30] 徐增连. 2015. 青藏高原东北缘循化盆地渐新世—中新世孢粉记录与东亚季风演化[D]. 中国地质大学(武汉) 博士学位论文: 1−125.
[31] 杨兵, 夏浩东, 尚磊, 等. 2019. 全球标准层型剖面和点位(GSSP)研究进展[J]. 地质科技情报, 38(1): 8−17.
[32] 杨吉龙, 胥勤勉, 胡云壮, 等. 2016. 中更新世以来华北平原植被演化及其气候响应[J]. 地质通报, 35(10): 1745−1751. doi: 10.3969/j.issn.1671-2552.2016.10.022
[33] 杨旭, 白志强, 陈建强, 等. 2017. 廊坊地区中晚更新世以来沉积地层与环境演化[J]. 地质科技情报, 36(4): 60−64.
[34] 杨毅. 2015. 浙江天台−宁海嵊县组孢粉植物群及其古环境和古气候[D]. 兰州大学硕士学位论文: 1−70.
[35] 杨振京, 童国榜, 刘志明, 等. 2001. 银川盆地中更新世以来的孢粉组合与古环境变化[J]. 地球学报, 22(4): 369−374. doi: 10.3321/j.issn:1006-3021.2001.04.018
[36] 张晓飞, 王永立, 黄猛, 等. 2019. 内蒙古西乌旗中更新世晚期以来古环境变迁的孢粉记录[J]. 地质科技情报, 38(5): 174−185.
[37] 庄振业, 许卫东, 刘东生, 等. 1999. 渤海南部S3孔晚第四纪海相地层的划分及环境演变[J]. 海洋地质与第四纪地质, 19(2): 27−35.
[38] 自然资源实物地质资料中心. 2015. 内蒙古1∶5万呼格吉勒图幅(L50E018019)区域地质矿产调查报告[R].
-