黑龙江多宝山矿集区岩石圈结构:孙吴-劲松廊带深地震反射与大地电磁联合探测结果

侯贺晟, 韩江涛, 符伟, 刘文玉, 潘宗栋, 赵泱泱, 刘祖颐. 2024. 黑龙江多宝山矿集区岩石圈结构:孙吴-劲松廊带深地震反射与大地电磁联合探测结果. 地质通报, 43(11): 1985-2000. doi: 10.12097/gbc.2024.02.024
引用本文: 侯贺晟, 韩江涛, 符伟, 刘文玉, 潘宗栋, 赵泱泱, 刘祖颐. 2024. 黑龙江多宝山矿集区岩石圈结构:孙吴-劲松廊带深地震反射与大地电磁联合探测结果. 地质通报, 43(11): 1985-2000. doi: 10.12097/gbc.2024.02.024
HOU Hesheng, HAN Jiangtao, FU Wei, LIU Wenyu, PAN Zongdong, ZHAO Yangyang, LIU Zuyi. 2024. Lithosphere structure of Duobaoshan ore concentration area, Heilongjiang: Results of deep seismic reflection and magnetotelluric detection in Sunwu-Jinsong corridor belt. Geological Bulletin of China, 43(11): 1985-2000. doi: 10.12097/gbc.2024.02.024
Citation: HOU Hesheng, HAN Jiangtao, FU Wei, LIU Wenyu, PAN Zongdong, ZHAO Yangyang, LIU Zuyi. 2024. Lithosphere structure of Duobaoshan ore concentration area, Heilongjiang: Results of deep seismic reflection and magnetotelluric detection in Sunwu-Jinsong corridor belt. Geological Bulletin of China, 43(11): 1985-2000. doi: 10.12097/gbc.2024.02.024

黑龙江多宝山矿集区岩石圈结构:孙吴-劲松廊带深地震反射与大地电磁联合探测结果

  • 基金项目: 中国地质调查局项目《深部地质调查》(编号:DD20230008)、《松嫩地块及周缘关键区带深部地质调查》(编号:DD20190010)、《白云鄂博-大兴安岭南段岩石圈结构探测与构造》(编号:DD20242875),国家自然科学基金重点项目《中亚造山带Solonker缝合带东部延伸的地质记录与深地震反射信息》(批准号:42230303)、国家自然科学基金青年项目《贺根山−黑河缝合带北段壳−幔精细结构研究——深地震反射剖面的揭示》(批准号:42104099)
详细信息
    作者简介: 侯贺晟(1980− ),男,研究员,从事岩石圈结构探测与资源远景研究。E−mail:hesheng.hou@126.com
  • 中图分类号: P31;P631.3+25;P631.4

Lithosphere structure of Duobaoshan ore concentration area, Heilongjiang: Results of deep seismic reflection and magnetotelluric detection in Sunwu-Jinsong corridor belt

  • 探测造山带岩石圈精细结构,是探讨造山与成矿作用最有效的手段。2019年,在黑龙江省西北部孙吴−劲松廊带域,中国地质科学院完成了一条横跨黑河−贺根山缝合带北段和多宝山矿集区北西—南东向185 km长的深地震反射剖面,以及5条总计174点的大地电磁测深(宽频、音频)剖面。结果显示,多宝山矿集区的莫霍面深度在33 km(TWT 11 s)左右,呈现断续可追踪形态,其东侧中、下地壳识别出一套向西倾斜并延伸至上地幔的反射体,其倾角约为25°,推断为嫩江洋俯冲遗迹。在多宝山矿集区的西侧识别出整体向东倾斜的壳幔反射特征,表明蒙古−鄂霍茨克构造域影响范围已至黑河−贺根山缝合带。多宝山矿集区上地壳围限于卧都河—罕达汽之间的“V”形构造带中,中下地壳垂向上发育一系列长10 km左右的强反射层,解释为残留的岩浆通道。多宝山矿集区下地壳的高导体可延伸至地幔,与其上高导异常C4呈蘑菇云状展布,并与矿床的位置在空间上存在一致性,指示了幔源物质的侵入。近地表速度结构整体速度变化在1900~6100 m/s之间,高速体界面起伏较大且埋深较浅,是寻找隐伏金矿的有利区域,铜山铜矿和多宝山铜矿的斑岩岩体虽被隐伏断裂阻隔,但在深部相连,地下2000 m以内仍有很好的资源潜力。本项调查研究将浅层矿床分布与岩石圈结构联系起来,为深入研究与古老地壳缝合带与复合造山作用相联系的多宝山矿集区的地质背景提供了新视野。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  孙吴-劲松深地震反射剖面处理结果(横轴坐标的CMP点位参照图1

    Figure 2. 

    图 3  孙吴-劲松大地电磁测深剖面L100线电性结构(上方横轴标注的CMP点位参照图1

    Figure 3. 

    图 4  初至波层析反演成像结果及解释图(据Pan et al., 2022修改)

    Figure 4. 

    图 5  多宝山矿集区深部速度结构及铜山铜矿深部找矿重点勘查建议范围

    Figure 5. 

    图 6  孙吴-劲松深地震反射剖面构造解释图(横轴标注的CMP点位参照图1

    Figure 6. 

    图 7  孙吴-劲松廊带域岩石圈电性结构分布特征(图a中图例同图1,图b中矿床类型同图4)

    Figure 7. 

    图 8  孙吴-劲松深地震反射剖面和电性结构剖面叠合图(区域C1、C2和C3为疑似地幔物质上涌区域,地幔物质上涌过程中进一步带来热量,促进浅层岩体进一步熔融分异,促使成矿元素富集)

    Figure 8. 

    表 1  深地震反射数据处理技术流程及参数

    Table 1.  Technical flow and parameters of deep seismic reflection data processing

    输入SEG-D数据并输出SEG-Y数据
    定义二维观测系统,CMP间距为25 m
    道编辑 ,剔除异常道
    处理长度,20 s
    带通滤波,6~10~44~50 Hz(浅层)、2~4~24~30 Hz(深层)
    单炮数据全偏移距初至波拾取
    层析静校正,替换速度为4500 m/s,基准面高程为750 m
    球面扩散补偿、几何扩散补偿和地表一致性振幅校正
    叠前多域(f-x域和f-k)噪音衰减
    地表一致性预测反褶积,算子长度200 ms
    速度分析,间隔40 CMP
    剩余静校正,大校正量剩余静校正、自动剩余静校正,5次
    高阶动校正,手工切除
    叠前时间偏移,克希霍夫偏移,偏移孔径10000 m、偏移角度45°
    叠后显示,自动增益
    下载: 导出CSV
  • [1]

    Adetunji A Q, Launay G, Ferguson I J, et al. 2023. Crustal conductivity footprint of the orogenic gold district in the Red Lake greenstone belt, Western Superior craton, Canada[J]. Geology, 51(4): 377−382. doi: 10.1130/G50660.1

    [2]

    Brown L D, Zhao W. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profling[J]. Science, 274(5293): 1688−1690. doi: 10.1126/science.274.5293.1688

    [3]

    Cai W Y, Wang K Y, Li J, et al. 2021. Geology, geochronology and geochemistry of large Duobaoshan Cu−Mo−Au orefield in NE China: Magma genesis and regional tectonic implications[J]. Geoscience Frontiers, 12(1): 265−292. doi: 10.1016/j.gsf.2020.04.013

    [4]

    Cai X L, Zhu J S, Cao J M, et al. 2007. 3D structure and dynamic types of the lithospheric crust in continental China and its adjacent regions[J]. Geology in China, 34(4): 543−557(in Chinese with English abstract).

    [5]

    Calvert A J, Sawyer E W, Davis W J, et al. 1995. Archaean subduction inferred form seismic images of a mantle suture in the Superior Province[J]. Nature, 375(6533): 670−674. doi: 10.1038/375670a0

    [6]

    Clutier A, Gautier S, Tiberi C. 2021. Hybrid local and teleseismic P−wave tomography in North Tanzania: Role of inherited structures and magmatism on continental rifting[J]. Geophysical Journal International, 224(3): 1588−1606.

    [7]

    Cook F A, Philippe Erdmer. 2005. An 1800 km cross section of the lithosphere through the northwestern North American plate: Lessons from 4.0 billion years of Earth's history[J]. Canadian Journal of Earth Sciences, 42(6): 1295−1311. doi: 10.1139/e04-106

    [8]

    Cook F A. 1999. Frozen subduction in Canada's Northwest territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield[J]. Tectonics, 18(1): 1−24.

    [9]

    Dong S W, Li T D, Gao R, et al. 2013. Progress of SinoProbe – Deep Exploration in China 2008—2012[J]. Acta Geoscientica Sinica, (1): 7−23(in Chinese with English abstract).

    [10]

    Du Q, Ma X Y, Han C M, et al. 2008. Discussion on the genesis of porphyry copper deposit[M]. Beijing: Geological Publishing House: 1-91(in Chinese).

    [11]

    Du Y J. 2012. The metallogenic characteristics and prospecting direction of Duobaoshan Cu−Au metallogenic belt, Heilongjiang Province[D]. Master's thesis of Jilin University(in Chinese with English abstract).

    [12]

    Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 87(1): 173−194. doi: 10.1111/j.1365-246X.1986.tb04552.x

    [13]

    Feng Z Q, Liu Y J, Jin W, et al. 2019. Spatiotemporal distribution of ophiolites in the northern Great Xing'an Range and its relationship with the geotectonic evolution of NE China[J]. Geoscience Frontiers, 26(2): 120−136(in Chinese with English abstract).

    [14]

    Pang X J, Fu J Y, Qian C, et al. 2024. The discovery of Carboniferous high−Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean[J]. Geological Bulletin of China, 43(8): 1430−1445(in Chinese with English abstract).

    [15]

    Gao J, Klemd R, Zhu M, et al. 2017. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: A review[J]. Journal of Asian Earth Sciences, 165: 7−36.

    [16]

    Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71(in Chinese with English abstract).

    [17]

    Gao R, Lu Z W, Liu J K, et al. 2010. A result of interpreting from deep seismic reflection profile: Revealing fine structure of the crust and tracing deep process of the mineralization in Luzong deposit area[J]. Acta Petrologica Sinica, 26(9): 2543−2552(in Chinese with English abstract).

    [18]

    Gao R, Wang H Y, Zhang Z J, et al. 2011. “Cutting” the crust and the upper mantle and revealing the deep structure of the continent with the resource effect: An introduction to the project SinoProbe−02 of experimentation, deep probing techniques and integration and a discussion on key science problems[J]. Acta Geoscientica Sinica, 32(C1): 34−48(in Chinese with English abstract).

    [19]

    Ge W C, Wu F Y, Zhou C Y, et al. 2007. Porphyry Cu−Mo deposits in the eastern Xing’an−Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications[J]. Chinese Science Bulletin, (24): 3416−3427.

    [20]

    Guo F, Fan W M , Li C W, et al. 2009. Early Paleozoic subduction of the Paleo−Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia[J]. Science in China(Series D: Earth Sciences), 52(7): 940−951.

    [21]

    Hao Y J. 2015. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China[D]. Ph. D. Doctoral dissertation, Jilin University(in Chinese with English abstract).

    [22]

    Hao Y J, Ren Y S, Duan M X, et al. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 97: 442−458. doi: 10.1016/j.jseaes.2014.08.007

    [23]

    Hao Y J, Ren Y S, Duan M X, et al. 2016. Mineralization time and tectonic setting of the Zhengguang Au deposit in the Duobaoshan ore field, Heilongjiang Province, NE China[J]. Arabian Journal of Geosciences, 9(15): 655. doi: 10.1007/s12517-016-2666-5

    [24]

    Hou H S, Gao R, Lu Z W, et al. 2010. Reflection seismic first−arrival wave tomography of Longqiao iron deposit and concealed deposit forecast in Luzong iron−polymetallic ore concentrated area.[J]. Acta Petrologica Sinica, 26(9): 2623−2629(in Chinese with English abstract).

    [25]

    Hou H S, Wang H Y, Gao R, et al. 2015. Fine crustal structure and deformation beneath the Great Xing'an Ranges, CAOB: Revealed by deep seismic reflection profile[J]. Journal of Asian Earth Sciences, 113: 491−500. doi: 10.1016/j.jseaes.2015.01.030

    [26]

    Huang J Q, Zeng M X, Gong S Y. 1954. On major tectonic forms of China[M]. Beijing: Beijing Geological Publishing House(in Chinese with English abstract).

    [27]

    Jiang Y, Jiang S, Li S, et al. 2020. Paleozoic to Mesozoic micro−block tectonics in the eastern Central Asian Orogenic Belt: Insights from magnetic and gravity anomalies[J]. Gondwana Research, 102: 229−251.

    [28]

    Koptev A, Burov E, Calais E, et al. 2016. Contrasted continental rifting via plume−craton interaction: Applications to Central East African Rift[J]. Geoscience Frontiers, 7(2): 221−236. doi: 10.1016/j.gsf.2015.11.002

    [29]

    Li C L. 2018. Gold metallogeny and prospecting in the Nenjiang−Heihe tectonic mélange zone, Heilongjiang Province[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract).

    [30]

    Li D R, Lv F L, Liu S Y, et al. 2011. Geological features and prospecting orientation of the Sankuanggou Cu−Mo−Au deposit in Nenjiang County, Heilongjiang Province[J]. Geology in China, 38(2): 415−426(in Chinese with English abstract).

    [31]

    Li J Y. 1998. Some new ideas on Tectonics of NE China and its neighboring areas[J]. Geological Review, 44(4): 339−347(in Chinese with English abstract).

    [32]

    Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26: 207−224. doi: 10.1016/j.jseaes.2005.09.001

    [33]

    Li J Y, Qu J F, Zhang J, et al. 2013. New Developments on the Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region[J]. Geologcal Bulletin of China, 32(2): 207−219(in Chinese with English abstract).

    [34]

    Li J Y, Liu J F, Qu J F, et al. 2019. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44: 3157−3177(in Chinese with English abstract).

    [35]

    Li T D, Liu Y, Ding X Z, et al. 2022. Ten advances in regional geological research of China in recent years[J]. Acta Geologica Sinica, 96(5): 1544−1581(in Chinese with English abstract).

    [36]

    Li Y, Xu W L, Tang J, et al. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol−Okhotsk tectonic regime[J]. Lithos, 304: 57−73.

    [37]

    Li Y, Xu W L, Wang F, et al. 2018. Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: constraints on the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs[J]. International Geology Review, 60(16): 2046−2062. doi: 10.1080/00206814.2017.1402378

    [38]

    Liang H D, Gao R, Hou H S, et al. 2015. Lithospheric electrical structure of the Great Xing’an Range[J]. Journal of Asian Earth Sciences, 113: 501−507(in Chinese with English abstract). doi: 10.1016/j.jseaes.2015.01.026

    [39]

    Liang H D, Jin S, Wei W B, et al. 2017. Deep electrical structures of the esatern margin of the Songnen massif and the western margin of the Jiamusi massif[J]. Chinese Journal of Geophysics, 60(4): 1511−1520(in Chinese with English abstract).

    [40]

    Liu C, Yang B J, Wang Z G, et al. 2011. The deep structure of the western boundary belt of the Songliao basin: the geoelectric evidence[J]. Chinese Journal of Geophysics, 54(2): 401−406(in Chinese with English abstract).

    [41]

    Liu D Y, Jian P, Zhang Q, et al. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic Subdtiction[J]. Acta Geologica Sinica, (3): 317−327, 435−437(in Chinese with English abstract).

    [42]

    Liu G X, Zhang X Z, Yang B J, et al. 2006. Electrical structures of the lithosphere along the Jiamusi massif and its eastern edge[J]. Chinese Journal of Geophysics, (2): 598−603(in Chinese with English abstract).

    [43]

    Liu Y, Zhang J, Yin C, et al. 2019. GEM3D: A 3D inversion code for geophysical electromagnetic data based on unstructured tetrahedron grid[C]//International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. 416−419.

    [44]

    Liu Y J, Zhang X Z, Jin W, et al. 2010. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).

    [45]

    Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of central Asian orogenic belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    [46]

    Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05

    [47]

    Liu Y J, Li W M, Ma Y, et al. 2021. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 221(1): 103808.

    [48]

    Lu Z X, Jiang D L, Bai Y, et al. 2005. Exploration and research on the structure of the crust and upper mantlein Northeast China[J]. Journal of Disaster Prevention and Reduction, (1): 1−8(in Chinese with English abstract).

    [49]

    Luan J P, Yu J J, Yu J L, et al. 2019. Early Neoproterozoic magmatism and the associated metamorphism in the Songnen Massif, NE China: Petrogenesis and tectonic implications[J]. Precambrian Research, 328: 250−268. doi: 10.1016/j.precamres.2019.04.004

    [50]

    Ma Y F, Liu Y J, Qin T, et al. 2020. Late Devonian to early Carboniferous magmatism in the western Songliao–Xilinhot block, Northeast China: Implications for eastward subduction of the Nenjiang oceanic lithosphere[J]. Geological Journal, 55(3): 2208−2231. doi: 10.1002/gj.3739

    [51]

    Meng F W, Liu Y H, Han J T, et al. 2022. Paleozoic suture and Mesozoic tectonic evolution of the lithosphere between the northern section of the Xing'an Block and the Songnen Block: Evidence from three−dimensional magnetotelluric detection[J]. Tectonophysics, 823: 229210. doi: 10.1016/j.tecto.2022.229210

    [52]

    Na F C, Fu J Y, Wang Y, et al. 2014. LA-ICP-MS zircon U-Pb age of the chlorite-muscovite tectonic schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and its tectonic significance[J]. Geol. Bullet. China., 33: 1326−1332 (in Chinese with English abstract).

    [53]

    Na F C, Song W M, Liu Y C, et al. 2018. Chronological study and tectonic significance of Precambrian metamorphic rocks in Zhalantun area of Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1607−1619(in Chinese with English abstract).

    [54]

    Pan J T, Wu Q J, Li Y H, et al. 2014. Ambient noise tomography in northeast China[J]. Chinese Journal of Geophysics, 57(3): 812−821(in Chinese with English abstract).

    [55]

    Pan Z D, Hou H S, Zhou J B, et al. 2021. Crustal structure and paleozoic metallogenic tectonic setting of the Duobaoshan ore district, NE China[J]. Ore Geology Reviews, 137: 104290. doi: 10.1016/j.oregeorev.2021.104290

    [56]

    Pirajno F. 2016. A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins(Review)[J]. Gondwana Research, 33: 44−62. doi: 10.1016/j.gr.2015.08.013

    [57]

    Qian C, Lu L, Qin T, et al. 2018. The early Late−Paleozoic granitic magmatism in the Zalantun region, northern Great Xing'an Range, NE China: Constraints on the timing of amalgamation of Erguna−Xing'an and Songnen blocks[J]. Acta Geologica Sinica, 92(11): 2190−2214(in Chinese with English abstract).

    [58]

    Qiang Z Y, Wu Q J. 2015. Upper mantle anisotropy beneath the north of the northeast China and its dynamic significance[J]. Chinese Journal of Geophysics, 58(10): 3540−3552(in Chinese with English abstract).

    [59]

    Qin K Z, Zhai M G, Li G M, et al. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J]. Acta Petrologica Sinica, 33(2): 305−325(in Chinese with English abstract).

    [60]

    Qin K Z, Zhao J X, Fan H R, et al. 2021. On the ore−forming depth and possible maximum vertical extension of the major type ore deposits[J]. Earth Science Frontiers, 28(3): 271−294(in Chinese with English abstract).

    [61]

    Quan J Y. 2013. Tectonic properties of Eastern Songnen Masiff from Late Neoproterozoic to Early Paleozoic[D]. Master's thesis, Jilin University(in Chinese with English abstract).

    [62]

    Ren J S, Niu B G, Liu Z G. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, (3): 85−93(in Chinese with English abstract).

    [63]

    Sato H, Hirata N, Koketsu K, et al. 2006. Seismic reflection profiling in the Kanto and Kinki metropolitan areas, Japan[J]. Bulletin of Earthquake Research Institute, 81: 233−238.

    [64]

    Shi L, Zheng C, Yao W, et al. 2015. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe–Moguqi region, central Great Xing’an Range, China[J]. Journal of Asian Earth Sciences, 113: 443−453.

    [65]

    Simancas J F, Carbonell R, González Lodeiro F, et al. 2003. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS)[J]. Tectonics, 22(6): 1062.

    [66]

    Snyder D B, Goleby B R. 2016. Seismic reflection patterns associated with continental convergent margins through time[J]. Tectonophysics, 692: 3−13. doi: 10.1016/j.tecto.2016.04.027

    [67]

    Sun D Y, Wu F Y, Lin L Q. 2001. Emplacement age of the post−orogenic A−type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suo−lushan−Hegenshan−Zhalaite collisional suture zone[J]. Chinese Science Bulletin, (5): 427−432.

    [68]

    Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River−Changchun−Yanji plate suture zone Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University(Earth Science Edition), (2): 174−181(in Chinese with English abstract).

    [69]

    Tan C Y, Wang G H, Li Y S. 2010. New progress and significance on the mineral exploration in Duobaoshan mineralization area, Heilongjiang, China[J]. Geological Bulletin of China, 29(2/3): 436−445(in Chinese with English abstract).

    [70]

    Tang K D, Wang Y, He G Q, et al. 1995. Continental−margin structure of Northeast China and its adjacent areas[J]. Acta Geologica Sinica, 69(1): 16−30(in Chinese with English abstract).

    [71]

    Tang K D, Su Y Z. 1966. New data about the Paleozoic Formations and their significance in the Northeastern Minor Khingan[J]. Acta Geologica Sinica, (1): 14−28(in Chinese with English abstract).

    [72]

    Velden A J, Van Staal C R, Cook F A. 2004. Crustal structure, fossil subduction, and the tectonic evolution of the Newfoundland Appalachians: Evidence from a reprocessed seismic reflection survey[J]. Geological Society of America Bulletin, 116(11/12): 1485−1498. doi: 10.1130/B25518.1

    [73]

    Wang F, Xu W L, Gao F H, et al. 2014. Precambrian terrane within the Songnen−Zhangguangcai Range Massif, NE China: evidence from U–Pb ages of detrital zircons from the Dongfengshan and Tadong group[J]. Gondwana Research, 26(1): 402−413. doi: 10.1016/j.gr.2013.06.017

    [74]

    Wang T, Zheng Y D. 2002. Mesozoic progressive transition from overthrusting to extension in the Sino−Mongolian border region and crustal−scale tangential shear[J]. Geological Bulletin of China, (Z1): 232−237(in Chinese with English abstract).

    [75]

    Wang T, Zhang L, Guo L, et al. 2014. The progress of the preliminary compilation of map of Mesozoic Granitoid of Asia and the research on related key issues[J]. Acta Geoscientica Sinica, 35(6): 655−672(in Chinese with English abstract).

    [76]

    Wang X, Wang L, Liu J, et al. 2007. Metallogeny and reformation of the Duobaoshansuperlarge porphyry copper deposit in Heilongjiang[J]. Scientia Geologica Sinica, 42(1): 124−133.

    [77]

    Wang Y, Fu J Y, Yang F, et al. 2015. Contraction and Extension in Nenjiang−Heihe Tectonic Belt: Evidence from the Late Paleozoic Granitoid Geochemistry[J]. Journal of Jilin University(Earth Science Edition), 45(2): 374−388(in Chinese with English abstract).

    [78]

    Wang Y, Qian C, Zhong H, et al. 2024. Tectonic framework, evolution and potential petroleum resources of the structural belt in the western margin of Songliao basin[J]. Geological Bulletin of China, 43(7): 1073−1089(in Chinese with English abstract).

    [79]

    Warner M, Morgan J, Barton P, et al. 1996. Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere[J]. Geology, 24(1): 39−42. doi: 10.1130/0091-7613(1996)024<0039:SRFTMR>2.3.CO;2

    [80]

    White D J, Musacchio G, Helmstaedt H H, et al. 2003. Images of a lower−crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province[J]. Geology, 31(11): 997−1000. doi: 10.1130/G20014.1

    [81]

    Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    [82]

    Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    [83]

    Wu G, Chen Y C, Sun F Y, et al. 2015. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 97: 229−250. doi: 10.1016/j.jseaes.2014.07.031

    [84]

    Wu X W, Zhang C, Zhang Y J, et al. 2018. 2.7 Ga monzogranite on the Songnen Massif and its geological implications[J]. Acta Geologica Sinica, 92: 1265−1266. doi: 10.1111/1755-6724.13609

    [85]

    Xiao W, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 8.

    [86]

    Xu B, Jacques Charvet, Zhang F Q. 2001. Primary study on petrology and geochrononology of Blueschists inSunitezuoqi, Northern Inner Mongolia[J]. Chinese Journal of Geology(Scientia Geologica Sinica), (4): 424−434(in Chinese with English abstract).

    [87]

    Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unit division of the Xing−Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    [88]

    Xu B, Zhao P, Wang Y, et al. 2015. The pre−Devonian tectonic framework of Xing’an–Mongolia orogenic belt (XMOB) in north China[J]. Journal of Asian Earth Sciences, 97: 183−196. doi: 10.1016/j.jseaes.2014.07.020

    [89]

    Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing'an−Mongolian Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    [90]

    Yang B J, Mu S M, Jin X, et al. 1996. Synthesized study on the geophysics of Manzhouli−Suifenhe Geoscience transect, China[J]. Chinese Journal of Geophysics, (6): 772−782(in Chinese with English abstract).

    [91]

    Yang F S, Li C L, Li W L, et al. 2020. Discovery and Geotectonic Significance of Basement Debris in Duobaoshan Ore−Gathering Area, Heilongjiang Province[J]. Advances in Geosciences, 10(12): 1212−1225(in Chinese with English abstract). doi: 10.12677/AG.2020.1012118

    [92]

    Yang X P, Zhong H, Yang Y J, et al. 2022. Research progress on the subduction−accretion complex: Reconstruction of the tectonic framework of the Great Xing'an Range[J]. Earth Science Frontiers, 29(2): 94−114(in Chinese with English abstract).

    [93]

    Ye M, Zhang S H, Wu F Y, et al. 1994. The classification of the Paleozoic tectonic units in the area crossed by M−S GGT[J]. Journal of Jilin University(Earth Science Edition), (3): 241−245(in Chinese with English abstract).

    [94]

    Yu Q S, Zhang F X, Zeng Z F, et al. 2015. Research on geophysical field in northern part of Da Hinggan mountains[J]. World Geology, 34(1): 187−193(in Chinese with English abstract).

    [95]

    Zeng Q D, Liu J M, Chu S X, et al. 2014. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 79: 895−909. doi: 10.1016/j.jseaes.2013.02.007

    [96]

    Zhang F Q, Chen H L, Dong C W, et al. 2008. Evidence for the existence of Precambrian Basement under the northern Songliao basin[J]. Geology in China, (3): 421−428(in Chinese with English abstract).

    [97]

    Zhang F X, Wu Q J, Li Y H, et al. 2014. The P wave velocity structure of the upper mantle beneath the Central and Southern Mongolia area[J]. Chinese Journal of Geophysics, 57(9): 2790−2801(in Chinese with English abstract).

    [98]

    Zhang M S, Peng X D, Sun X M. 1998. The Paleozoic tectonic geographical pattern of Northeast China[J]. Land & Resources, (2): 12−17(in Chinese with English abstract).

    [99]

    Zhang X Z, Yang B J, Wu F Y, et al. 2006. The lithosphere structure in the Hingmong−Jihei(Hinggan−Mongolia−Jilin−Heilongjiang) region, northeastern China[J]. Geology in China, (4): 816−823(in Chinese with English abstract).

    [100]

    Zhang X Z, Zhou J B, Chi X G, et al. 2008. Late Paleozoic tectonic−sedimentation and petroleum resources in northeastern China[J]. Journal of Jilin University(Earth Science Edition), (5): 719−725(in Chinese with English abstract).

    [101]

    Zhang X Z, Zeng Z, Gao R, et al. 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen massifs in the northeastern China[J]. Chinese Journal of Geophysics, 58(12): 4415−4424(in Chinese with English abstract).

    [102]

    Zhao L F, Li X Y, Li C L, et al. 2022. Recognition of concealed porphyry body and deep prospecting practice in Duobaoshan ore concentration area based on gravity, magnetic and electromagnetic surveys[J]. Mineral Deposits, 41(6): 1217−1231(in Chinese with English abstract).

    [103]

    Zhao Y Y, Wang J P, Zhao G J, et al. 2011. Metallogenic regularity and prospecting direction of Duobaoshan ore field, Heilongjiang Province, China[J]. Journal of Jilin University(Earth Science Edition), 41(6): 1676−1688(in Chinese with English abstract).

    [104]

    Zhao Z, Chi X G, Liu J F, et al. 2010. Late Palozoic arc−related magnatisn in Yakeshi regin, Inner Mongolia Chronological and geochemical evidence[J]. Aca Petrobgica Sinica, 26(11): 3245−3258(in Chinese with English abstract).

    [105]

    Zhao Z H, Zheng W Z, Qu H, et al. 2012. Cu−Au mineralization and metallogenic regularity of Duobaoshan area, Heilongjiang Province[J]. Mineral Deposits, 31(3): 601−614(in Chinese with English abstract).

    [106]

    Zheng J, Ge W C, M Santosh, et al. 2023. Lithospheric dripping in a soft collision zone: Insights from late Paleozoic magmatism suites of the eastern Central Asian Orogenic Belt[J]. Geoscience Frontiers, 14(1): 101−117.

    [107]

    Zhou J B, Wilde S A, Zhang X Z, et al. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications[J]. Tectonophysics, 499: 105−117. doi: 10.1016/j.tecto.2010.12.009

    [108]

    Zhou J B, Zeng W S, Cao J L, et al. 2012. The Tectonic Framework and Evolution of the NE China: From ~500 Ma to ~180 Ma[J]. Journal of Jilin University(Earth Science Edition), 42(5): 1298−1316(in Chinese with English abstract).

    [109]

    Zhou J B, Wang B, Zeng WS, et al. 2014. Detrital zircon U−Pb dating of the Zhalantun Metamorphic Complex and its tectonic implications, Great Xing'an, NE China, Acta Petrologica Sinica[J]. Acta Petrologica Sinica, 30(7): 1879−1888(in Chinese with English abstract).

    [110]

    Zhou X M, Ren S M, Zhang X Z, et al. 2013. Deep Structural Study on Gravity−Magneto−Electricity Profile of Alar−Handagai in Hailar Basin and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 43(5): 1630−1638(in Chinese with English abstract).

    [111]

    董树文, 李廷栋, 高锐, 等. 2013. 我国深部探测技术与实验研究与国际同步[J]. 地球学报, 34(1): 7−23. doi: 10.3975/cagsb.2013.01.02

    [112]

    杜琦, 马晓阳, 韩成满, 等. 2008. 斑岩铜矿成因探讨[M]. 北京: 地质出版社: 1-91.

    [113]

    杜英杰. 2012. 黑龙江省多宝山Cu−Au成矿带成矿特征及找矿方向[D]. 吉林大学硕士学位论文.

    [114]

    冯志强, 刘永江, 金巍, 等. 2019. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究[J]. 地学前缘, 26(2): 120−136.

    [115]

    高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71. doi: 10.3969/j.issn.0001-5717.2019.01.004

    [116]

    高锐, 卢占武, 刘金凯, 等. 2010. 庐−枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构, 追踪成矿深部过程[J]. 岩石学报, 26(9): 2543−2552.

    [117]

    高锐, 王海燕, 张忠杰, 等. 2011. 切开地壳上地幔, 揭露大陆深部结构与资源环境效应—深部探测技术实验与集成(SinoProbe−02)项目简介与关键科学问题[J]. 地球学报, 32(C1): 34−48.

    [118]

    郝宇杰. 2015. 黑龙江省多宝山矿集区成矿作用与成矿规律研究[D]. 吉林大学博士学位论文.

    [119]

    侯贺晟, 高锐, 卢占武, 等. 2010. 庐枞铁多金属矿集区龙桥铁矿反射地震初至波层析成像与隐伏矿床预测[J]. 岩石学报, 26(9): 2623−2629.

    [120]

    黄汲清, 曾莫休, 龚素玉. 1954. 中国主要地质构造单位[M]. 北京: 地质出版社.

    [121]

    黄汲清, 姜春发. 1962. 从多旋回构造运动观点初步探讨地壳发展规律[J]. 地质学报, (2): 105−152.

    [122]

    金昌抖. 1976. 黑龙江省多宝山−卧都河幅铜矿区域成矿特征及其找矿方向[Z]. 黑龙江省地质科研所.

    [123]

    李成禄. 2018. 黑龙江省嫩江−黑河构造混杂岩带金矿成矿作用及找矿预测[D]. 中国地质大学(北京)博士学位论文.

    [124]

    李春昱, 王荃. 1983. 中国北方板块构造文集(第一集)[M]. 北京: 地质出版社: 3−17.

    [125]

    李德荣, 吕福林, 刘素颖, 等. 2011. 黑龙江省嫩江县三矿沟矿区地质特征及找矿方向[J]. 中国地质, 38(2): 415−426. doi: 10.3969/j.issn.1000-3657.2011.02.016

    [126]

    李锦轶. 1986. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, (14): 1093−1096.

    [127]

    李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, (4): 339−347. doi: 10.3321/j.issn:0371-5736.1998.04.002

    [128]

    李锦轶, 曲军峰, 张进, 等. 2013. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J]. 地质通报, 32(2): 207−219. doi: 10.3969/j.issn.1671-2552.2013.02.001

    [129]

    李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44: 3157−3177.

    [130]

    李廷栋, 刘勇, 丁孝忠, 等. 2022. 中国区域地质研究的十大进展[J]. 地质学报, 96(5): 1544−1581. doi: 10.3969/j.issn.0001-5717.2022.05.004

    [131]

    梁宏达, 高锐, 侯贺晟, 等. 2016. 大兴安岭与两侧盆地结合地带深部电性结构与岩石圈尺度构造关系[J]. 地球物理学报, 59(5): 1696−1704. doi: 10.6038/cjg20160514

    [132]

    刘财, 杨宝俊, 王兆国, 等. 2011. 松辽盆地西边界带深部构造: 地电学证据[J]. 地球物理学报, 54(2): 401−406. doi: 10.3969/j.issn.0001-5733.2011.02.016

    [133]

    刘敦一, 简平, 张旗, 等. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, (3): 317−327, 435−437. doi: 10.3321/j.issn:0001-5717.2003.03.004

    [134]

    刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    [135]

    刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.

    [136]

    卢造勋, 姜德禄, 白云, 等. 2005. 东北地区地壳上地幔结构的探测与研究[J]. 东北地震研究, (1): 1−8.

    [137]

    吕庆田, 侯增谦, 赵金花, 等. 2003. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学(D辑), (5): 442−449. doi: 10.3321/j.issn:1006-9267.2003.05.006

    [138]

    那福超, 付俊彧, 汪岩, 等. 2014. 内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 33(9): 1326−1332.

    [139]

    那福超, 宋维民, 刘英才, 等. 2018. 大兴安岭扎兰屯地区前寒武纪变质岩系年龄及其构造意义[J]. 地质通报, 37(9): 1607−1619.

    [140]

    庞雪娇, 付俊彧, 钱程, 等. 2024. 大兴安岭中段内蒙古扎赉特旗地区石炭纪高镁闪长岩、埃达克岩的发现及其对嫩江洋俯冲作用的指示[J]. 地质通报, 43(8): 1430−1445. doi: 10.12097/gbc.2023.09.019

    [141]

    钱程, 陆露, 秦涛等. 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳−兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 92(11): 2190−2214. doi: 10.3969/j.issn.0001-5717.2018.11.002

    [142]

    秦克章, 翟明国, 李光明, 等. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 33(2): 305−325.

    [143]

    秦克章, 赵俊兴, 范宏瑞, 等. 2021. 试论主要类型矿床的形成深度与最大延深垂幅[J]. 地学前缘, 28(3): 271−294.

    [144]

    权京玉. 2013. 松嫩地块东部新元古代—早古生代构造属性研究[D]. 吉林大学硕士学位论文.

    [145]

    任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, (3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    [146]

    邵济安, 牟保磊, 何国琦, 等. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学(D辑), 27(5): 390−394.

    [147]

    孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河−长春−延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), (2): 174−181.

    [148]

    谭成印, 王根厚, 李永胜. 2010. 黑龙江多宝山成矿区找矿新进展及其地质意义[J]. 地质通报, 29(2/3): 436−445. doi: 10.3969/j.issn.1671-2552.2010.02.031

    [149]

    唐克东, 王莹, 何国琦, 等. 1995. 中国东北及邻区大陆边缘构造[J]. 地质学报, 69(1): 16−30.

    [150]

    唐克东, 苏养正. 1966. 小兴安岭西北部古生代地层的新资料及其意义[J]. 地质学报, (1): 14−28.

    [151]

    王涛, 张磊, 郭磊, 等. 2014. 亚洲中生代花岗岩图初步编制及若干研究进展[J]. 地球学报, 35(6): 655−672.

    [152]

    王喜臣, 王训练, 王琳, 等. 2007. 黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J]. 地质科学, 42(1): 124−133. doi: 10.3321/j.issn:0563-5020.2007.01.011

    [153]

    汪岩, 付俊彧, 杨帆, 等. 2015. 嫩江黑河构造带收缩与伸展源自晚古生代花岗岩类的地球化学证据[J]. 吉林大学学报(地球科学版), 45(2): 374−388.

    [154]

    肖文交, 宋东方, Brian F. W, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.

    [155]

    徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857.

    [156]

    许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    [157]

    杨宝俊, 穆石敏, 金旭, 等. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报, (6): 772−782. doi: 10.3321/j.issn:0001-5733.1996.06.007

    [158]

    杨福深, 李成禄, 李文龙, 等. 2020. 黑龙江省多宝山矿集区基底残块的发现及大地构造意义[J]. 地球科学前沿, 10(12): 1212−1225.

    [159]

    杨晓平, 钟辉, 杨雅军, 等. 2022. 大兴安岭地区古生代构造格架重建: 来自俯冲增生杂岩研究进展[J]. 地学前缘, 29(2): 94−114.

    [160]

    叶茂, 张世红, 吴福元. 1994. 中国满洲里—绥芬河地学断面域古生代构造单元及其地质演化[J]. 长春地质学院学报, (3): 241−245.

    [161]

    章凤奇, 陈汉林, 董传万, 等. 2008. 松辽盆地北部存在前寒武纪基底的证据[J]. 中国地质, (3): 421−428. doi: 10.3969/j.issn.1000-3657.2008.03.006

    [162]

    张梅生, 彭向东, 孙晓猛. 1998. 中国东北区古生代构造古地理格局[J]. 辽宁地质, (2): 12−17.

    [163]

    张兴洲, 杨宝俊, 吴福元, 等. 2006. 中国兴蒙—吉黑地区岩石圈结构基本特征[J]. 中国地质, (4): 816−823. doi: 10.3969/j.issn.1000-3657.2006.04.011

    [164]

    张兴洲, 周建波, 迟效国, 等. 2008. 东北地区晚古生代构造−沉积特征与油气资源[J]. 吉林大学学报(地球科学版), (5): 719−725.

    [165]

    张兴洲, 曾振, 高锐, 等. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据[J]. 地球物理学报, 58(12): 4415−4424. doi: 10.6038/cjg20151207

    [166]

    赵理芳, 李希元, 李成立, 等. 2022. 基于重, 磁, 电法的多宝山矿集区隐伏斑岩体识别与深部找矿实践[J]. 矿床地质, 41(6): 1217−1231.

    [167]

    赵元艺, 王江朋, 赵广江, 等. 2011. 黑龙江多宝山矿集区成矿规律与找矿方向[J]. 吉林大学学报(地球科学版), 41(6): 1676−1688.

    [168]

    赵芝, 迟效国, 刘建峰, 等. 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据[J]. 岩石学报, 26(11): 3245−3258.

    [169]

    赵忠海, 郑卫政, 曲晖, 等. 2012. 黑龙江多宝山地区铜金成矿作用及成矿规律[J]. 矿床地质, 31(3): 601−614. doi: 10.3969/j.issn.0258-7106.2012.03.017

    [170]

    周建波, 曾维顺, 曹嘉麟, 等. 2012. 中国东北地区的构造格局与演化: 从500 Ma到180 Ma[J]. 吉林大学学报(地球科学版), 42(5): 1298−1316.

    [171]

    周建波, 王斌, 曾维顺, 等. 2014. 大兴安岭地区扎兰屯变质杂岩的碎屑锆石U−Pb年龄及其大地构造意义[J]. 岩石学报, 30(7): 1879−1888.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  180
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2024-02-27
修回日期:  2024-05-15
刊出日期:  2024-11-15

目录