基于碳足迹的黑龙江省黑河市农田生态系统碳源/汇时序变化及其对碳中和的贡献

齐宏运, 周传芳, 孙彦峰, 魏小勇, 牛广元, 张璇璞, 贾立明, 孟玲禹, 王德财, 苗志风. 2025. 基于碳足迹的黑龙江省黑河市农田生态系统碳源/汇时序变化及其对碳中和的贡献. 地质通报, 44(7): 1254-1271. doi: 10.12097/gbc.2024.05.039
引用本文: 齐宏运, 周传芳, 孙彦峰, 魏小勇, 牛广元, 张璇璞, 贾立明, 孟玲禹, 王德财, 苗志风. 2025. 基于碳足迹的黑龙江省黑河市农田生态系统碳源/汇时序变化及其对碳中和的贡献. 地质通报, 44(7): 1254-1271. doi: 10.12097/gbc.2024.05.039
QI Hongyun, ZHOU Chuanfang, SUN Yanfeng, WEI Xiaoyong, NIU Guangyuan, ZHANG Xuanpu, JIA Liming, MENG Lingyu, WANG Decai, MIAO Zhifeng. 2025. Carbon footprint-based time-series changes of carbon sources/sinks in farmland ecosystems and its contribution to carbon neutrality in Heihe City, Heilongjiang Province, China. Geological Bulletin of China, 44(7): 1254-1271. doi: 10.12097/gbc.2024.05.039
Citation: QI Hongyun, ZHOU Chuanfang, SUN Yanfeng, WEI Xiaoyong, NIU Guangyuan, ZHANG Xuanpu, JIA Liming, MENG Lingyu, WANG Decai, MIAO Zhifeng. 2025. Carbon footprint-based time-series changes of carbon sources/sinks in farmland ecosystems and its contribution to carbon neutrality in Heihe City, Heilongjiang Province, China. Geological Bulletin of China, 44(7): 1254-1271. doi: 10.12097/gbc.2024.05.039

基于碳足迹的黑龙江省黑河市农田生态系统碳源/汇时序变化及其对碳中和的贡献

  • 基金项目: 中国地质调查局项目《小兴安岭黑河地区自然资源综合调查》(编号:DD20230504)
详细信息
    作者简介: 齐宏运(1996− ),男,硕士,助理工程师,从事生态学、生态地质学方向研究。E−mail:18629885860@163.com
    通讯作者: 周传芳(1985− ),男,硕士,正高级工程师,从事地质矿产、生态地质和自然资源调查监测方向研究。 E−mail:546011015@qq.com
  • 中图分类号: S154.1; X171.1

Carbon footprint-based time-series changes of carbon sources/sinks in farmland ecosystems and its contribution to carbon neutrality in Heihe City, Heilongjiang Province, China

  • Fund Project: Supported by the project of China Geological Survey (No.DD20230504)
More Information
    Author Bio: QI Hongyun, male, born in 1996, master, assistant engineer, mainly engaged in ecology and ecological geology. E−mail: 18629885860@163.com .
    Corresponding author: ZHOU Chuanfang, male, born in 1985, master, professor-level senior engineer, mainly engaged in geology and minerals, ecological geology and natural resources investigation and monitoring. E-mail: 546011015@qq.com
  • 研究目的

    近年来,碳足迹分析广泛应用于农田生态系统碳源/汇评估,但中国地市级研究仍存在时间跨度窄、关键过程(如农田N2O排放、稻田CH4释放、土壤呼吸与固碳)测算缺失等问题,导致区域碳源/汇评估偏差,制约“双碳”政策精准落地。本次研究旨在揭示黑龙江省黑河市40年间(1984—2023年)农田生态系统碳源/汇时序演变规律,量化碳汇对碳中和的贡献潜力,识别碳足迹主导因素,为地方政府实现“双碳”目标提供数据支持。

    研究方法

    以黑河市农田生态系统为研究对象,基于40年间(1984—2023年)农作物播种面积、产量和农业生产投入等统计数据,利用农田生态系统碳足迹模型,全面评估该地区农田生态系统碳源/汇总量及区域碳汇贡献指数。

    研究结果

    ①1984—2023年黑河市农田生态系统的碳排放量呈现持续增长态势,年均增长率达2.84%,期间,碳吸收量与碳足迹均表现出波动性上升趋势,但碳吸收总量多显著高于碳排放总量,两者比例处于2.59∶1的水平。②从碳排放结构看,土壤呼吸和农田N2O排放是主要的碳排放源,占比分别是58.80%和32.22%;化肥、农药施用和农业灌溉在农业生产资料投入中占据碳排放的重要比例(74.51%、 12.26%和8.66%),尽管农膜使用产生的碳排放占比相对较低(1.33%),仍需给予足够重视。③农田生态系统碳吸收量主要与农作物类型及产量有关,粮食作物和土壤构成了农田碳汇的主体,占比分别是84.08%和10.10%,其中大豆、玉米、小麦是主要的碳吸收作物,贡献了黑河地区80.83%的碳吸收量。④黑河市农田生态系统碳足迹占同时期耕地面积的比例略低(28.80%~66.44%),该区域农业生态系统的碳汇能力较强。

    结论

    黑河市农田生态系统呈现碳生态盈余,发挥良好生态屏障作用,未来仍需深化农业“三减”促进可持续发展,同时进一步提升农业生态系统碳汇功能,协同推进“双碳”目标与区域高质量发展。

  • 加载中
  • 图 1  研究区位置示意图

    Figure 1. 

    图 2  黑河市农田生态系统碳排放时间变化

    Figure 2. 

    图 3  黑河市农田生态系统碳排放构成

    Figure 3. 

    图 4  黑河市农田生态系统碳排放强度

    Figure 4. 

    图 5  黑河市农田生态系统碳吸收时间变化

    Figure 5. 

    图 6  黑河市农田生态系统碳吸收构成

    Figure 6. 

    图 7  黑河市农田生态系统碳吸收强度

    Figure 7. 

    图 8  黑河市农业生态系统的碳足迹和生态盈亏

    Figure 8. 

    表 1  农业生产资料的碳排放系数(据王莉等, 2022宁静等, 2023

    Table 1.  Carbon emission factors of agricultural production materials

    农业生产资料碳排放系数
    化肥0.8596 kg/kg
    农药4.9341 kg/kg
    农膜5.1800 kg/kg
    农业机械动力0.1800 kg/kw
    农用机械柴油0.5927 kg/kg
    农业灌溉266.4800 kg/hm2
    农业翻耕3.1260 kg/hm2
    下载: 导出CSV

    表 2  施用粪肥的氮施用量参数(据张强, 2010国家发展改革委, 2011

    Table 2.  Nitrogen application rate parameters for manure application

    种类 饲养周期 粪便排泄系数/
    (kg·d−1·头−1
    粪便还田
    比例/%
    粪便全氮
    含量/(g·kg−1
    黄牛 365 27.67 30 3.51
    奶牛 365 53.15 30 3.51
    199 5.30 65 2.38
    山羊 365 2.38 33 10.14
    绵羊 365 2.38 33 10.14
    家禽 210 0.002 45 8.96
      注:家禽的粪便全氮含量采用平均值
    下载: 导出CSV

    表 3  秸秆还田中氮的还田量参数(据张强, 2010国家发展改革委, 2011

    Table 3.  Nitrogen return rate parameters for straw returning

    农作物类型 秸秆籽粒比 秸秆全氮量/(g·kg−1 秸秆还田比例/%
    水稻 1.20 7.53 30
    小麦 1.30 5.16 45
    玉米 1.28 5.80 20
    谷子 1.60 8.50 20
    高粱 1.55 7.30 20
    大豆 1.60 181.00 80
    薯类 0.50 11.00 20
    油料 1.62 12.26 20
    麻类 0.21 13.10 20
    甜菜 0.50 5.07 90
    烟叶 1.60 14.40 20
    蔬菜 0.21 8.00 20
    瓜果 0.50 11.00 20
    下载: 导出CSV

    表 4  主要农作物碳吸收估算系数(据郝小雨等, 2021; 王莉等, 2022

    Table 4.  Estimated coefficient of carbon absorption for major crops

    农作物类型 碳吸收率/% 平均含水率 根冠比 经济系数
    水稻 0.414 0.12 0.60 0.45
    小麦 0.485 0.12 0.40 0.40
    玉米 0.471 0.13 0.16 0.40
    谷子 0.45 0.13 0.20 0.40
    高粱 0.45 0.13 0.27 0.35
    大豆 0.45 0.13 0.13 0.34
    薯类 0.423 0.70 0.18 0.70
    油料 0.45 0.09 0.04 0.25
    麻类 0.45 0.13 0.40 0.10
    甜菜 0.45 0.70 0.72 0.60
    烟叶 0.45 0.17 0.32 0.55
    蔬菜 0.45 0.90 0.25 0.65
    瓜果 0.45 0.90 0.050 0.70
    下载: 导出CSV

    表 5  中国农田生态系统土壤固碳速率参考

    Table 5.  Reference for soil carbon fixation rate in Chinese agricultural ecosystems

    类型 固碳速率/(t·hm−2·a−1) 参考文献
    施用化肥后 0.3800 韩冰等,2008
    施用有机肥后 0.3160
    施用化肥后 0.1290 金琳等,2008
    施用有机肥后 0.5450
    无机有机配施 0.8890
    20 cm深表层土 0.1275 赵永存等,2018
    30 cm深表层土 0.1830
    下载: 导出CSV

    表 6  黑河市农田生态系统的碳足迹与驱动因子的相关性

    Table 6.  Correlation between carbon footprint and driving factors of farmland ecosystem in Heihe City

    驱动因子皮尔逊相关性P
    土壤呼吸CO20.9390
    农业生产资料投入CO20.8800
    农田N2O量0.8550
    稻田CH40.3720.018
    翻耕面积0.8840
    化肥施用量0.8890
    农业机械动力0.8260
    农药使用量0.8360
    有效灌溉面积0.7600
    农膜使用量0.2630.101
    机械柴油使用量0.7980
    农作物总产量0.7660
    下载: 导出CSV
  • [1]

    Butterbach−BahlK, Baggs E M, Dannenmann M, et al. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 368(1621): 20130122.

    [2]

    Cao W C, Song H, Wang Y J, et al. 2019, Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 25(10): 1781−1798 (in Chinese with English abstract).

    [3]

    Chang Q. 2023. Use straw resources to help green agriculture[N]. People's Daily, 2023-09-12(14)(in Chinese).

    [4]

    Ding J P, Luo Y Q, Zhou X, et al. 2015. Review of methodology and factors influencing plant root respiration[J]. Acta Prataculturae Sinica, 24(5): 206−216 (in Chinese with English abstract).

    [5]

    Duan H P, Zhang Y, Zhao J B, et al. 2011. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of soil and Water Conservation, 25(5): 203−208(in Chinese with English abstract).

    [6]

    Fan Z Y, Qi X B, Zeng L L, et al. 2022. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020[J]. Acta Ecologica Sinica, 42(23): 9470−9482(in Chinese with English abstract).

    [7]

    Fang J Y, Guo Z D, Piao S L, et al. 2007. Estimation of carbon sinks in terrestrial vegetation in China from 1981 to 2000[J]. Science in China Series D−Earth Sciences, 37(6): 804−812(in Chinese).

    [8]

    Forster P M, Smith C J, Walsh T, et al. 2023. Indicators of global climate change 2022: annual update of large−scale indicators of the state of the climate system and human influence[J]. Earth System Science Data, 15(6): 2295−2327. doi: 10.5194/essd-15-2295-2023

    [9]

    Fu W, Xu Y Y, Wang F L, et al. 2024. Temporal and spatial evolution of carbon footprint of farmland ecosystems in China[J]. Ecological Economy, 40(1): 88−94(in Chinese with English abstract).

    [10]

    Fu Y J, Liu X H, Sun X L, et al. 2024. Spatial−temporal variation of ecosystem carbon storage driven by land use in northwest inland desert resource region in recent 30 years[J]. Geological Bulletin of China, 43(2/3): 451−462(in Chinese with English abstract).

    [11]

    Gao Y C, Chang Q, Yu X J, et al. 2023. More than 1.3 trillion pounds, a bumper harvest answer sheet for 9 years in a row[N]. People’s Daily, 2023-12-19(2) (in Chinese).

    [12]

    Gao W. 2023. Heihe city “six re-strengthening”for the fall of land protection[N]. China Food News, 2023-11-24(5) (in Chinese).

    [13]

    GB/T 15063-2020 Compound fertilizers[S]. Beijing: National Standardization Administration of China, State Administration for Market Supervision and Regulation, 2020(in Chinese).

    [14]

    Georgiou K, Jackson R B, Vindušková O, et al. 2022. Global stocks and capacity of mineral−associated soil organic carbon[J]. Nature Communications, 13(1): 3797. doi: 10.1038/s41467-022-31540-9

    [15]

    Gonçalves D R P, Mishra U, Wills S, et al. 2021. Regional environmental controllers influence continental scale soil carbon stocks and future carbon dynamics[J]. Scientific Reports, 11(1): 6474. doi: 10.1038/s41598-021-85992-y

    [16]

    Guo P, Zhang Y G. 2023. Exploring farmland carbon sequestration and emission reduction to help agricultural green transformation[N]. China Meteorological News, 2023-02-13(3) (in Chinese).

    [17]

    Han B, Wang X K, Lu F, et al. 2008. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, (2): 612−619 (in Chinese with English abstract).

    [18]

    Hao Xiaoyu. 2021. Changes of carbon source/sink intensity and carbon footprint of farmland ecosystem in Heilongjiang Province in recent 30 years[J]. Heilongjiang Agricultural Sciences, (8): 97−104 (in Chinese with English abstract).

    [19]

    Hao X Y, Sun L, Ma X Z, et al. 2022. Nitrogen reduction effect and carbon footprint estimation of maize field in black soil region of Heilongjiang Province[J]. Journal of Hebei Agricultural University, 45(5): 10−18.

    [20]

    Harris E, Yu L, Wang Y P, et al. 2022. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor[J]. Nature Communications, 13(1): 4310. doi: 10.1038/s41467-022-32001-z

    [21]

    Heihe Municipal People's Government. 2024. Report on the work of Heihe Municipal Government (2024)[EB/OL]. (2024-02-02)[2024-03-02]. https://www.heihe.gov.cn/hhs/c100756/202402/c11_277657.shtml (in Chinese).

    [22]

    Hei Z W, Peng Y T, Hao S L, et al. 2023. Full substitution of chemical fertilizer by organic manure decreases soil N2O emissions driven by ammonia oxidizers and gross nitrogen transformations[J]. Global Change Biology, 29(24): 7117−7130. doi: 10.1111/gcb.16957

    [23]

    Hergoualc’h K, Akiyama H, Bernoux M, et al. 2019. N2O emissions from managed soils, and CO2 emissions from lime and urea application[C]//The IPCC TFI Side Event Climate Change Conference COP22/CMP12/CMA1, Marrakech, Morocco.

    [24]

    Huang Y Y, Song X D, Wang Y P, et al. 2024. Size, distribution, and vulnerability of the global soil inorganic carbon[J]. Science, 384(6692): 233−239. doi: 10.1126/science.adi7918

    [25]

    Hu Y B, Zhang Q, Xiao G J, et al. 2022. Effect of soil carbon, nitrgen and phosphate contents on maize production in semi−arid regions of China[J]. Journal of Desert Research, 42(3): 261−273.

    [26]

    Intergovernmental Panel on Climate change. Climate Change 2023: Synthesis Report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva, Switzerland: IPCC, 2023: 35−115.

    [27]

    Jiang G F, Liu C, Li J Q, et al. 2014. Soil respiration and driving factors of farmland ecosystems in China[J]. Scientia Sinica Vitae, 44(7): 725−735(in Chinese with English abstract). doi: 10.1360/N052013-00055

    [28]

    Jin L, Li Y E, Ging Q Z, et al. 2008. Estimate of carbon sequestration under cropland management in China[J]. Scientia Agricultura Sinica, 41(3): 734−743 (in Chinese with English abstract).

    [29]

    Li H, Yuan P F, Wang J, et al. 2023. Temporal and spatial changes in carbon footprint and carbon eco−efficiency of farmland ecosystem in Sichuan Province[J]. Jiangsu Agricultural Sciences, 51(11): 192−201(in Chinese with English abstract).

    [30]

    Li Y, Ju X T. 2020. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro−Environment Science, 39(4): 842−851(in Chinese with English abstract).

    [31]

    Liu J, Fang L C, Qiu T Y, et al. 2023. Crop residue return achieves environmental mitigation and enhances grain yield: A global meta−analysis[J]. Agronomy for Sustainable Development, 43(6): 78. doi: 10.1007/s13593-023-00928-2

    [32]

    Liu Q, Li Y H, Li Z, et al. 2021. Characteristics of paddy soil organic carbon mineralization and influencing factors under different water conditions and microbial biomass levels[J]. Environmental Science, 42(5): 2440−2448(in Chinese with English abstract).

    [33]

    Liu W, Guan J T, Liu H Y. 2022. Increasing area, breeding good seeds and extending chain[N]. Xinhua Daily Telegraph, 2022-09-08(5) (in Chinese).

    [34]

    Luo H L. 2014. Advances on carbon storage in crops of China[J]. Ecology and Environmental Sciences, (4): 692−697(in Chinese with English abstract).

    [35]

    National Development and Reform Commission. 2011. Guidelines for the preparation of provincial greenhouse gas inventories(Trial)[EB/OL]. (2011-05-11)[2024-03-01]. https://26692948.s21i.faiusr.com/61/ABUIABA9GAAggLm2igYogPiwiAI.pdf (in Chinese).

    [36]

    National Bureau of Statistics. Announcement on grain production data for 2023[N]. China Information Daily, 2023-12-12(1)(in Chinese).

    [37]

    Ning J, Yang N, Du G M, et al. 2023. Spatial−temporal evolution of carbon footprint of farmland ecosystem: A case study of Heilongjiang Province[J]. Journal of China Agricultural University, 28(6): 98−112(in Chinese with English abstract).

    [38]

    Qin Z C, Zhu Y K, Canadell J G, et al. 2024. Global spatially explicit carbon emissions from land-use change over the past six decades (1961-2020)[J]. One Earth, 7(5): 835−847. doi: 10.1016/j.oneear.2024.04.002

    [39]

    Ran G H, Wang J H, Wang D X. 2011. Study on the trend of carbon emission changes in China's modern agricultural production[J]. Issues in Agricultural Economy, (2): 32−38 (in Chinese).

    [40]

    Sun X X, Zhang H B, Yu Y P. 2021. Spatial and temporal dynamics in carbon source/sink and equity of the farmland ecosystem in Jiangsu coastal area, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 42(10): 56−64(in Chinese with English abstract).

    [41]

    Sun Z J, Shen W, Chen Z R, et al. 2023. Influences of Quaternary sedimentary facies on soil organic carbon pool in Juhe watershed Hebei Province[J]. Geological Bulletin of China, 42(2/3): 431−442(in Chinese with English abstract).

    [42]

    The United Nations Framework Convention on Climate Change. Technical dialogue of the first global stocktake: Synthesis report by the co−facilitators on the technical dialogue (FCCC/SB/2023/9)[EB/OL]. Bonn, Germany: UNFCC, 2023: 1−46. https://unfccc.int/sites/default/files/resource/sb2023_09E.pdf.

    [43]

    Tian Z H, Liu R H. 2018. Inter−annual variations of the carbon footprint in Beijing Tianjin and Hebei agro−ecosystem[J]. Journal of Agricultural Resources and Environment, 35(2): 167−173(in Chinese with English abstract).

    [44]

    Wang L, Liu Y Y, Zhang Y H, et al. 2022. Spatial and temporal distribution of carbon source/sink and decomposition of influencing factors in farmland ecosystem in Henan Province[J]. Acta Scientiae Circumstantiae, 42(12): 410−422(in Chinese with English abstract).

    [45]

    Wei H, Wu L H, Chen D, et al. 2024. Rapid climate changes responsible for increased net global cropland carbon sink during the last 40 years[J]. Ecological Indicators, 166: 112465. doi: 10.1016/j.ecolind.2024.112465

    [46]

    West T O, Marland G A. 2002. synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 91(1): 217−232.

    [47]

    World Meteorological Organization. 2023. Provisional state of the global climate 2023 (9789213586891)[R]. Retrieved from Geneva, Switzerland. https://wmo.int/sites/default/files/2023-11/WMO%20Provisional%20St-ate%20of%20the%20Global%20Climate%202023.pdf.

    [48]

    Wu X H, He P. 2021. Research on reducing carbon emission and enhancing carbon sink of farmland ecosystems in Heilongiiang Province[J]. Journal of Heilongjiang Bayi Agricultural University, 33(4): 106−112 (in Chinese with English abstract).

    [49]

    Xia L L, Ti C P, Zhu C W, et al. 2023. Mitigation strategies of greenhouse gas emissions from crop production in China and the pathways to agricultural carbon neutrality[J]. Acta Pedologica Sinica, 60(5): 1277−1288 (in Chinese with English abstract).

    [50]

    Xia L L, Yan X Y, Cai Z C. 2020. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro−Environment Science, 39(4): 834−841 (in Chinese with English abstract).

    [51]

    Xie H Y, Chen X S, Lin K R, et al. 2008. The ecological footprint analysis of fossil energy and electricity[J]. Acta Ecologica Sinica, 28(4): 1729−1735(in Chinese with English abstract).

    [52]

    Yan S J, Shang Z Y, Deng A X, et al. 2022. Spatiotemporal characteristics and reduction approaches of farmland N2O emission in China[J]. Crops, 38(3): 1−8(in Chinese with English abstract).

    [53]

    Yang Y, Li T, Pokharel P, et al. 2022. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J]. Soil Biology and Biochemistry, 174: 108814. doi: 10.1016/j.soilbio.2022.108814

    [54]

    Yi D, Ou M H, Guo J, et al. 2022. Progress and prospect of research on land use carbon emissions and low−carbon optimization[J]. Resource Science, 44(8): 1545−1559(in Chinese with English abstract).

    [55]

    Zhang Q, Ju X T, Zhang F L. 2010. Reestimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC 2006 guideline method[J]. Chinese Journal of Eco−Agriculture, 18(1): 7−13(in Chinese with English abstract). doi: 10.3724/SP.J.1011.2010.00007

    [56]

    Zhang R, Lou C D, Zhang Z T, et al. 2022. Utilization and protection of water resources under the background of carbon neutralization[J]. Advanced Engineering Sciences, 54(1): 69−82(in Chinese with English abstract).

    [57]

    Zhao M Y, Liu Y X, Zhang X Y. 2022. A review of research advances on carbon sinks in farmland ecosystems[J]. Acta Ecologica Sinica, 42(23): 9405−9416(in Chinese with English abstract).

    [58]

    Zhao W J, Li D F, Wang X E. 2010. Development of low carbon agriculture[J]. Environmental Protection, 24(12): 38−39(in Chinese).

    [59]

    Zhao Y C, Xu S X, Wang M Y, et al. 2018. Carbon sequestration potential in Chinese cropland soils: Review, challenge, and research suggestions[J]. Bulletin of Chinese Academy of Sciences, 33(2): 191−197 (in Chinese with English abstract).

    [60]

    Zhang J T, Tian H Q, Shi H, et al. 2020. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation[J]. Global Change Biology, 26(11): 6116−6133. doi: 10.1111/gcb.15290

    [61]

    Zhao Y C, Wang M Y, Hu S J, et al. 2018. Economicsand policy−driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4045−4050.

    [62]

    Zheng J F, Cheng K, Pan G X, et al. 2011. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China[J]. Chinese Science Bulletin, 56(26): 2162−2173 (in Chinese with English abstract). doi: 10.1360/csb2011-56-26-2162

    [63]

    Zheng J L, Cai Y L, Guo X Y, et al. 2024. Study on land use change and carbon stock in northern Shanxi Province based on InVEST model[J]. Geological Bulletin of China, 43(1): 173−180(in Chinese with English abstract).

    [64]

    Zhou M H, Zhu B, Wang S J, et al. 2017. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta−analysis[J]. Global Change Biology, 23(10): 4068−4083. doi: 10.1111/gcb.13648

    [65]

    曹文超, 宋贺, 王娅静, 等. 2019. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 25(10): 1781−1798. doi: 10.11674/zwyf.18441

    [66]

    常钦. 2023. 用好秸秆资源助力绿色农业[N]. 人民日报, 2023-09-12(14).

    [67]

    丁杰萍, 罗永清, 周欣, 等. 2015. 植物根系呼吸研究方法及影响因素研究进展[J]. 草业学报, 24(5): 206−216. doi: 10.11686/cyxb20150524

    [68]

    段华平, 张悦, 赵建波, 等. 2011. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 25(5): 203−208.

    [69]

    范紫月, 齐晓波, 曾麟岚, 等. 2022. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 42(23): 9470−9482.

    [70]

    方精云, 郭兆迪, 朴世龙, 等. 2007. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 37(6): 804−812.

    [71]

    付伟, 徐媛媛, 王福利, 等. 2024. 中国省域农田生态系统碳足迹时空演变分析[J]. 生态经济, 40(1): 88−94.

    [72]

    付宇佳, 刘晓煌, 孙兴丽, 等. 2024. 近30年西北内陆荒漠资源大区土地利用驱动下生态系统碳储量时空变化[J]. 地质通报, 43(2/3): 451−462.

    [73]

    高伟. 2023. 黑河市“六个再加力”为秋整地保驾护航[N]. 中国食品报, 2023-11-24(5).

    [74]

    高云才, 常钦, 郁静娴, 等. 2023. 1.3万亿斤以上, 连续9年的丰收答卷[N]. 人民日报, 2023-12-19(2).

    [75]

    国家标准化管理委员会, 国家市场监督管理总局. 2020. GB/T 15063—2020 复合肥料[S].

    [76]

    国家发展改革委. 2011. 省级温室气体清单编制指南(试行)[EB/OL]. (2011-05-11)[2024-03-01]. https://26692948.s21i.faiusr.com/61/ABUIABA9GAAggLm2igYogPiwiAI.pdf.

    [77]

    国家统计局. 2023. 关于2023年粮食产量数据的公告[N]. 中国信息报, 2023-12-12(1).

    [78]

    郭鹏, 张运国. 2023. 探索农田固碳减排助农业绿色转型[N]. 中国气象报, 2023-02-13(3).

    [79]

    韩冰, 王效科, 逯非, 等. 2008. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, (2): 612−619. doi: 10.3321/j.issn:1000-0933.2008.02.020

    [80]

    郝小雨. 2021. 黑龙江省30年来农田生态系统碳源/汇强度及碳足迹变化[J]. 黑龙江农业科学, (8): 97−104. doi: 10.11942/j.issn1002-2767.2021.08.0097

    [81]

    郝小雨, 孙磊, 马星竹, 等. 2022. 黑龙江省黑土区玉米田氮肥减施效应及碳足迹估算[J]. 河北农业大学学报, 45(5): 10−18.

    [82]

    黑河市人民政府. 2024. 黑河市政府工作报告(2024年)[EB/OL]. (2024-02-02)[2024-03-02]. https://www.heihe.gov.cn/hhs/c100756/202402/c11_277657.shtml.

    [83]

    胡延斌, 张强, 肖国举, 等. 2022. 中国半干旱区农田土壤碳、氮、磷含量对玉米生产的影响[J]. 中国沙漠, 42(3): 261−273.

    [84]

    江国福, 刘畅, 李金全, 等. 2014. 中国农田土壤呼吸速率及驱动因子[J]. 中国科学: 生命科学, 44(7): 725−735.

    [85]

    金琳, 李玉娥, 高清竹, 等. 2008. 中国农田管理土壤碳汇估算[J]. 中国农业科学, 41(3): 734−743. doi: 10.3864/j.issn.0578-1752.2008.03.014

    [86]

    李华, 袁鹏飞, 王洁, 等. 2023. 四川省农田生态系统碳足迹和碳生态效率时空变化[J]. 江苏农业科学, 51(11): 192−201.

    [87]

    李玥, 巨晓棠. 2020. 农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 39(4): 842−851. doi: 10.11654/jaes.2020-0245

    [88]

    刘琪, 李宇虹, 李哲, 等. 2021. 不同水分条件和微生物生物量水平下水稻土有机碳矿化及其影响因子特征[J]. 环境科学, 42(5): 2440−2448.

    [89]

    刘伟, 管建涛, 刘赫垚. 2022. 增面积、育良种、延链条[N]. 新华每日电讯, 2022-09-08(5).

    [90]

    罗怀良. 2014. 中国农田作物植被碳储量研究进展[J]. 生态环境学报, (4): 692−697. doi: 10.3969/j.issn.1674-5906.2014.04.024

    [91]

    宁静, 杨楠, 杜国明, 等. 2023. 区域农田生态系统碳足迹时空演变研究——以黑龙江省为例[J]. 中国农业大学学报, 28(6): 98−112. doi: 10.11841/j.issn.1007-4333.2023.06.09

    [92]

    冉光和, 王建洪, 王定祥. 2011. 我国现代农业生产的碳排放变动趋势研究[J]. 农业经济问题, (2): 32−38.

    [93]

    孙小祥, 张华兵, 于英鹏. 2021. 江苏沿海地区农田生态系统碳源/汇时空变化及公平性研究[J]. 中国农业资源与区划, 42(10): 56−64.

    [94]

    孙紫坚, 申维, 陈自然, 等. 2023. 河北泃河流域第四纪沉积相对土壤有机碳库的影响[J]. 地质通报, 42(2/3): 431−442. doi: 10.12097/j.issn.1671-2552.2023.2-3.020

    [95]

    田志会, 刘瑞涵. 2018. 基于京津冀一体化的农田生态系统碳足迹年际变化规律研究[J]. 农业资源与环境学报, 35(2): 167−173.

    [96]

    王莉, 刘莹莹, 张亚慧, 等. 2022. 河南省农田生态系统碳源/汇时空分布及影响因素分解[J]. 环境科学学报, 42(12): 410−422.

    [97]

    吴晓华, 贺萍. 2021. 黑龙江省农田生态系统减排增汇研究[J]. 黑龙江八一农垦大学学报, 33(4): 106−112. doi: 10.3969/j.issn.1002-2090.2021.04.016

    [98]

    夏龙龙, 遆超普, 朱春梧, 等. 2023. 中国粮食生产的温室气体减排策略以及碳中和实现路径[J]. 土壤学报, 60(5): 1277−1288. doi: 10.11766/trxb202308040311

    [99]

    夏龙龙, 颜晓元, 蔡祖聪. 2020. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 39(4): 834−841. doi: 10.11654/jaes.2020-0108

    [100]

    谢鸿宇, 陈贤生, 林凯荣, 等. 2008. 基于碳循环的化石能源及电力生态足迹[J]. 生态学报, 28(4): 1729−1735. doi: 10.3321/j.issn:1000-0933.2008.04.044

    [101]

    严圣吉, 尚子吟, 邓艾兴, 等. 2022. 我国农田氧化亚氮排放的时空特征及减排途径[J]. 作物杂志, 38(3): 1−8.

    [102]

    易丹, 欧名豪, 郭杰, 等. 2022. 土地利用碳排放及低碳优化研究进展与趋势展望[J]. 资源科学, 44(8): 1545−1559. doi: 10.18402/resci.2022.08.02

    [103]

    张强, 巨晓棠, 张福锁. 2010. 应用修正的IPCC 2006方法对中国农田N2O排放量重新估算[J]. 中国生态农业学报, 18(1): 7−13.

    [104]

    张茹, 楼晨笛, 张泽天, 等. 2022. 碳中和背景下的水资源利用与保护[J]. 工程科学与技术, 54(1): 69−82.

    [105]

    赵明月, 刘源鑫, 张雪艳. 2022. 农田生态系统碳汇研究进展[J]. 生态学报, 42(23): 9405−9416.

    [106]

    赵文晋, 李都峰, 王宪恩. 2010. 低碳农业的发展思路[J]. 环境保护, 24(12): 38−39. doi: 10.3969/j.issn.0253-9705.2010.12.012

    [107]

    赵永存, 徐胜祥, 王美艳, 等. 2018. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 33(2): 191−197.

    [108]

    郑吉林, 蔡艳龙, 郭晓宇, 等. 2024. 基于InVEST模型的晋北土地利用变化与碳储量研究[J]. 地质通报, 43(01): 173−180. doi: 10.12097/gbc.2022.05.038

    [109]

    郑聚锋, 程琨, 潘根兴, 等. 2011. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 56(26): 2162−2173.

  • 加载中

(8)

(6)

计量
  • 文章访问数:  38
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-05-17
修回日期:  2025-06-03
刊出日期:  2025-07-15

目录