Study on the age of ore-forming rock mass and mineralogical characteristics of skarn rocks in the Niukutou Pb-Zn deposit, Qinghai Province
-
摘要:
研究目的 祁漫塔格成矿带是中国重要的斑岩-矽卡岩多金属成矿带,牛苦头矿床为该成矿带近年来发现的大型铅锌多金属矿床,其成矿岩体时代与矽卡岩建造、铅锌矿化之间的关系缺乏研究。另外,该矿床矽卡岩形成的物理化学条件与矿化的关系也未进行深入的探讨,制约了对成矿规律的认识。
研究方法 通过锆石LA−ICP−MS测年及电子探针技术分析方法,对矿区成矿岩体锆石年代及矽卡岩矿物电子探针进行研究,详细揭示成矿时代、矽卡岩分带及矿物组合特征。
研究结果 结果表明,与矽卡岩紧密相关的二长花岗岩形成于389.9±2.2 Ma,即牛苦头成矿时代为中泥盆世。牛苦头矿床矽卡岩表现出明显的蚀变分带,整体上属于钙-镁质系列矽卡岩建造,靠近成矿岩体为一套钙铁榴石和钙铁辉石矿物组合,远离成矿岩体为一套钙铝榴石和锰钙铁辉石组合。退变质阶段矽卡岩矿物主要为黑柱石、透闪石、阳起石等,靠近成矿岩体MnO含量低,远离成矿岩体MnO含量逐渐增高,暗示退变质阶段矽卡岩矿物化学成分对于进变质阶段矽卡岩矿物具有一定的继承作用。成矿热液自成矿岩体近端至远端(西南至东北)运移,该过程中温度、
、pH逐渐降低,矿化由靠近成矿岩体的高温蚀变金属矿化组合到远离成矿岩体的铅锌矿化组合转变。$f_{{\mathrm{O}}_2} $ 结论 结合前人研究,认为祁漫塔格地区中晚泥盆世岩浆岩的侵入可能是钙、锰质矽卡岩建造形成的主要原因,该地区中—晚泥盆世岩浆岩侵入及与之相关的钙-锰质矽卡岩建造可作为该区域矽卡岩型铅锌矿床的找矿标志,成矿热液由成矿岩体近端至远端(西南至东北)运移的过程中温度、
、pH逐渐降低,这种物理化学条件的变化是导致成矿岩体远端富锰矽卡岩矿物及铅锌矿化富集的原因。$f_{{\mathrm{O}}_2} $ -
关键词:
- 铅锌成矿 /
- 中—晚泥盆世岩浆作用 /
- 钙-锰质矽卡岩建造 /
- 祁漫塔格
Abstract:Objective The Qimantag metallogenic belt is an important porphyry−skarn polymetallic metallogenic belt in China, and the Niukutou deposit is a large−scale Pb−Zn polymetallic deposit discovered in this metallogenic belt in recent years. However, there is a lack of research on the relationship between the age of the ore−forming rock mass, skarn formation, and Pb−Zn mineralization. Additionally, the relationship between the physicochemical conditions for skarn formation and mineralization in this deposit has not been thoroughly explored, which restricts our understanding of the metallogeny. [Methoods] Through the zircon LA−ICP−MS dating and electron probe technology analysis methods, this paper provide detailed information on the mineralization age, skarn zoning, and mineral composition characteristics.
Results The results indicate that the monzogranite closely related to skarn was formed at 389.9 ± 2.2 Ma, indicating that the Niukutou mineralization occurred in the Middle Devonian. The skarn rocks of the Niukutou deposit exhibit obvious alteration zones, and overall belong to the calcium−magnesium series skarn rock formation. Near the ore−forming rock mass, there is a set of andradite and hedenbergite mineral assemblages, while far away from the ore−forming rock mass, there is a set of grossularite and Mn−hedenbergite mineral assemblages. The main skarn minerals in the retrograde metamorphic stage are ilvaite, tremolite, actinolite, etc. The MnO content is low near the ore−forming rock mass, and gradually increases away from the ore−forming rock mass. This suggests that the chemical composition of the skarn minerals in the retrograde metamorphic stage has a certain inheritance from the skarn minerals in the prograde metamorphic stage. The ore−forming hydrothermal fluid migrates from the proximal to distal end of the ore−forming rock mass (southwest to northeast), during which temperature,
, and pH gradually decrease. Mineralization changes from the high−temperature metal mineralization assemblage near the ore−forming rock mass to the Pb−Zn mineralization assemblage distal from the ore−forming rock mass.$f_{{\mathrm{O}}_2} $ Conclusions Based on previous research, this article believes that the calcium−magnesium skarn formation related to Middle−Late Devonian magmatic rocks in the Qimantag may be a prospecting indicator for skarn Pb−Zn deposits in this region. The temperature,
, and pH gradually decrease during the migration of ore−forming hydrothermal fluids from the proximal to distal end (southwest to northeast) of the ore−forming rock mass. This change in physical and chemical conditions is the reason for the enrichment of manganese rich skarn minerals and Pb−Zn mineralization in the distal end of the ore−forming rock mass.$f_{{\mathrm{O}}_2} $ -
-
图 1 祁漫塔格区域地质与构造简图(a)与区域地质矿产简图(b)(据徐国端,2010;Zhong et al., 2018;王新雨等,2023修改)
Figure 1.
图 3 牛苦头矿区M1磁异常区10号地质勘探线剖面图 (A—A′剖面位置见图2)
Figure 3.
图 4 牛苦头矿床M1矿权区地质简图及矽卡岩平面蚀变分带图(位置见图2)
Figure 4.
图 8 牛苦头矿区石榴子石和辉石三角分类图解(牛苦头数据据本文,其余数据据丰成友等,2011;Zhong et al., 2018b)
Figure 8.
表 1 牛苦头二长花岗岩LA−ICP−MS锆石U−Th−Pb同位素组成
Table 1. LA−ICP−MS zircon U−Th−Pb isotopic compositions of the Niukutou monzogranite
测点号 含量/10−6 Th/U 同位素比值 年龄/Ma U Th 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ N1012-10.1 225 137 0.61 0.06268 0.0007 0.44835 0.0151 0.05200 0.0018 392 4 376 11 N1012-10.2 295 203 0.69 0.06215 0.0006 0.47332 0.0138 0.05511 0.0016 389 4 393 10 N1012-10.3 482 453 0.94 0.06219 0.0006 0.46007 0.0112 0.05348 0.0012 389 4 384 8 N1012-10.4 251 186 0.74 0.06171 0.0006 0.46418 0.0115 0.05453 0.0014 386 4 387 8 N1012-10.5 214 111 0.52 0.06311 0.0006 0.47258 0.0144 0.05419 0.0016 395 3 393 10 N1012-10.6 183 125 0.68 0.05965 0.0009 0.49444 0.0190 0.06007 0.0023 373 6 408 13 N1012-10.7 389 231 0.59 0.06215 0.0005 0.47091 0.0114 0.05482 0.0013 389 3 392 8 N1012-10.8 640 557 0.87 0.06151 0.0006 0.50814 0.0209 0.05999 0.0028 385 4 417 14 N1012-10.9 426 319 0.75 0.06140 0.0007 0.47571 0.0128 0.05596 0.0013 384 4 395 9 N1012-10.11 210 111 0.53 0.06298 0.0006 0.50475 0.0178 0.05790 0.0020 394 4 415 12 N1012-10.12 470 309 0.66 0.06344 0.0007 0.49962 0.0147 0.05686 0.0015 397 4 411 10 N1012-10.13 331 199 0.60 0.06252 0.0006 0.45931 0.0124 0.05316 0.0014 391 4 384 9 N1012-10.14 455 377 0.83 0.06264 0.0005 0.47064 0.0211 0.05436 0.0024 392 3 392 15 N1012-10.15 225 151 0.67 0.06332 0.0007 0.48701 0.0149 0.05588 0.0018 396 4 403 10 N1012-10.16 257 162 0.63 0.06262 0.0007 0.46100 0.0119 0.05341 0.0014 392 5 385 8 N1012-10.17 311 172 0.55 0.06196 0.0006 0.46648 0.0133 0.05445 0.0015 388 4 389 9 N1012-10.18 338 195 0.58 0.06190 0.0005 0.46640 0.0114 0.05468 0.0014 387 3 389 8 N1012-10.20 339 217 0.64 0.06304 0.0006 0.47879 0.0116 0.05495 0.0013 394 3 397 8 注:图6–b谐和曲线由除去10,19号点后计算获得,除去10,19号号点后计算获得的206Pb/238U年龄加权平均值为389.9±2.2 Ma(最终结果已校正) 表 2 牛苦头矿床矽卡岩矿物电子探针成分组成
Table 2. Electron microprobe analysis of skarn minerals from the Niukutou deposit
% 样品号 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O 总和 矿物名称 NZB62-2-1 38.453 0.023 17.883 5.381 0.171 0.026 37.135 0.023 99.1 钙铝榴石 NZB62-2-2 37.922 0.006 17.692 0.001 5.224 0.191 0.061 37.187 0.006 98.29 钙铝榴石 NZB62-2-3 38.609 0.01 25.884 0.003 9.134 0.027 0.013 24.561 0.01 0.002 98.25 钙铝榴石 KUB080 37.557 0.025 24.265 0.028 11.346 0.186 0.007 23.492 0.025 96.93 钙铝榴石 NZB73-1 38.693 0.185 24.527 0.021 10.31 0.045 0.049 24.098 97.93 钙铝榴石 JYB-7 38.917 16.527 8.497 0.864 0.018 33.683 0.013 98.52 钙铝榴石 YMB-02 35.945 0.623 27.586 0.073 0.496 34.116 0.043 98.88 钙铁榴石 KUB-214-1 36.769 0.035 0.918 0 26.318 0.543 0.135 32.267 0 0.014 97 钙铁榴石 JYB-08.1 49.156 0.028 0.468 17.792 9.108 1.226 22.181 0.02 0.008 99.99 锰钙铁辉石 JYB-08.2 49.046 0.001 0.185 0.016 15.23 13.804 0.065 21.548 0.029 99.92 锰钙铁辉石 NZB-279 50.864 1.06 0.083 32.268 3.662 1.921 9.422 0.072 0.047 99.4 阳起石 NZB279-3.1 48.853 - 0.63 0.116 33.726 4.567 7.774 1.37 0.057 0.035 97.13 锰阳起石 NZB279-3.2 49.258 0.004 0.957 - 31.946 3.63 9.684 1.611 0.074 0.068 97.23 锰阳起石 NZB279-3.3 46.242 - 0.699 0.086 36.728 3.934 7.948 1.311 0.06 0.06 97.07 锰阳起石 NZB279-3.4 46.924 0.001 0.606 0.208 35.419 4.149 8.103 1.241 0.077 0.049 96.78 锰阳起石 NZB279-3.5 48.778 - 0.982 0.125 33.226 4.031 8.355 1.569 0.09 0.081 97.24 锰阳起石 N608-5-2.2 48.536 - 0.141 0.025 21.605 7.705 20.71 0.681 0.013 99.42 富锰角闪石 N608-5-3.1 49.209 0.033 0.098 0.034 22.567 5.677 21.698 0.778 0.003 100.1 富锰角闪石 N0624-2.1 54.096 0.014 0.45 0.131 17.482 1.29 10.139 13.481 0.09 0.043 97.22 阳起石 N0624-2.2 54.03 - 0.507 0.115 15.487 0.78 11.083 14.53 0.093 0.067 96.69 阳起石 N0624-2.3 54.199 - 0.44 0.052 17.426 1.232 9.176 13.51 0.073 0.06 96.17 阳起石 N0624-2.4 55.528 0.031 0.539 0.046 15.485 1.024 10.683 13.471 0.153 0.06 97.02 阳起石 N622-5.1 52.11 - 0.278 0.044 24.52 1.221 11.248 7.716 0.05 0.075 97.26 阳起石 N622-5.2 52.149 0.002 0.181 - 25.612 1.507 11.178 6.906 0.038 0.019 97.59 阳起石 N622-5.3 52.364 - 0.343 0.027 24.269 1.365 11.131 8.301 0.053 0.074 97.93 阳起石 KUB-214-2 29.986 0.122 0.809 0.123 42.44 8.658 0.257 13.06 0 0 95.46 黑柱石 N608-8a-1.1 37.745 0.478 24.394 - 9.492 0.106 24.603 0.011 96.83 绿帘石 N608-8a-1.3 37.611 - 21.674 0.024 13.4 0.023 24.343 0.029 97.1 绿帘石 N608-8a-2.1 37.6 0.072 22.534 0.614 11.345 0.318 23.96 0.018 96.46 绿帘石 N608-8a-2.2 37.37 0.117 22.125 0.135 12.641 0.065 24.171 0.019 0.006 0.006 96.66 绿帘石 -
[1] Dong Y P, Hui B, Sun S S, et al. 2022. Multiple orogeny and geodynamics from Proto−Tethys to Paleo−Tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3426−3448 (in Chinese with English abstract).
[2] Feng C Y, Wang X P, Shu X F, et al. 2011. Isotopic chronology of the Hutouya skarn lead−zinc polymetailic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806−1817 ( in Chinese with English abstract).
[3] Feng C Y, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).
[4] Gao H X. 2021. Study on metallogenesis of endogenetic metal deposits in the Qimantag aera, East Kunlun, Qinghai Province [D]. Doctor Thesis of Jilin University: 1−261(in Chinese with English abstract).
[5] Gao Y B. 2013. The intermediate−acid intrusive magmasim and mineralization in Qimantag, East Kunlun Moutains [D]. Doctor Thesis of Chang’an University: 1−201(in Chinese with English abstract).
[6] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665(in Chinese with English abstract).
[7] Geng J. 2023. Study on magmatic rocks and mineralization of the second stage in Niukutou Mining area, Qinghai Province [D]. Master Thesis of China University of Geoscience: 1−79(in Chinese with English abstract).
[8] Jia J T. 2013. The study on characteristics of iron polymetallic deposit in Niukutou Qimantage distict Qinghai [D]. Master Thesis of China University of Geosciences: 1−39 (in Chinese with English abstract).
[9] Jiang B B, Zhu X Y, Wang X Y, et al. 2021. Metallogenic fluid characteristics of Niukutou lead zinc deposit in Qimantage area, Qinghai Province[J]. Mineral Exploration, 12(4): 944−952.
[10] Jiang C W. 2013. Mineralization characteristics of skarn type iron polymetallic&metallogenic model research in Sijiaoyang−Niukutou district in Qinghai province [D]. Master Thesis of China University of Geosciences: 1−35 (in Chinese with English abstract).
[11] Li J D, Wang X Y, Zhu X Y, et al. 2019. The preliminary discussion of the Hercynian metallogenic period in Qimantag area−with the example of Niukutou lead and zinc deposit[J]. Mineral Exploration, 10(8): 1775−1783 (in Chinese with English abstract).
[12] Liu P, Lu Z C, Dong S Y, et al. 2020. Fluid inclusion characteristics and metallogenic mechanism of Hutouya skarn Pb−Zn polymetallic deposit, Qimantag, Qinghai Province[J]. Mineral Deposits, 9(5): 825−844 (in Chinese with English abstract).
[13] Liu W, Yang X K, Jiang W, et al. 2021. Analysis of the tectonic stress field in Hutouya copper polymetallic ore field, Qimantage of East Kunlun[J]. Northwestern Geology, 54(4): 100−112(in Chinese with English abstract).
[14] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004
[15] Luo P, Wu J R, Zhang K, et al. 2023. The ore mineral typomorphic characteristics of minerals and its genetic significance in Niukutou deposit[J]. Mineral Exploration, 14(6): 880−888 (in Chinese with English abstract).
[16] Mao J W, Zhou Z H, Feng C Y, et al. 2012. A preliminary study of the Triassic large−scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437−1471 (in Chinese with English abstract).
[17] Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits [J]. Economic Geology, 100TH Anniversary Volume: 299−336.
[18] Slama J, Kosler J, Condon D J. 2008. Plesovice zircon−A new natural reference material for U−Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005
[19] Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U−Pb age of Yemaquan deep variscan granodiorite in Qimantage area, Eastern Kunlun and its significance[J]. Geoscience, 28(6): 1161−1169 (in Chinese with English abstract).
[20] Song Z B, Zhang Y L, Jia Q Z, et al. 2016. LA−ICPMSzircon U−Pb age of the Yemaquan granodiorite in the Qimantag area, Qinghai Province and its geological implications[J]. Geological Bulletin of China, 35(12): 2006−2013 (in Chinese with English abstract).
[21] Wang X Y, Wang S L, Zhang H Q, et al. 2023. Geochemical characteristics of the mineral assemblages from the Niukutou Pb−Zn skarn deposit, East Kunlun Mountains, and their metallogenic implications[J]. Minerals, 18: 1−25.
[22] Wang X Y, Wang S L, Wu J R, et al. 2023. Study on mineralization age and source ore forming of Niukutou Pb−Zn deposit, Qinghai Province: Evidence from geochronology of ore−forming rock bodies and Re−Os geochemistry of pyrite[J]. Northwstern Geology, 56(6): 71−77(in Chinese with English abstract).
[23] Wang X Y, Zhu X Y, Li J D, et al. 2021. Two stage magmatisms and their skarn−type mineralization in the Niukutou ore district, Qinghai Provice[J]. Acta Petrologica Sinica, 37(5): 1567−1586 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.05.14
[24] Wang X Y, Zhu X Y, Li J D, et al. 2020. Genesis and geological significance of manganilvaite in the Niukutou deposit, Qinghai Province[J]. Acta Geologica Sinica, 94(8): 2279−2290 (in Chinese with English abstract).
[25] Xu G D. 2010. Geology and geochemistry of typical deposits in Qimantage polymetallic mineralization belt, Qinghai Province [D]. Doctor Thesis of Kunming University of Science and Technology: 1−159 ( in Chinese with English abstract).
[26] Yao L. 2015. Petrogenesis of the Triassic granitoids and skarn mineralzation in the Qimantag area, Qinghai Province, and their geodynamic setting [D]. Doctor Thesis of China University of Geosciences Degree: 1−175 ( in Chinese with English abstract).
[27] Yao L, Lu Z C, Zhao C S, et al. 2016. Geochronological study of granit-oids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169.
[28] Yu M, Feng C Y, Mao J W, et al. 2017. The Qiman Tagh Orogen as a window to the crustal evolution in northern Tibetan Plateau[J]. Earth Science Review, 167: 103−123.
[29] Zhao Y M, Feng C Y, Li D X, et al. 2013. Metallogenic setting and mineralization−alteration characteristicsof major skarn Fe−polymetallic deposits in Qimantag area, western Qinghai Province[J]. Mineral Deposits, 32(1): 1−19 (in Chinese with English abstract).
[30] Zhao Y M, Lin W W, Bi C S, et al. 1990. Skarn deposits in China[M]. Beijing: Geological Publishing House: 1−354 (in Chinese with English abstract).
[31] Zhao Z Y. 2019. Study on skarn mineralogy and mineralization of the Niukutou Deposit, Qinghai Province[D]. Master Thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).
[32] Zhong S H, Feng C Y, Li D X, et al. 2017a. Mineralogical characterisitcs of the Weixi ore block in the Weibao skarn−type copper−lead−zinc deposit, Xinjiang[J]. Acta Geologica Sinica, 91(5): 1066−1082 (in Chinese with English abstract).
[33] Zhong S H, Feng C Y, Ren Y Q, et al. 2017b. Characteristics and sources of ore−forming fluid from Weixi ore block of Weibao skarn Cu−Pb−Zn deposit, Xinjiang[J]. Mineral Deposits, 36: 483−500 (in Chinese with English abstract).
[34] Zhong S H, Feng C Y, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu−Pb−Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53(6): 855−870. doi: 10.1007/s00126-017-0787-8
[35] 董云鹏, 惠博, 孙圣思, 等. 2022. 中国中央造山系原-古特提斯多阶段复合造山过程[J]. 地质学报, 96(10): 3426−3448. doi: 10.3969/j.issn.0001-5717.2022.10.010
[36] 丰成友, 赵一鸣, 李大新, 等. 2011. 青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征[J]. 地质学报, 85(7): 1108−1115.
[37] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 8(2): 665−678.
[38] 高宏昶. 2021. 青海东昆仑祁漫塔格地区内生金属矿床成矿作用研究[D]. 吉林大学博士学位论文: 1−261.
[39] 高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文: 1−201.
[40] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.
[41] 耿健. 2023. 青海牛苦头矿区两期岩浆岩与成矿研究[D]. 中国地质大学(北京)硕士学位论文: 1−79.
[42] 贾建团. 2013. 青海祁漫塔格地区牛苦头铁多金属矿床地质特征研究[J]. 中国地质大学(北京)硕士学位论文: 1−39.
[43] 蒋斌斌, 祝新友, 王新雨, 等. 2021. 青海省祁漫塔格地区牛苦头铅锌矿成矿流体特征[J]. 矿产勘查, 12(4): 944−952.
[44] 蒋成伍. 2013. 青海格尔木市四角羊-牛苦头地区矽卡岩型铁多金属矿矿化特征及成矿模式研究[J]. 中国地质大学(北京)硕士学位论文: 1−35.
[45] 李加多, 王新雨, 祝新友, 等. 2019. 青海祁漫塔格海西期成矿初探——以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 10(8): 1775−1783. doi: 10.3969/j.issn.1674-7801.2019.08.003
[46] 刘鹏, 吕志成, 董树义, 等. 2020. 青海祁漫塔格虎头崖铅锌多金属矿床流体包裹体特征及成矿机制研究[J]. 矿床地质, 39(5): 825−844.
[47] 刘渭, 杨兴科, 江万, 等. 2021. 东昆仑祁漫塔格虎头崖铜多金属矿田构造应力场分析[J]. 西北地质, 54(4): 100−112.
[48] 罗攀, 吴锦荣, 张坤, 等. 2023. 牛苦头矿床矿石矿物标型特征及成因[J]. 矿产勘查, 14(6): 880−888.
[49] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
[50] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉地区深部的华力西期花岗闪长岩U−Pb年龄及意义[J]. 现代地质, 28(6): 1161−1169. doi: 10.3969/j.issn.1000-8527.2014.06.006
[51] 宋忠宝, 张雨莲, 贾群子, 等. 2016. 青海祁漫塔格地区野马泉花岗闪长岩LA−ICP−MS 锆石U−Pb年龄及其地质意义[J]. 地质通报, 35(12): 2006−2013.
[52] 王新雨, 祝新友, 李加多, 等. 2021. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 37(5): 1567−1586.
[53] 王新雨, 祝新友, 李加多, 等. 2020. 青海牛苦头矿区锰质黑柱石成因及其地质意义[J]. 地质学报, 94(8): 2279−2290. doi: 10.3969/j.issn.0001-5717.2020.08.008
[54] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究——来自成矿岩体年代学和黄铁矿Re−Os地球化学证据[J]. 西北地质, 56(6): 71−81.
[55] 徐国端. 2010. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D]. 昆明理工大学博士学位论文: 1−159.
[56] 姚磊. 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 中国地质大学(北京)博士学位论文: 1−171.
[57] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169.
[58] 于淼, 丰成友, 保广英, 等. 2013. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 32(1): 55−76.
[59] 赵一鸣, 丰成友, 李大新, 等. 2013. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 32(1): 1−19. doi: 10.3969/j.issn.0258-7106.2013.01.001
[60] 赵一鸣, 林文蔚, 毕承思, 等. 1990. 中国矽卡岩矿床[M]. 北京: 地质出版社: 1−354.
[61] 赵子烨. 2019. 青海牛苦头矽卡岩矿物学及成矿作用研究[D]. 中国地质大学(北京)硕士学位论文: 1−63.
[62] 钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082.
[63] 钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500.
-