青海祁漫塔格地区茫崖河东金矿成矿机制:热液磷灰石U−Pb定年及黄铁矿微量元素的制约

李少南, 王辉, 谢海林, 韩玉, 魏占浩, 陈苏龙, 王斌, 张得鑫, 马海云, 马文君, 马延宗, 杜生鹏. 2025. 青海祁漫塔格地区茫崖河东金矿成矿机制:热液磷灰石U−Pb定年及黄铁矿微量元素的制约. 地质通报, 44(4): 601-622. doi: 10.12097/gbc.2024.06.027
引用本文: 李少南, 王辉, 谢海林, 韩玉, 魏占浩, 陈苏龙, 王斌, 张得鑫, 马海云, 马文君, 马延宗, 杜生鹏. 2025. 青海祁漫塔格地区茫崖河东金矿成矿机制:热液磷灰石U−Pb定年及黄铁矿微量元素的制约. 地质通报, 44(4): 601-622. doi: 10.12097/gbc.2024.06.027
LI Shaonan, WANG Hui, XIE Hailin, HAN Yu, WEI Zhanhao, CHEN Sulong, WANG Bin, ZHANG Dexin, MA Haiyun, MA Wenjun, MA Yanzong, DU Shengpeng. 2025. Metallogenic mechanism of the Mangyahedong gold deposit in the Qimantage area of Qinghai Province: Constraints from hydrothermal apatite U−Pb dating and trace elements of pyrite. Geological Bulletin of China, 44(4): 601-622. doi: 10.12097/gbc.2024.06.027
Citation: LI Shaonan, WANG Hui, XIE Hailin, HAN Yu, WEI Zhanhao, CHEN Sulong, WANG Bin, ZHANG Dexin, MA Haiyun, MA Wenjun, MA Yanzong, DU Shengpeng. 2025. Metallogenic mechanism of the Mangyahedong gold deposit in the Qimantage area of Qinghai Province: Constraints from hydrothermal apatite U−Pb dating and trace elements of pyrite. Geological Bulletin of China, 44(4): 601-622. doi: 10.12097/gbc.2024.06.027

青海祁漫塔格地区茫崖河东金矿成矿机制:热液磷灰石U−Pb定年及黄铁矿微量元素的制约

  • 基金项目: 青海省地勘基金项目《青海省格尔木市茫崖河东地区铜多金属矿普查(2019-2023年度)》(编号:2019048066kc008、2020021077kc044、2021074062kc031、2022012050kc022、2023110003kc003)和第二次青藏高原科学考察研究项目(STEP)《稀贵金属(金、镍、钴、铬铁矿、铂族元素)科学考察与远景评估》(编号:2019QZKK0801-02)
详细信息
    作者简介: 李少南(1985− ),男,高级工程师,从事金矿勘查及成矿规律研究。E−mail:690226320@qq.com
    通讯作者: 韩玉(1985− ),男,在读博士生,高级工程师,从事金矿勘查及成矿规律研究工作。E−mail:15997030860@163.com
  • 中图分类号: P597;P618.51

Metallogenic mechanism of the Mangyahedong gold deposit in the Qimantage area of Qinghai Province: Constraints from hydrothermal apatite U−Pb dating and trace elements of pyrite

More Information
  • 研究目的

    茫崖河东金矿床位于东昆仑祁漫塔格地区中部,是近年祁漫塔格地区首个发现的具有找矿潜力的造山型金矿。矿体产于祁漫塔格群火山岩组中,受NW向构造破碎带控制。但矿床成因研究不足,制约了进一步找矿。

    研究方法

    通过系统的镜下鉴定及TIMA矿物定量分析,针对不同阶段的黄铁矿开展了LA−ICP−MS微量元素分析,对与主成矿期黄铁矿密切伴生的热液磷灰石,开展了LA−ICP−MS U−Pb定年,并探讨了矿床的成矿机制。

    研究结果

    ①成矿阶段从早到晚包括绢英岩化阶段(Ⅰ)、碳酸盐-绿泥石-硫化物-自然金阶段(Ⅱ)及成矿晚期方解石-黄铁矿脉阶段(Ⅲ)。电子探针成分及BSE图像分析显示,除自然金形式产出外,Au含量在成矿早阶段富As的黄铁矿核部相对较高(0.02%~0.06%, n=8),而黄铁矿边部几乎不含Au,成矿阶段黄铁矿具有贫As核部,富As、Au、Co的中边部;②金矿石中热液磷灰石LA−ICP−MS U−Pb定年结果为406±13 Ma(207Pb校正后的下交点年龄)。

    结论

    茫崖河东金矿属于造山型金矿,金矿成矿与区域变质-变形作用有关,成矿物质来源于祁漫塔格群火山岩组。

  • 加载中
  • 图 1  茫崖河东金矿区地质图

    Figure 1. 

    图 2  茫崖河东金矿赋矿围岩特征

    Figure 2. 

    图 3  茫崖河东金矿含金构造蚀变带地表特征

    Figure 3. 

    图 4  茫崖河东金矿区40勘探线剖面图及金矿石中金赋存状态

    Figure 4. 

    图 5  茫崖河东金矿石中磷灰石显微特征

    Figure 5. 

    图 6  茫崖河东金矿石显微特征及成矿阶段划分

    Figure 6. 

    图 7  茫崖河东金矿石中金属硫化物显微特征

    Figure 7. 

    图 8  不同成因类型黄铁矿Sb/Bi−As/Ag二元判别图(据Augustin et al., 2018修改)

    Figure 8. 

    图 9  茫崖河东金矿石中磷灰石稀土元素球粒陨石标准配分图(a,标准化值据McDonough and Sun, 1995)和热液成因判别图解(b,底图据O’Sullivan et al., 2020

    Figure 9. 

    图 10  茫崖河东金矿石中热液磷灰石Tera-Wasserburg图解(a)和年龄加权平均值(b)

    Figure 10. 

    图 11  茫崖河东金矿石中23MS2-2@2黄铁矿LA−ICP−MS面扫图

    Figure 11. 

    图 12  茫崖河东金矿石中23MS2-11@1毒砂LA−ICP−MS面扫图

    Figure 12. 

    表 1  茫崖河东金矿石中黄铁矿激光主量和微量元素分析结果

    Table 1.  LA−ICP−MS analysis results of major trace elements of pyrite in Mangyahedong gold deposit

    元素 23MS
    2-2
    (1)-01
    23MS
    2-2
    (1)-02
    23MS
    2-2
    (1)-03
    23MS
    2-2
    (1)-04
    23MS
    2-2
    (1)-05
    23MS
    2-2
    (1)-06
    23MS
    2-2
    (2)-07
    23MS
    2-2
    (2)-08
    23MS
    2-2
    (2)-09
    23MS
    2-2
    (3)-10
    23MS
    2-2
    (3)-11
    23MS
    2-2
    (3)-12
    23MS
    2-3
    (2)-13
    23MS
    2-3
    (2)-14
    23MS
    2-3
    (2)-15
    23MS
    2-3
    (2)-16
    23MS
    2-3
    (2)-17
    23MS
    2-3
    (3)-18
    23MS
    2-3
    (3)-19
    23MS
    2-3
    (3)-20
    23MS
    2-3
    (3)-21
    Na 43.37 20.53 33.13 11.72 30.48 11.12 22.96 28.39 13.12 7.72 14.87 3.12 13.00 6.87 7.44 5.52 8.25 28.72 17.52 35.13 17.02
    Mg 191.68 435.09 234.02 23.89 642.91 169.07 29.39 57.71 425.61 35.39 813.64 8.14 1.06 1.20 0.37 0.85 8.40 12.56 12.55 1284.7 55.97
    Al 5671.21 1593.49 70.70 4.14 2081.95 243.50 355.04 2418.08 630.90 31.33 710.99 19.08 1.43 35.28 0.42 0.13 160.64 522.09 249.59 4441.7 1151.5
    Si 7454.91 2509.99 449.75 310.11 3393.43 584.31 1207.38 3073.16 939.24 325.99 1668.0 273.34 197.31 248.49 186.61 272.12 398.33 917.03 567.00 6821.1 2532.9
    P 16.51 16.22 11.04 20.05 8.21 15.75 13.56 8.21 2.75 4.64 7.90 3.20 5.55 2.50 7.69 0.00 4.04 6.62 15.63 16.45 12.35
    K 1367.83 310.56 12.31 3.98 475.19 97.39 87.71 595.79 17.88 0.22 256.10 3.40 0.00 8.09 0.93 0.00 57.10 136.11 73.27 987.75 324.76
    Ca 26.47 34.13 18853.6 1590.3 47.65 539.35 110.41 10.68 17.06 36.33 0.00 26.22 226.80 32.40 264.92 27.71 27.41 5.32 60.05 97.70 10.57
    Sc 0.36 1.05 1.64 0.20 2.77 2.04 0.30 0.30 0.47 0.10 0.49 0.07 0.00 0.25 0.13 0.04 0.17 0.12 0.18 1.47 0.67
    Ti 140.51 814.04 6.52 4.25 757.39 18.69 2415.02 195.31 5.45 5.26 29.74 8.90 4.06 784.97 5.68 5.71 221.91 146.44 479.24 179.50 560.16
    V 26.63 12.92 0.41 0.06 27.60 2.70 11.70 9.63 3.85 0.18 5.39 0.10 0.04 7.16 0.00 0.02 2.77 3.74 5.31 19.90 13.80
    Cr 6.44 30.14 2.17 6.65 76.72 6.66 6.63 4.61 11.44 2.27 2.10 2.57 4.35 18.88 2.41 0.36 9.04 6.82 6.43 98.60 14.08
    Mn 0.98 4.04 175.79 15.57 5.57 16.22 0.54 1.30 4.62 0.63 4.51 0.39 2.51 0.28 2.52 0.82 0.60 0.61 2.72 12.28 1.04
    FeS2 93.85 96.28 95.98 99.01 96.09 99.35 96.09 95.02 98.79 99.67 98.71 99.37 99.12 97.93 99.50 99.27 97.90 97.95 99.03 94.87 97.38
    Co 5.88 28.62 16.88 41.35 21.04 0.41 30.78 20.60 338.05 10.55 63.50 11.97 0.29 12.96 1.18 0.34 33.35 14.20 104.01 57.47 11.06
    Ni 74.25 104.46 35.87 290.12 100.19 41.38 106.52 140.79 522.49 56.04 278.36 31.30 0.55 41.92 285.93 38.35 74.22 98.66 1186.93 165.41 81.38
    Cu 15.64 19.69 59.98 79.16 21.09 6.10 100.90 28.11 4.56 1.94 35.79 3.75 0.83 14.36 1.35 0.90 9.05 17.09 685.21 22.02 22.67
    Zn 18.49 2.72 11.02 2.50 3.04 45.22 7.97 2.75 3.90 1.45 7.19 5.86 1.87 1.49 1.61 1.65 18.80 9.64 10.63 5.03 2.80
    Ga 1.89 0.44 0.04 0.01 0.65 0.06 0.16 0.73 0.21 0.00 0.33 0.02 0.01 0.06 0.01 0.04 0.05 0.19 0.12 1.30 0.33
    Ge 4.49 4.50 3.58 4.73 4.03 4.50 3.85 4.23 4.71 4.73 4.60 3.75 4.59 3.55 3.86 4.37 3.75 4.14 4.18 4.61 4.58
    As 10939.2 12478.8 1980.8 3079.0 10563.6 1058.6 16734.1 18886.8 2869.1 1103.6 1393.9 3096.8 4649.83 10729.91 1973.59 3764.19 11106.76 9144.19 1372.48 6421.25 7493.95
    Se 5.71 0.00 4.89 43.49 13.18 30.72 2.64 9.84 0.00 30.84 66.73 18.17 4.38 0.00 32.87 0.00 22.47 52.70 134.57 62.26 0.00
    Rb 4.75 1.16 0.06 0.02 1.60 0.66 0.28 1.71 0.04 0.05 1.17 0.05 0.00 0.01 0.00 0.00 0.14 0.41 0.20 2.88 1.07
    Sr 0.19 0.20 21.86 2.25 0.45 0.90 0.36 0.09 0.38 0.06 0.03 0.03 0.07 0.20 0.05 0.05 0.16 0.09 0.15 0.36 0.61
    Y 0.11 0.83 2.06 0.09 1.67 0.79 0.76 0.28 0.00 0.00 0.01 0.00 0.03 0.66 0.03 0.02 0.27 0.17 0.35 0.35 0.76
    Zr 4.69 17.81 0.13 0.00 4.42 0.57 18.58 3.77 0.07 0.01 0.06 11.27 0.18 3.96 3.43 0.04 3.16 1.43 2.96 1.96 3.50
    Nb 0.06 0.39 0.00 0.00 0.10 0.00 0.92 0.08 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.04 0.02 0.22 0.04 0.31
    Ag 0.11 0.06 0.06 0.12 0.12 0.10 0.15 0.05 0.02 0.04 0.09 0.10 0.00 0.08 0.20 0.00 0.08 0.02 0.75 0.12 0.16
    In 0.01 0.00 0.18 0.02 0.03 0.04 0.01 0.02 0.00 0.01 0.08 0.00 0.04 0.06 0.00 0.01 0.01 0.00 0.09 0.01 0.01
    Sn 0.10 0.09 0.00 0.01 0.09 0.26 0.07 0.35 0.06 0.00 0.24 0.04 0.01 0.03 0.11 0.00 0.01 0.00 0.09 0.10 0.03
    Sb 72.96 8.15 10.84 3.12 71.92 31.41 26.99 35.44 1.99 2.20 5.17 4.96 0.12 43.71 3.65 3.47 13.43 22.59 7.82 65.17 63.47
    Ba 4.57 1.10 0.42 0.00 3.31 0.36 1.33 3.02 0.08 0.09 0.26 0.00 0.01 0.23 0.01 0.00 0.21 0.76 0.47 5.30 2.31
    La 0.02 0.17 0.14 0.01 0.50 0.40 0.04 0.02 0.01 0.00 0.00 0.00 0.01 0.13 0.00 0.00 0.04 0.02 0.07 0.06 0.14
    Ce 0.07 0.36 0.31 0.03 0.97 1.22 0.16 0.06 0.00 0.01 0.00 0.00 0.05 0.27 0.04 0.01 0.09 0.06 0.25 0.17 0.40
    Pr 0.01 0.04 0.07 0.00 0.14 0.22 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.01 0.03 0.02 0.06
    Nd 0.01 0.21 0.39 0.03 0.52 1.20 0.11 0.05 0.02 0.02 0.02 0.00 0.05 0.20 0.01 0.01 0.09 0.08 0.12 0.16 0.25
    Sm 0.01 0.07 0.15 0.04 0.34 0.29 0.07 0.06 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.11
    Eu 0.01 0.04 0.05 0.01 0.02 0.05 0.01 0.01 0.00 0.01 0.03 0.01 0.01 0.04 0.00 0.00 0.02 0.00 0.03 0.00 0.03
    Gd 0.01 0.06 0.21 0.00 0.33 0.19 0.06 0.05 0.03 0.00 0.00 0.00 0.04 0.08 0.00 0.00 0.03 0.01 0.03 0.08 0.12
    Tb 0.00 0.03 0.04 0.00 0.04 0.04 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01
    Dy 0.02 0.08 0.51 0.03 0.33 0.20 0.11 0.05 0.00 0.00 0.02 0.00 0.01 0.13 0.00 0.01 0.09 0.01 0.15 0.12 0.34
    Ho 0.01 0.04 0.08 0.00 0.36 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.01 0.00 0.09 0.03 0.03
    Er 0.03 0.20 0.23 0.00 0.24 0.08 0.11 0.04 0.00 0.00 0.02 0.00 0.00 0.08 0.00 0.00 0.05 0.04 0.10 0.04 0.08
    Tm 0.00 0.02 0.05 0.01 0.03 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.03 0.00 0.03
    Yb 0.03 0.27 0.29 0.00 0.30 0.07 0.12 0.09 0.02 0.00 0.00 0.00 0.00 0.10 0.00 0.01 0.08 0.03 0.11 0.07 0.09
    Lu 0.01 0.08 0.05 0.00 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.02
    Hf 0.25 0.44 0.00 0.00 0.25 0.01 0.50 0.17 0.00 0.00 0.01 0.00 0.01 0.44 0.00 0.10 0.11 0.05 0.09 0.31 0.13
    Au 0.49 60.00 1.59 1.74 19.65 0.26 48.03 27.92 1.51 0.08 0.30 0.71 0.68 9.69 0.51 0.91 9.74 12.97 0.09 4.31 5.00
    Pb 7.49 8.27 62.70 22.18 9.39 169.82 5.94 3.84 11.75 3.23 13.93 17.13 0.13 4.94 26.10 28.05 1.67 3.37 46.35 16.82 7.56
    Bi 0.02 0.03 0.03 0.04 0.04 0.03 0.02 0.02 0.03 0.03 0.08 0.04 0.00 0.04 0.02 0.04 0.01 0.02 0.05 0.10 0.06
    元素 23MS
    2-3
    (3)-22
    23MS
    2-3
    (3)-23
    23MS
    2-3
    (3)-24
    23MS
    2-3
    (3)-25
    23MS
    2-11
    (1)-26
    23MS
    2-11
    (1)-27
    23MS
    2-11
    (1)-28
    23MS
    2-11
    (1)-29
    23MS
    2-8
    (2)-30
    23MS
    2-8
    (2)-31
    23MS
    2-8
    (2)-32
    23MS
    2-8
    (2)-33
    23MS
    2-8
    (2)-34
    23MS
    2-8
    (2)-35
    23MS
    2-8
    (2)-36
    23MS
    2-8
    (2)-37
    23MS
    3-8
    (1)-38
    23MS
    3-8
    (1)-39
    23MS
    3-8
    (1)-40
    23MS
    3-8
    (1)-41
    23MS
    3-8
    (1)-42
    Na 5.16 2.95 4.96 13.71 8.20 11.79 7.66 40.12 13.41 14.14 6.19 28.67 0.00 8.71 18.13 8.80 17.64 10.73 442.73 8.26 0.96
    Mg 2.54 4.12 53.97 3.39 0.89 143.57 4.30 1392.51 2.39 0.41 0.86 12.25 0.23 0.24 2.91 0.82 10.12 0.52 274.25 73.99 0.13
    Al 2.26 15.66 20.13 195.21 4.37 799.92 109.65 1421.14 1.24 2.88 2.69 16.51 2.08 0.64 0.00 0.52 57.03 0.83 1274.97 70.44 4.16
    Si 311.27 314.88 198.89 586.96 209.04 1236.75 481.34 2025.39 653.92 229.51 363.51 5976.02 943.28 398.98 272.01 676.85 272.26 120.33 3584.13 380.90 410.20
    P 16.46 9.22 8.22 2.64 0.00 1.27 0.00 17.63 0.00 1.97 4.13 27.30 0.00 14.37 9.75 0.00 0.00 0.00 8.19 6.52 5.72
    K 0.00 8.45 5.83 45.12 0.00 291.91 57.34 107.70 0.00 0.00 0.00 5.52 2.04 0.00 0.00 0.00 5.70 0.00 380.59 1.39 0.00
    下载: 导出CSV
    续表1-2
    元素 23MS
    2-3
    (3)-22
    23MS
    2-3
    (3)-23
    23MS
    2-3
    (3)-24
    23MS
    2-3
    (3)-25
    23MS
    2-11
    (1)-26
    23MS
    2-11
    (1)-27
    23MS
    2-11
    (1)-28
    23MS
    2-11
    (1)-29
    23MS
    2-8
    (2)-30
    23MS
    2-8
    (2)-31
    23MS
    2-8
    (2)-32
    23MS
    2-8
    (2)-33
    23MS
    2-8
    (2)-34
    23MS
    2-8
    (2)-35
    23MS
    2-8
    (2)-36
    23MS
    2-8
    (2)-37
    23MS
    3-8
    (1)-38
    23MS
    3-8
    (1)-39
    23MS
    3-8
    (1)-40
    23MS
    3-8
    (1)-41
    23MS
    3-8
    (1)-42
    Ca 0.00 114.22 256.83 73.64 10.36 1668.64 15.63 18.75 30.75 0.00 122.98 57.29 0.00 0.00 0.00 0.00 1312.71 105.94 1616.80 259.16 180.59
    Sc 0.04 0.22 0.16 0.12 0.00 0.37 0.04 1.07 0.00 0.07 0.00 0.09 0.02 0.02 0.00 0.00 0.83 0.00 0.95 0.07 0.81
    Ti 6.82 216.39 129.67 220.33 8.71 231.93 5.22 314.85 4.43 5.15 9.78 4.56 7.36 3.88 4.39 6.54 83.73 8.26 991.08 33.16 51.81
    V 0.03 1.02 1.16 2.16 0.02 4.65 0.46 10.05 0.03 0.03 0.38 0.66 0.09 0.03 0.10 0.08 1.04 0.05 5.23 0.59 0.30
    Cr 0.44 3.41 1.68 4.12 0.62 11.19 0.56 48.45 1.61 0.53 0.99 1.09 0.04 0.67 0.45 15.39 2.05 0.56 10.42 1.89 0.32
    Mn 0.12 1.64 4.59 0.45 0.09 10.93 0.24 9.73 0.38 0.14 2.61 1.16 0.22 0.15 0.00 6.65 8.19 6.12 12.42 4.67 0.89
    FeS22 99.66 99.35 99.32 97.07 98.90 98.79 99.25 98.22 99.29 99.15 99.40 97.37 98.93 99.37 99.73 99.43 99.37 98.74 97.23 99.23 99.26
    Co 0.42 13.93 26.85 7.63 0.14 0.79 0.08 21.19 0.30 0.07 0.37 1.08 0.13 0.48 0.73 1.68 6.65 1.05 137.40 19.75 0.28
    Ni 4.15 519.51 461.44 13.65 2.88 9.96 3.90 73.17 30.30 6.12 5.57 15.18 12.52 4.08 312.45 22.80 66.82 35.81 182.46 301.64 5.42
    Cu 2.12 41.50 64.43 8.43 11.62 172.58 5.69 6.98 8.19 1.35 2.23 7.69 2.71 1.89 1.54 3.93 4.13 73.50 146.90 9.84 0.26
    Zn 4.46 4.50 2.21 5.91 2.66 12.27 7.50 7.27 7.07 29.09 2.19 3.80 3.15 28.01 17.46 3.27 20.68 3678.15 0.00 2.09 8.67
    Ga 0.03 0.03 0.01 0.03 0.00 0.08 0.01 0.43 0.03 0.11 0.05 0.02 0.04 0.02 0.04 0.00 0.07 0.04 0.10 0.06 0.07
    Ge 3.98 4.80 3.96 4.17 4.26 3.46 4.43 4.71 4.43 4.70 4.32 4.46 4.08 4.34 4.03 3.36 4.66 3.98 4.58 4.24 4.79
    As 1388.04 2231.8 2492.5 15830.7 5947.8 338.3 3217.7 1465.0 2858.1 4514.0 2656.8 3709.7 4578.3 2905.6 618.0 1994.3 1424.4 3826.0 2529.7 2972.7 3364.8
    Se 1.63 16.00 40.92 0.00 19.61 63.18 6.64 42.05 17.50 113.28 40.50 34.68 0.00 0.00 0.00 0.00 25.41 2.15 13.23 9.13 0.75
    Rb 0.04 0.02 0.00 0.20 0.03 1.44 0.14 0.49 0.00 0.17 0.02 0.07 0.00 0.00 0.00 0.00 0.05 0.09 0.56 0.05 0.01
    Sr 0.03 1.05 0.15 0.04 0.05 4.44 0.05 0.16 0.28 0.03 0.01 0.05 0.12 0.01 0.03 0.18 3.51 0.05 4.76 0.21 0.20
    Y 0.01 0.43 0.26 0.64 0.01 0.61 0.00 0.54 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.84 0.01 3.15 0.20 2.03
    Zr 0.00 3.17 1.05 3.55 0.03 5.51 0.02 5.23 0.05 0.63 0.00 2.27 4.75 0.90 0.02 0.03 3.19 2.77 13.16 2.21 0.07
    Nb 0.01 0.03 0.03 0.10 0.00 0.12 0.00 0.04 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.42 0.01 0.01
    Ag 0.01 0.20 0.23 0.06 0.54 4.00 0.26 0.64 0.11 0.05 0.00 0.12 0.19 0.08 0.24 0.11 0.06 0.06 0.16 0.03 0.00
    In 0.00 0.03 0.01 0.00 0.00 0.03 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.75 0.16 0.01 0.00
    Sn 0.24 0.00 0.00 0.00 0.04 1.61 0.08 0.49 0.04 0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.23
    Sb 0.91 5.33 6.26 10.33 49.11 47.78 18.58 18.75 5.43 5.25 5.44 14.16 7.76 5.17 7.23 14.89 7.49 1.69 22.29 5.46 0.43
    Ba 0.01 0.16 0.34 0.15 0.13 3.61 0.49 1.18 0.04 0.02 0.05 0.03 0.00 0.06 0.05 0.02 0.07 0.01 86.47 0.00 0.03
    La 0.01 0.05 0.09 0.03 0.00 0.09 0.00 0.14 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.85 0.01 0.10 0.02 0.04
    Ce 0.00 0.11 0.15 0.09 0.01 0.15 0.03 0.36 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 1.82 0.00 0.40 0.02 0.13
    Pr 0.00 0.02 0.03 0.01 0.01 0.01 0.00 0.07 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.28 0.00 0.08 0.01 0.05
    Nd 0.03 0.12 0.10 0.05 0.00 0.13 0.02 0.43 0.00 0.00 0.01 0.00 0.05 0.01 0.00 0.00 1.37 0.01 0.76 0.01 0.23
    Sm 0.03 0.00 0.02 0.02 0.00 0.06 0.00 0.05 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.04 0.36 0.00 0.55 0.00 0.31
    Eu 0.01 0.03 0.01 0.01 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.27 0.00 0.35 0.01 0.00
    下载: 导出CSV
    续表1-3
    元素23MS
    2-3
    (3)-22
    23MS
    2-3
    (3)-23
    23MS
    2-3
    (3)-24
    23MS
    2-3
    (3)-25
    23MS
    2-11
    (1)-26
    23MS
    2-11
    (1)-27
    23MS
    2-11
    (1)-28
    23MS
    2-11
    (1)-29
    23MS
    2-8
    (2)-30
    23MS
    2-8
    (2)-31
    23MS
    2-8
    (2)-32
    23MS
    2-8
    (2)-33
    23MS
    2-8
    (2)-34
    23MS
    2-8
    (2)-35
    23MS
    2-8
    (2)-36
    23MS
    2-8
    (2)-37
    23MS
    3-8
    (1)-38
    23MS
    3-8
    (1)-39
    23MS
    3-8
    (1)-40
    23MS
    3-8
    (1)-41
    23MS
    3-8
    (1)-42
    Gd 0.00 0.06 0.05 0.10 0.00 0.03 0.00 0.07 0.04 0.03 0.00 0.00 0.09 0.04 0.06 0.00 0.39 0.02 0.60 0.03 0.45
    Tb 0.00 0.02 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.04 0.00 0.11 0.01 0.06
    Dy 0.00 0.11 0.08 2.58 0.01 0.13 0.00 0.09 0.00 0.00 0.00 0.00 0.06 0.03 0.00 0.00 0.29 0.02 0.61 0.06 0.54
    Ho 0.00 0.06 0.01 0.04 0.01 0.01 0.01 0.05 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.03 0.00 0.11 0.01 0.08
    Er 0.00 0.06 0.05 0.13 0.02 0.06 0.01 0.13 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.03 0.07 0.00 0.18 0.04 0.16
    Tm 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.04 0.01 0.03
    Yb 0.03 0.13 0.02 0.12 0.00 0.14 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.05 0.00 0.20 0.04 0.15
    Lu 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.00
    Hf 0.25 0.17 0.02 0.35 0.02 0.28 0.38 0.20 0.02 0.04 0.02 0.00 0.04 0.11 0.00 0.00 0.08 0.01 0.29 0.22 0.02
    Au 0.49 0.77 0.78 15.66 2.27 0.30 0.84 0.23 1.57 0.40 0.43 1.74 0.75 0.96 0.30 1.59 0.03 0.07 0.20 0.01 0.06
    Pb 0.02 32.80 37.71 1.26 274.70 306.80 69.71 82.49 17.37 7.52 4.62 43.20 17.64 18.14 128.97 37.83 16.49 2.52 34.00 12.88 0.59
    Bi 0.49 0.03 0.02 0.03 0.01 0.00 0.00 0.00 0.03 0.02 0.00 0.08 0.03 0.03 0.09 0.10 0.01 0.00 0.05 0.00 0.00
      备注:FeS2含量单位为%,其余元素含量单位均为10−6
    下载: 导出CSV

    表 2  茫崖河东金矿石中磷灰石主量、微量元素和U−Pb同位素分析结果

    Table 2.  Analysis results of major and elements and U−Pb isotopes of apatite in Mangyahedong gold deposit

    样品编号 SiO2 P2O5 CaO Sr Y La Ce Pr Nd Sm Eu Gd Tb
    23MS2-8-01 0.25 43.2 56.4 993 114 14.8 48.0 10.3 68.4 28.6 76.9 30.1 4.05
    23MS2-8-02 0.98 43.0 55.8 997 69.3 14.9 30.8 5.23 30.5 12.2 73.2 13.1 1.85
    23MS2-8-03 0.21 43.4 56.2 1387 101 15.4 47.4 10.1 72.4 33.2 56.3 34.5 4.35
    23MS2-8-04 0.24 43.5 56.1 1087 43.0 9.55 19.2 3.27 18.9 7.32 46.0 7.64 1.05
    23MS2-8-05 0.35 43.1 56.4 962 49.1 9.96 18.0 3.11 18.5 7.65 33.9 8.48 1.19
    23MS2-8-06 0.28 43.3 56.3 921 74.1 14.0 25.5 4.43 27.0 11.6 31.5 12.8 1.80
    23MS2-8-07 0.57 43.6 55.7 938 50.4 11.8 20.1 3.26 19.8 8.31 24.7 9.18 1.26
    23MS2-8-08 0.15 43.2 56.5 1004 34.6 8.73 12.3 1.81 9.87 4.00 28.8 4.22 0.65
    23MS2-8-09 0.29 40.0 59.5 1141 46.7 14.9 21.3 3.00 17.0 6.33 27.3 6.52 1.00
    23MS2-8-10 0.91 43.5 55.5 937 49.3 13.9 20.8 3.32 19.7 8.16 21.6 8.85 1.21
    23MS2-8-11 0.050 43.6 56.2 1080 39.3 10.6 15.6 2.41 13.4 5.61 25.5 5.54 0.82
    23MS2-8-12 0.090 43.8 56.0 807 48.5 7.90 13.1 2.09 12.0 4.99 31.3 5.55 0.89
    23MS2-8-13 0.034 43.9 55.9 1221 50.5 11.3 23.4 4.33 27.8 11.5 31.8 12.3 1.58
    23MS2-8-14 0.29 43.8 55.8 655 44.1 32.1 31.5 3.68 15.7 4.45 13.8 4.85 0.72
    23MS2-8-15 0.50 43.5 55.9 721 50.7 12.7 21.4 3.35 18.4 6.49 18.3 7.33 1.04
    23MS2-8-16 1.38 42.9 55.5 1377 58.3 11.6 28.8 5.55 34.4 13.2 49.4 13.5 1.75
    23MS2-8-17 0.20 43.4 56.3 1162 46.8 11.1 25.4 4.75 31.1 12.2 30.4 11.9 1.52
    23MS2-8-18 0.26 43.6 56.0 1049 21.6 8.77 12.0 1.68 8.07 2.20 7.58 2.38 0.36
    23MS2-8-19 0.16 43.7 56.0 722 36.0 9.85 17.1 2.82 16.6 6.18 15.6 6.77 0.94
    23MS2-8-20 0.15 43.7 56.0 958 29.7 9.66 14.3 2.09 10.7 3.31 10.1 3.73 0.55
    23MS2-8-21 0.27 43.9 55.7 1045 38.4 13.0 18.7 2.95 17.3 6.80 19.4 7.22 1.01
    23MS2-8-22 0.15 43.2 56.5 1046 36.5 10.2 14.3 2.10 11.7 4.73 21.8 5.02 0.72
    23MS2-8-23 0.43 43.0 56.5 743 38.5 14.5 19.2 2.84 16.5 6.03 12.3 6.61 0.89
    23MS2-8-24 2.62 41.0 56.2 1289 84.3 15.0 41.8 8.54 55.2 22.8 66.6 24.0 3.03
    23MS2-8-25 0.083 43.9 55.9 1020 64.0 11.6 26.1 5.36 38.6 18.6 27.3 20.2 2.53
    23MS2-8-26 3.82 39.4 56.7 1223 42.2 9.50 17.4 3.11 19.2 8.46 24.9 8.45 1.13
    23MS2-8-27 0.29 43.9 55.7 1060 44.6 12.9 19.6 3.17 18.6 7.49 19.8 8.06 1.09
    23MS2-8-28 0.64 43.4 55.8 1076 52.4 16.8 23.0 3.42 18.6 6.60 18.8 7.31 1.04
    23MS2-8-29 0.47 43.7 55.6 1162 58.0 17.7 22.0 2.95 14.2 4.68 17.2 5.18 0.80
    23MS2-8-30 0.064 43.7 56.1 1179 27.3 8.26 10.5 1.49 7.62 2.81 23.7 2.91 0.45
    23MS2-8-31 0.16 43.9 55.8 958 38.4 12.1 18.4 2.89 15.9 5.93 14.3 6.40 0.89
    23MS2-8-32 0.45 43.8 55.6 1065 33.4 9.92 14.5 2.13 11.6 4.20 11.7 4.52 0.67
    23MS2-8-33 0.21 43.8 55.9 1029 38.7 11.3 16.8 2.54 13.9 5.15 12.9 5.61 0.80
    23MS2-8-34 0.22 43.8 55.8 807 22.1 10.4 10.6 1.39 6.31 1.99 6.50 2.24 0.34
    23MS2-8-35 0.35 43.8 55.7 808 32.7 12.0 13.7 1.85 9.37 2.97 7.90 3.43 0.50
    23MS2-8-36 0.20 44.0 55.7 846 52.5 17.6 25.6 4.46 29.2 13.1 18.6 14.6 1.82
    23MS2-8-37 0.19 43.9 55.8 1028 23.9 8.34 11.0 1.61 8.28 2.88 7.81 3.10 0.44
    23MS2-8-38 0.13 43.9 55.8 804 45.4 13.3 20.7 3.37 20.6 8.18 17.1 8.74 1.17
    23MS2-8-39 1.60 43.3 55.0 708 39.9 13.5 18.5 2.73 14.2 4.62 11.7 5.33 0.78
    23MS2-8-40 0.45 43.8 55.6 704 61.9 28.3 29.6 3.74 17.5 5.41 15.6 6.29 0.96
    最小值 0.03 39.36 54.98 654.84 21.59 7.90 10.52 1.39 6.31 1.99 6.50 2.24 0.34
    最大值 3.82 44.00 59.53 1387.40 114.49 32.10 48.05 10.33 72.41 33.21 76.91 34.54 4.35
    平均值 0.50 43.32 56.03 993.00 48.32 12.99 21.46 3.58 21.37 8.52 25.75 9.12 1.24
    下载: 导出CSV
  • [1]

    Adam M M A, Lv X, Abdel R A, et al. 2020. In−situ sulfur isotope and trace element compositions of pyrite from the Neoproterozoic Haweit gold deposit, NE Sudan: Implications for the origin and source of the sulfur[J]. Ore Geology Reviews, 120: 103405−103405. doi: 10.1016/j.oregeorev.2020.103405

    [2]

    Augustin J G D. 2018. Multi−stage and multi−sourced fluid and gold in the formation of orogenic gold deposits in the world−class Mana district of Burkina Faso − Revealed by LA−ICP−MS analysis of pyrites and arsenopyrites[J]. Ore Geology Reviews, 104: 495−521.

    [3]

    Goldfarb R J, Baker T, Benot D, et al. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes[M]. Colorado USA. Society of Economic Geologists: 407−450.

    [4]

    Groves D I, Santosh M, Deng J, et al. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 55(2): 275−292. doi: 10.1007/s00126-019-00877-5

    [5]

    Gao H C. 2021. Study on metallogenesis of endogenetic metal deposits in the Qimantag aera, East Kunlun, Qinghai Province[D]. Doctoral Thesis of Jilin University (in Chinese with English abstract).

    [6]

    Guo G H, Zhong S H, Li S Z. 2023. Constructing discrimination diagrams for granite mineralization potential by using machine learning and zircon trace elements: example from the qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).

    [7]

    He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of “Qinghai gold belt” Formed by orogeny[J]. Northwestern Geology, 56(6): 1−16(in Chinese with English abstract).

    [8]

    Hu J B, Feng Q L, Senebouttalath V, et al. 2023. Geochronology and geochemistry characteristics of the volcanic rocks in Pangkuam gold deposit area, Northwestern Laos and its implication for gold exploration[J]. Geological Bulletin of China, 42(11): 1967−1982 (in Chinese with English abstract).

    [9]

    Lavrent’ev Y G, Usova L V. 2021. Some features of quantitative analysis of rock−forming minerals: Using a JXA−8230 Electron probe microanalyzer[J]. Russian Geology and Geophysics, 62(11): 1209−1213. doi: 10.2113/RGG20204274

    [10]

    Lana C, Goncalves G O, Mazoz A, et al. 2022. Assessing the U−Pb, Sm−Nd and Sr−Sr isotopic compositions of the sume apatite as a reference material for LA−ICP−MS analysis[J]. Geostandards and Geoanalytical Research, 46(1): 71−95. doi: 10.1111/ggr.12413

    [11]

    Liu Y, Hu Z, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1): 34−43.

    [12]

    Li D S, Zhang W Q, Tian C S, et al. 2013. Discussion on the metallogenic characteristics and ore−prospecting methods of Qimantage region, Qinghai Province[J]. Northwestern Geology, 46(4): 131−141(in Chinese with English abstract).

    [13]

    Liu Y L, Zhang A K, Liu Z G, et al. 2022. Metallogenic model of gold deposits and genetic types in the western section of East Kunlun, Qinghai Province.[J]. Gold Science and Technology, 30(4): 483−497(in Chinese with English abstract).

    [14]

    Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of ore−forming and barren rock masses in the Qimantag porphyry−skarn deposits in the East Kunlun based on machine learning and whole rock composition[J]. Northwestern Geology, 56(6): 41−56(in Chinese with English abstract).

    [15]

    Li B, Xu D R, Bai D Y, et al. 2024. Episodic mineralization of the Woxi Au−Sb−W deposit in western Hunan during the Yanshanian period: Constraints from in−situ scheelite U−Pb dating and pyrite element−isotope[J]. Acta Petrologica Sinica, 40(1): 215−240(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.01.12

    [16]

    Li J, Ma Z B, Yang Y, et al. 2024. Research progress of apatite and its application in the field of mineral deposits [J/OL]. Geology in China: 1−30. https://kns.cnki.net/kcms/detail/11.1167.P.20240703.1259.004.html (in Chinese with English abstract).

    [17]

    Lou Y L, Liu X H, Zeng H, et al. 2024. Genesis of the Xingfengshan Au−W deposit in central Hunan: constraints from hydrothermal apatite U−Pb dating and in−situ sulfur isotope [J/OL]. Earth Science: 1−25. https://kns.cnki.net/kcms/detail/42.1874.p.20240626.1523.002.html (in Chinese with English abstract).

    [18]

    Mao M , Rukhlov S A , Rowins M S , et al. 2016. Apatite trace element compositions: A Robust new tool for mineral exploration[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 111: 1187−1222.

    [19]

    McDonough W F, Sun S S. 1995. The Composition of the Earth[J]. Chemical Geology, 120: 223−253.

    [20]

    Meng F, Zhang J, Cui M. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 23(2): 825−836.

    [21]

    Nanka Ewu, Jia Q Z, Tang L, et al. 2015. Zircon U−Pb ages and petrogeochemical characteristics of granodiorite in the Haxiyatu mining area, East Kunlun, Qinghai[J]. Geology in China, 42(3): 702−712 (in Chinese with English abstract).

    [22]

    Niu J H, Tian F Q, Qiu D F, et al. 2023. Zircon U−Pb ages of granitoids in the Jiudian gold deposit, Shandong Province and constraints on magmatic activity laws in the southern section of the Zhaoping fault zone[J]. Geological Bulletin, 42: 813−827 (in Chinese with English abstract).

    [23]

    O'Sullivan G, Chew D, Kenny G, et al. 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth−Science Reviews, 201: 103044−103044. doi: 10.1016/j.earscirev.2019.103044

    [24]

    Pan T. 2008. Characteristics and genesis of siliceous rocks in the Kendekeke Co−Au deposit, East Kunlun, Qinghai[J]. Geology and Exploration, (2): 51−54(in Chinese with English abstract).

    [25]

    Pan T, Wang B Z, Zhang A K, et al. 2019. Metallogenic series and prospecting prediction on the northern and southern margins of the Qaidam basin [M]. Wuhan: China University of Geosciences Press: 170−171 (in Chinese with English abstract).

    [26]

    Phillips G N, Powell R. 2009. Formation of gold deposits: Review and evaluation of the continuum model[J]. Earth Science Reviews, 94(1/4): 1−21.

    [27]

    Song S G, Bi H Z, Q S S, et al. 2018. HP−UHP metamorphic belt in the East Kunlun Orogen: Final Closure of the Proto−Tethys Ocean and Formation of the Pan−North−China Continent[J]. Journal of Petrology, (11): 11:2043−2060.

    [28]

    Wang B Z. 2012. Research on the paleozoic−mesozoic igneous rock tectonic assemblages in the Qimantag geological corridor region [D]. Doctoral Thesis of China University of Geosciences (Beijing): 5−226 (in Chinese with English abstract).

    [29]

    Wang B Z, Luo Z H, Pan T, et al. 2012. Tectonic assemblages and LA−ICP−MS zircon U−Pb ages of early paleozoic volcanic rocks in the Qimantag region, Qinghai−Tibet Plateau[J]. Geological Bulletin of China, 31(6): 860−874 (in Chinese with English abstract).

    [30]

    Wang J B, Wang Y W, Li Q Z, et al. 2024. Classification of ore−hosting formations, metallogenic models and prospecting exploration of orogenic gold deposits[J]. Acta Geologica Sinica, 98(3): 898−919 (in Chinese with English abstract).

    [31]

    Xiao Y, Feng C Y, Liu J N, et al. 2013. Chronology and sulfur isotope characteristics of the Kendekeke iron polymetallic mining area, Qinghai[J]. Mineral Deposits, 32(1): 177−186 (in Chinese with English abstract).

    [32]

    Xing J, Wang J, Liu J, et al. 2023. Geochronology, pyrite trace elements, and sulfur isotope geochemical characteristics of the Saibagou gold deposit in the eastern part of the northern Qaidam Basin[J]. Frontiers in Earth Science, 11: 1212856. doi: 10.3389/feart.2023.1212856

    [33]

    Xu G D. 2010. Geological and geochemical studies on typical deposits in the Qimantag polymetallic metallogenic belt, Qinghai[D]. Doctoral Thesis of Kunming University of Science and Technology (in Chinese with English abstract).

    [34]

    Yan Y T, Li S R, Jia B J, et al. 2012a. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 19(4): 214−226(in Chinese with English abstract).

    [35]

    Yan Y T, Li S R, Zhang N, et al. 2012b. Composition typomorphic characteristics and statistics analysis of metallogenic pyrite in gold deposits of different genetic types[J]. Gold, 33(3): 11−16(in Chinese with English abstract).

    [36]

    Yang T, Zhang L, Zheng Z H, et al. 2018. Geological characteristics and genetic analysis of the Tawenchahanxi Fe−polymetallic deposit, Qinhai Province[J]. Acta Petrologica et Mineralogica, 37(3): 467−484(in Chinese with English abstract).

    [37]

    Yang S Y, Jiang S Y, Mao Q, et al. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances[J]. Atom Spectrosc, 43: 186−200.

    [38]

    Yang Y H, Liu S, Liu J Z, et al. 2024. Geochemistry and U−Pb geochronology of apatite from the Jiadi carlin-type gold deposit in the southwestern Guizhou, China[J/OL]. Bulletin of Mineralogy, Petrology and Geochemistry: 1−14. https://kns.cnki.net/kcms/detail/52.1102.p.20240912.1458.002.html (in Chinese with English abstract).

    [39]

    Yu M, Feng C Y, Liu H C, et al. 2015. 40Ar−39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510−521 (in Chinese with English abstract).

    [40]

    Zhang J, Deng J, Chen H Y, et al. 2014. LA−ICP−MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore−forming process[J]. Gondwana Research, 26(2): 557−575.

    [41]

    Zhai W, Zheng S Q, Zhang L Y, et al. 2021. In situ pyrite sulfur isotope and trace element analyses of the world−class Dachang gold deposit, northern Qinghai−Tibetan Plateau: Implications for metallogenesis[J]. Ore Geology Reviews, 138: 104347. doi: 10.1016/j.oregeorev.2021.104347

    [42]

    Zhai W, Zheng S Q, Zhang L Y, et al. 2021. In situ pyrite sulfur isotope and trace element analyses of the world−class Dachang gold deposit, northern Qinghai−Tibetan Plateau: Implications for metallogenesis[J]. Ore Geology Reviews, (S1): 104347.

    [43]

    Zhang A K, Wang J J, Liu G L, et al. 2021a. Main minerogenetic series in the Qimantag area, Qinghai Province and their metallogenic models[J]. Acta Mineralogica Sinica, 41(1): 1−22(in Chinese with English abstract).

    [44]

    Zhang A K, Mo X X, Zhang Y, et al. 2021b. Ore genesis of Kudeerte gold−polymetallic deposit in western part of East Kunlun[J]. The Chinese Journal of Nonferrous Metals, 31(12): 3762−3778(in Chinese with English abstract).

    [45]

    Zhang H Y, Zhao Q Q, Zhao G, et al. 2022. In situ LA−ICP−MS trace element analysis of pyrite and its application in study of Au deposit[J]. Mineral Deposits, 41(6): 1182−1199(in Chinese with English abstract).

    [46]

    Zhang Y C, Shao Y J, Liu Q Q, et al. 2022. Pyrite textures, trace element and sulfur isotopes of Yanlinsi slate−hosted deposit in the Jiangnan Orogen, South China: Implications for gold mineralization processes[J]. Ore Geology Reviews, 48: 105029.

    [47]

    高宏昶. 2021. 青海东昆仑祁漫塔格地区内生金属矿床成矿作用研究[D]. 吉林大学博士学位论文.

    [48]

    郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 6(6): 57−70. doi: 10.12401/j.nwg.2023158

    [49]

    何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 6(6): 1−16. doi: 10.12401/j.nwg.2023157

    [50]

    胡家博, 冯庆来, SenebouttalathVongpaseuth, 等. 2023. 老挝西北部班康姆金矿区火山岩地质年龄、地球化学特征及其对金矿勘查的启示[J]. 地质通报, 42(11): 1967−1982.

    [51]

    李东生, 张文权, 田承盛, 等. 2013. 青海祁漫塔格地区主要矿床类型找矿方法探讨[J]. 西北地质, 6(4): 131−141. doi: 10.3969/j.issn.1009-6248.2013.04.012

    [52]

    刘永乐, 张爱奎, 刘智刚, 等. 2022. 青海东昆仑西段金矿成因类型及成矿模式[J]. 黄金科学技术, 30(4): 483−497.

    [53]

    刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 6(6): 41−56. doi: 10.12401/j.nwg.2023155

    [54]

    李彬, 许德如, 柏道远, 等. 2024. 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U−Pb定年与黄铁矿元素-同位素的约束[J]. 岩石学报, 40(1): 215−240.

    [55]

    李姜, 马振波, 杨艳, 等. 2024. 磷灰石的研究进展及其在矿床学领域的应用[J/OL]. 中国地质: 1−30. https://kns.cnki.net/kcms/detail/11.1167.P.20240703.1259.004.html.

    [56]

    娄元林, 刘贤红, 曾昊, 等. 2024. 湘中杏枫山金钨矿床成因: 热液磷灰石U−Pb定年和原位S同位素制约[J/OL]. 地球科学: 1−25. https://kns.cnki.net/kcms/detail/42.1874.p.20240626.1523.002.html.

    [57]

    李少南, 马海云, 韩玉, 等. 2024. 青海省格尔木市茫崖河东铜多金属矿普查报告(2019—2023年)[R]. 青海省第一地质勘查院: 25−277.

    [58]

    马忠英, 马文君, 王斌, 等. 2023. 青海省格尔木市长山—红卫山地区1∶2.5万地球化学测量报告[R]. 青海省第一地质勘查院: 155−175.

    [59]

    南卡俄吾, 贾群子, 唐玲, 等. 2015. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U−Pb年龄与岩石地球化学特征[J]. 中国地质, 42(3): 702−712. doi: 10.3969/j.issn.1000-3657.2015.03.022

    [60]

    牛警徽, 田福泉, 邱敦方, 等. 2023. 山东旧店金矿床花岗岩类锆石 U−Pb 年龄及对招平断裂带南段岩浆活动规律的约束[J]. 地质通报, 42: 813−827. doi: 10.12097/j.issn.1671-2552.2023.05.012

    [61]

    潘彤. 2008. 青海东昆仑肯德可克钴金矿床硅质岩特征及成因[J]. 地质与勘探, (2): 51−54.

    [62]

    潘彤, 王秉璋, 张爱奎, 等. 2019. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社: 170−171.

    [63]

    潘彤, 王贵仁, 王福德, 等. 2022. 中国矿产地质志·青海卷[R]. 青海省地质矿产勘查开发局: 10−23.

    [64]

    祁生胜, 李五福, 于文杰, 等. 2019. 中国区域地质志·青海卷[R]. 青海省地质调查院: 232−267.

    [65]

    王秉璋. 2012. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D]. 中国地质大学(北京)博士学位论文: 5−226.

    [66]

    王秉璋, 罗照华, 潘彤, 等. 2012. 青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 31(6): 860−874. doi: 10.3969/j.issn.1671-2552.2012.06.005

    [67]

    王京彬, 王玉往, 李庆哲, 等. 2024. 造山型金矿容矿建造分类、成矿模式及找矿勘查[J]. 地质学报, 98(3): 898−919.

    [68]

    徐国端. 2010. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D]. 昆明理工大学博士学位论文.

    [69]

    肖晔, 丰成友, 刘建楠, 等. 2013. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 32(1): 177−186. doi: 10.3969/j.issn.0258-7106.2013.01.013

    [70]

    严育通, 李胜荣, 贾宝剑, 等. 2012a. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 19(4): 214−226.

    [71]

    严育通, 李胜荣, 张娜, 等. 2012b. 不同成因类型金矿床成矿期黄铁矿成分成因标型特征[J]. 黄金, 33(3): 11−16. doi: 10.3969/j.issn.1001-1277.2012.03.003

    [72]

    杨涛, 张乐, 郑振华, 等. 2018. 青海省它温查汉西铁多金属矿床地质特征及成因分析[J]. 岩石矿物学杂志, 37(3): 467−484. doi: 10.3969/j.issn.1000-6524.2018.03.010

    [73]

    杨毓红, 刘燊, 刘建中, 等. 2024. 贵州架底卡林型金矿床磷灰石地球化学及U−Pb年代学研究[J/OL]. 矿物岩石地球化学通报: 1−14. https://kns.cnki.net/kcms/detail/52.1102.p.20240912.1458.002.html.

    [74]

    于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521.

    [75]

    张爱奎, 王建军, 刘光莲, 等. 2021a. 青海省祁漫塔格地区主要成矿系列与成矿模式[J]. 矿物学报, 41(1): 1−22.

    [76]

    张爱奎, 莫宣学, 张勇, 等. 2021b. 东昆仑西段库德尔特金多金属矿床成因探讨[J]. 中国有色金属学报, 31(12): 3762−3778.

    [77]

    张红雨, 赵青青, 赵刚, 等. 2022. 黄铁矿微量元素LA−ICP−MS原位微区分析方法及其在金矿床研究中的应用[J]. 矿床地质, 41(6): 1182−1199.

  • 加载中

(12)

(4)

计量
  • 文章访问数:  49
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2024-06-14
修回日期:  2024-12-11
刊出日期:  2025-04-15

目录