内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束

杜立华, 黄宇, 高雄, 牛兴国, 郑国强, 陈飞飞, 曹晋东, 赵丹, 钟世华. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束. 地质通报, 44(4): 633-648. doi: 10.12097/gbc.2024.07.001
引用本文: 杜立华, 黄宇, 高雄, 牛兴国, 郑国强, 陈飞飞, 曹晋东, 赵丹, 钟世华. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束. 地质通报, 44(4): 633-648. doi: 10.12097/gbc.2024.07.001
DU Lihua, HUANG Yu, GAO Xiong, NIU Xingguo, ZHENG Guoqiang, CHEN Feifei, CAO Jindong, ZHAO Dan, ZHONG Shihua. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia. Geological Bulletin of China, 44(4): 633-648. doi: 10.12097/gbc.2024.07.001
Citation: DU Lihua, HUANG Yu, GAO Xiong, NIU Xingguo, ZHENG Guoqiang, CHEN Feifei, CAO Jindong, ZHAO Dan, ZHONG Shihua. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia. Geological Bulletin of China, 44(4): 633-648. doi: 10.12097/gbc.2024.07.001

内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束

  • 基金项目: 内蒙古自治区地质勘查基金项目《内蒙古自治区克什克腾旗大石砬子铅锌多金属矿预查》(编号:22-1-KC23)、国家自然科学青年基金项目《青海野马泉矿床成矿岩浆H2O和Cl含量精细研究:对矽卡岩矿床成因的约束》(批准号:42203066)和国家自然科学基金面上项目《基于多维数据的斑岩Cu矿床成矿岩浆机器学习识别方法和矿床成因研究》(批准号:42472104)
详细信息
    作者简介: 杜立华(1989− ),男,在读硕士生,工程师,从事区域成矿规律研究。E−mail:87804220@qq.com
    通讯作者: 钟世华(1989− ),男,博士,副教授,从事矿床学和地质大数据研究。E−mail:zhongshihua@ouc.edu.cn
  • 中图分类号: P618.44;P618.6

Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia

More Information
  • 研究目的

    自内蒙古维拉斯托稀有金属-锡多金属矿床被发现以来,其矿床成因一直是地质学者研究的热点。研究发现氧逸度在锡元素迁移和富集成矿过程中扮演着重要的作用,准确限定成矿岩体氧逸度特征能够对维拉斯托锡多金属矿床成因进行约束。

    研究方法

    为此,对维拉斯托锡多金属矿床中与成矿密切相关的石英斑岩岩体开展了LA−ICP−MS锆石U−Pb定年、全岩地球化学分析和锆石微量元素分析。

    研究结果

    锆石U−Pb定年结果显示,维拉斯托锡多金属矿床成矿岩体的结晶年龄分别集中在120.2±1.6 Ma和125.9±1.9 Ma,表明该地区存在多期次岩浆活动。石英斑岩主量和微量元素特征显示,成矿岩浆具有高Si的特征且具有明显的负Eu异常,显示成矿岩浆经历了斜长石等分异结晶作用。锆石微量元素分析结果表明,维拉斯托锡多金属矿床成矿岩体的Ce/Ce*平均值为400.87,Eu/Eu*平均值为0.062;${\mathrm{log}}f_{{\mathrm{O}}_2 }$多集中在−26~−20,ΔFMQ集中在−6~−1,指示了还原性较强的成矿环境。

    结论

    综上认为,氧逸度是控制维拉斯托矿床形成的关键因素,维拉斯托成矿岩浆具有较低的氧逸度,抑制了Sn在地壳深部过早饱和,使Sn能够在岩浆中聚集并最终形成大规模锡矿化。

  • 加载中
  • 图 1  大兴安岭南段大地构造位置图(a)及主要锡多金属矿床分布图(b)(据武广等, 2021

    Figure 1. 

    图 2  维拉斯托矿区地质图

    Figure 2. 

    图 3  典型矿体和含矿岩体照片

    Figure 3. 

    图 4  维拉斯托矿床成矿岩体典型锆石阴极发光(CL)图像

    Figure 4. 

    图 5  维拉斯托矿床成矿岩体锆石U−Pb年龄谐和图及年龄加权平均值

    Figure 5. 

    图 6  维拉斯托矿床成矿岩体A/CNK−A/NK图解(a, Maniar and Piccoli, 1989)和SiO2−K2O图解(b, Peccerillo and Taylor, 1976)(阴影区数据据武广等, 2021,下同)

    Figure 6. 

    图 7  维拉斯托矿床成矿岩体球粒陨石标准化稀土元素配分图(a,标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989)

    Figure 7. 

    图 8  维拉斯托矿床成矿岩体锆石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989

    Figure 8. 

    图 9  维拉斯托矿床成矿岩体锆石Eu/Eu*−Ce/Ce*图解(斑岩铜矿数据据Zhong et al., 2019

    Figure 9. 

    图 10  维拉斯托矿床成矿岩体锆石温度-${\mathrm{log}}f_{{\mathrm{O}}_2 } $图解(a~c)和温度-ΔFMQ图解(d~f)(ΔFMQ=logfO2−logFMQ,其中FMQ指铁橄榄石-磁铁矿-石英缓冲剂)

    Figure 10. 

    图 11  维拉斯托矿床成矿岩体全岩SiO2−TFeO/MgO图解(据Wang et al., 2024修改;图中NNO指N-NO缓冲剂,<NNO-0.5的区域代表还原岩浆,>NNO-0.5的区域代表氧化岩浆,而NNO±0.5的区域代表过渡岩浆)

    Figure 11. 

    表 1  维拉斯托花岗岩体锆石U-Th-Pb定年结果

    Table 1.  Zircon U-Th-Pb dating results from Weilasituo granites

    样品号含量/10−6Th/U年龄/Ma
    PbThU207Pb/206Pb207Pb/235U206Pb/238U
    WL1-1422482171.1522.398.1325.811.5306.27.0
    WL1-2412122270.9764.8112.0346.414.2293.96.2
    WL1-5*241641109620.1211.241.7132.62.9127.72.0
    WL1-6*4422214182430.1127.934.3130.52.5129.82.2
    WL1-9*3211054136190.1257.542.6132.62.6125.01.9
    WL1-1020901550.6390.8114.8318.713.4312.96.7
    WL1-12*241233295348731.0172.34.6126.52.2122.91.7
    WL1-136642642159280.21761.1107.3301.621.7134.32.8
    WL1-157834896273860.2500.059.3141.23.7120.21.6
    WL8-1*5816028144620.4168.639.8130.12.4126.92.0
    WL8-2*6125946165380.4122.335.2128.22.3127.82.2
    WL8-4*240872112770.1227.975.0128.92.4122.72.0
    WL8-57282392204590.11038.9102.8197.910.3130.42.4
    WL8-610585184302500.21261.1148.9227.517.5133.12.1
    WL8-7734883139080.12120.1117.4385.828.2145.92.9
    WL8-9289641102290.1787.047.1178.64.9132.52.2
    WL8-10287766102710.11040.488.9197.48.8130.72.2
    WL8-149705624348040.2479.749.1154.34.1131.72.0
    WL8-158054536258280.21200.078.9183.77.2135.22.0
    WL14-1*155512181573740.2127.936.1124.32.0122.81.7
    WL14-2171114337619140.2209.342.6147.17.9138.86.4
    WL14-36933204308940.1350.144.4131.92.7119.01.9
    WL14-4*12708801502910.294.537.0120.12.3119.82.0
    WL14-76613193280550.1101.961.1128.22.1127.81.8
    WL14-8*3572510137260.2153.836.1121.32.2118.11.8
    WL14-9*149411108598140.2109.437.0119.02.2117.81.9
    WL14-1011696632469780.1200.140.7129.92.5127.72.1
    WL14-129484895373530.1372.388.9153.211.9130.02.6
    WL14-14*13529627499160.2316.715.7132.82.7121.61.6
      注:上标*的锆石年龄谐和度高于90%,用于构建年龄图解
    下载: 导出CSV

    表 2  维拉斯托矿床成矿岩体全岩主量、微量和稀土元素分析结果

    Table 2.  Whole-rock major, trace and rare earth elements analytical results of ore-forming intrusions of the Weilasituo deposit

    元素 WLST1 WLST8 WLST14 元素 WLST1 WLST8 WLST14
    石英斑岩 石英斑岩 石英斑岩 石英斑岩 石英斑岩 石英斑岩
    SiO2 77.95 74.17 73.06 Lu 0.27 0.27 0.52
    Al2O3 13.87 15.77 16.05 ∑REE 33.8 23.2 33.68
    CaO 0.3 0.26 0.25 Eu/Eu* 0.19 0.18 0.10
    Fe2O3 0.71 0.17 0.33 Ce/Ce* 8.82 4.32 4.46
    FeO 0.72 0.4 0.56 Y 1.16 1.02 3.13
    K2O 0.76 2.82 3.95 Rb 471 608 1073
    MgO 0.07 0.06 0.04 Ba 7.66 26.9 2.96
    MnO 0.06 0.01 0.02 Th 7.12 18.5 17.6
    Na2O 5.65 7.21 6.5 U 16 16 15.6
    Na2O+K2O 6.41 10.03 10.45 Nb 14 23.8 97.2
    Na2O/K2O 7.43 2.56 1.65 Ta 6.77 6.19 16
    P2O5 <0.01 <0.01 <0.01 Sr 9.13 11 1.99
    TiO2 0.01 <0.01 <0.01 Zr 49.3 56.1 54.8
    烧失量 0.83 0.41 0.43 Hf 16.8 18.9 15.6
    A/CNK 1.30 1.04 1.02 Li 963 174 231
    A/NK 1.37 1.07 1.06 Be 4.99 4.81 4.98
    La 2.85 2.77 3.41 Sc 2.02 0.89 1.02
    Ce 21 10.1 11.9 V 0.98 0.46 0.37
    Pr 1.37 1.4 1.79 Co 0.06 0.19 <0.05
    Nd 3.6 3.55 4.77 Ni 0.17 0.19 0.15
    Sm 0.93 0.97 1.54 Cu 8.01 3.37 26.5
    Eu <0.05 <0.05 <0.05 Zn 103 27 39.6
    Gd 0.43 0.47 0.92 Mo 2.11 11 0.62
    Tb 0.12 0.12 0.31 Bi <0.05 0.07 0.15
    Dy 0.71 0.83 2.28 Pb 18.8 33.7 42.8
    Ho 0.14 0.16 0.47 Ga 44 52.5 53.9
    Er 0.59 0.64 1.65 Cs 20.6 7.94 19.7
    Tm 0.17 0.19 0.44 Cr 0.76 1.03 0.79
    Yb 1.62 1.73 3.68 Sn 8.3 3.82 60.3
      注:主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV
  • [1]

    Belousova E A, Griffin W L, Pearson N J. 1998. Trace element composition and catholuminescence properties of southern African kimberlitic zircons[J]. Mineralogical Magazine, 62: 355−366. doi: 10.1180/002646198547747

    [2]

    Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 2: 63−114.

    [3]

    Du A D, Qu W J, Wang D H, et al. 2007. Subgrain−size decoupling of Re and 187Os within molybdenite[J]. Mineral Deposits, 26(5): 572−580 (in Chinese with English abstract).

    [4]

    Fan Z Y, Qiu H Y, Fu X, et al. 2017. Discovery and exploration of Weilasituo large porphyry−type tin−polymetal deposit in Inner Mongolia and its geological significances[J]. Gold Science and Technology, 25(1): 9−17 (in Chinese with English abstract).

    [5]

    Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti−in−zircon and Zr−in−rutile thermometers[J]. Contributions to Mineralogy and Petrology, 154: 429−437. doi: 10.1007/s00410-007-0201-0

    [6]

    Gao X, Zhou Z H, Karel B, et al. 2019. Ore formation mechanism of the Weilasituo tin−polymetallic deposit, NE China: Constraints from bulk−rock and mica chemistry, He−Ar isotopes, and Re−Os dating[J]. Ore Geology Reviews, 109: 163−183. doi: 10.1016/j.oregeorev.2019.04.007

    [7]

    Gehrels G E, Valencia V A, Ruiz J. 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U−Pb ages by laser ablation−multicollector–inductively coupled plasma–mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 9(3): Q03017.

    [8]

    Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing discrimination diagrams for granite mineralization potential by using machine learning and zircon trace elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).

    [9]

    Guo G J. 2016. Discussion on geological characteristics and metallogenic origin of Weilasituo Sn polymetal deposit in Inner Mongolia[D]. Master's Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    [10]

    Ishihara S. 1981. The granitoid series and mineralization[J]. Econ. Geol., 75th Anniv.: 458−484.

    [11]

    Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite H2O−HCl and haplogranite−H2O−HF[J]. Contributions to Mineralogy & Petrology, 109(2): 139−150.

    [12]

    Lei W Y, Shi G H, Liu Y X. 2013. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 20(4): 273−284 (in Chinese with English abstract).

    [13]

    Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of mineralized and barren magmatic rocks for the pophryry−skarn deposits from the Qimantagh, East Kunlun: Based on machine learning and whole−rock compositions[J]. Northwestern Geology, 56(6): 41−56 (in Chinese with English abstract).

    [14]

    Liu R L, Wu G, Li T G, et al. 2018a. LA−ICP−MS cassiterite and zircon U−Pb ages of the Weilasituo tin−polymetallic deposit in the southern Great Xing'an Range and their geological significance[J]. Earth Science Frontiers, 25(5): 183−201 (in Chinese with English abstract).

    [15]

    Liu R L, Wu G, Chen G Z, et al. 2018b. Characteristics of fluid inclusions and H−O−C−S−Pb isotopes of Weilasituo Sn−polymetallic deposit in southern Da Hinggan Mountains[J]. Mineral Deposits, 37(2): 199−224 (in Chinese with English abstract).

    [16]

    Liu Y F, Fan Z Y, Jiang H C, et al. 2014. Genesis of the Weilasituo−Bairendaba porphyry−hydrothermal vein type system in Inner Mongolia[J]. Acta Geologica Sinica, 88(12): 2373−2385 (in Chinese with English abstract).

    [17]

    Liu Y F, Jiang S H, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag−Zn−Pb−Cu−(Sn−W) deposits in the shallow part of a porphyry Sn−W−Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150−173. doi: 10.1016/j.oregeorev.2015.12.006

    [18]

    Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U−Pb isotope and trace element analyses by LA−ICP−MS[J]. Chinese Science Bulletin, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4

    [19]

    Loucks R R, Fiorentini M L, Henríquez G J. 2020. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 61(3): egaa034. doi: 10.1093/petrology/egaa034

    [20]

    Ludwig K R. 2012. User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 5: 1−75.

    [21]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [22]

    Meng Q R. 2003. What drove late Mesozoic extension of the northern China−Mongolia tract?[J]. Tectonophysics, 369(3/4): 155−174.

    [23]

    Müller B, Frischknecht R, Seward T, et al. 2001. A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA−ICP−MS micro−analysis[J]. Mineralium Deposita, 36(7): 680−688. doi: 10.1007/s001260100195

    [24]

    Murakami T, Chakoumakos B C, Ewing R C, et al. 1991. Alpha−decay event damage in zircon[J]. American Mineralogist, 76(9/10): 1510−1532.

    [25]

    Niu J H, Tian F Q, Qiu D F, et al. 2023. Zircon U−Pb age of granitoids in the Jiudian gold deposit, Shandong Province and constraints on the magmatic activity patterns in the southern section of the Zhaoping fault[J]. Geological Bulletin of China, 42(5): 813−827 (in Chinese with English abstract).

    [26]

    Pan X F, Guo L J, Wang S, et al. 2009. Laser microprobe Ar−Ar dating of biotite from the Weilasituo Cu−Zn polymetallic deposit in Inner Mongolia[J]. Acta Petrologica et Mineralogica, 28(5): 473−479 (in Chinese with English abstract).

    [27]

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745

    [28]

    Qin F, Liu J M, Zeng Q D, et al. 2009. Petrogenetic and metallogenic mechanism of the Xiaodonggou porphyry molybdenum deposit in Hexigten Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 25(12): 3357−3368 (in Chinese with English abstract).

    [29]

    Robinson P T, Zhou M F, Hu X F, et al. 1999. Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 17(4): 423−442. doi: 10.1016/S1367-9120(99)00016-4

    [30]

    Shao J A. 2007. Uplift of the Great Xing'an Range and its geodynamic background[M]. Beijing: Geological Publishing House: 150−178 (in Chinese with English abstract).

    [31]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313−345.

    [32]

    Taylor J R, Wall V J. 1993. Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase[J]. Economic Geology, 88(2): 437−460. doi: 10.2113/gsecongeo.88.2.437

    [33]

    Wang C Y. 2015. Lead−zinc polymetallic metallogenic series and prospecting direction of Huanggangliang−Ganzhuermiao metallogenic belt, Inner Mongolia[D]. Doctoral Thesis of Jilin University (in Chinese with English abstract).

    [34]

    Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021

    [35]

    Wang X Y, Hou Q Y, Wang J, et al. 2013. SHRIMP geochronology and Hf isotope of zircons from granitoids of the Weilasituo deposit in Inner Mongolia[J]. Geoscience, 27(1): 67−78 (in Chinese with English abstract).

    [36]

    Wang Y, Wang X, Zhang W, et al. 2024. Fresh insights into the onset of big mantle wedge beneath the North China Craton[J]. Acta Geochimica, 44: 142−160.

    [37]

    Wu F Y, Sun D Y, Ge W C. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    [38]

    Wu G, Liu R L, Chen G Z, et al. 2021. Mineralization of the Weilasituo rare metal−tin−polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of granitic magmas[J]. Acta Petrologica Sinica, 37(3): 637−664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01

    [39]

    Xiao L Y, Yang X Z. 2022. Ce−in−zircon oxybarometer and the redox state of the early earth[J]. Geological Journal of China Universities, 28(4): 484−492 (in Chinese with English abstract).

    [40]

    Xue H M, Guo L J, Hou Z Q, et al. 2010. SHRIMP zircon U−Pb ages of the middle Neopaleozoic unmetamorphosed magmatic rocks in the southwestern slope of the Da Hinggan Mountains Inner Mongolia[J]. Acta Petrologica et Mineralogica, 29(6): 811−823 (in Chinese with English abstract).

    [41]

    Ying J F, Zhou X H, Zhang L C, et al. 2010. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 39(6): 786−793. doi: 10.1016/j.jseaes.2010.04.035

    [42]

    Zhai D G, Liu J J, Li J M, et al. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance[J]. Mineral Deposits, 35(5): 1011−1022 (in Chinese with English abstract).

    [43]

    Zhang T F, Guo S, Xin H T, et al. 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn−(Li−Rb−Nb−Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China[J]. Earth Science, 44(1): 248−267 (in Chinese with English abstract).

    [44]

    Zhao H., Feng C Y, Zhong S H, et al. 2023. Zircon fertility indicators compromised by mineral inclusion contamination: A case study from the Taoxikeng W deposit, South China[J]. Ore Geology Reviews, 162: 105714.

    [45]

    Zhao Z D, Liu D, Wang Q, et al. 2018. Zircon trace elements and their use in deep processes[J]. Earth Science Frontiers, 25(6): 124−135 (in Chinese with English abstract).

    [46]

    Zheng J P, O'reilly S Y, Griffin W L, et al. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino−Korean craton, eastern China[J]. International Geology Review, 40(6): 471−499. doi: 10.1080/00206819809465220

    [47]

    Zhong S H, Seltmann R, Qu H Y, et al. 2019. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: A revised Ce/Ce* method[J]. Mineralogy and Petrology, 113(6): 755−763. doi: 10.1007/s00710-019-00682-y

    [48]

    Zhou Z H, Gao X, Ouyang H G, et al. 2019. Formation mechanism and intrinsic genetic relationship between tin−tungsten−lithium mineralization and peripheral lead−zinc−silver−copper mineralization: Exemplified by Weilasituo tin−tungsten−lithium polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 38(5): 1004−1022 (in Chinese with English abstract).

    [49]

    Zhou Z H, Lü L S, Feng J R, et al. 2010. Molybdenite Re−Os ages of the Huanggang skarn Sn−Fe deposit and their geological significance Inner Mongolia[J]. Acta Petrologica Sinica, 14(3): 667−679 (in Chinese with English abstract).

    [50]

    Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasito Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).

    [51]

    Zi J W, Rasmussen B, Muhling J R, et al. 2022. In situ U−Pb and geochemical evidence for ancient Pb−loss during hydrothermal alteration producing apparent young concordant zircon dates in older tuffs[J]. Geochimica et Cosmochimica Acta, 320: 324−338. doi: 10.1016/j.gca.2021.11.038

    [52]

    杜安道, 屈文俊, 王登红, 等. 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象[J]. 矿床地质, 26(5): 572−580. doi: 10.3969/j.issn.0258-7106.2007.05.010

    [53]

    樊志勇, 邱慧远, 付旭, 等. 2017. 内蒙古维拉斯托大型斑岩型锡多金属找矿勘查及启示[J]. 黄金科学技术, 25(1): 9−17. doi: 10.11872/j.issn.1005-2518.2017.01.009

    [54]

    郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70. doi: 10.12401/j.nwg.2023158

    [55]

    郭贵娟. 2016. 内蒙古维拉斯托锡多金属矿床地质特征及成因探讨[D]. 中国地质大学(北京)硕士学位论文.

    [56]

    雷玮琰, 施光海, 刘迎新. 2013. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 20(4): 273−284.

    [57]

    刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩−矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56. doi: 10.12401/j.nwg.2023155

    [58]

    刘瑞麟, 武广, 李铁刚, 等. 2018a. 大兴安岭南段维拉斯托锡多金属矿床LA−ICP−MS锡石和锆石U−Pb年龄及其地质意义[J]. 地学前缘, 25(5): 183 201.

    [59]

    刘瑞麟, 武广, 陈公正, 等. 2018b. 大兴安岭南段维拉斯托锡多金属矿床流体包裹体和同位素特征[J]. 矿床地质, 37(2): 199−224.

    [60]

    刘翼飞, 樊志勇, 蒋胡灿, 等. 2014. 内蒙古维拉斯托−拜仁达坝斑岩−热液脉状成矿体系研究[J]. 地质学报, 88(12): 2373−2385.

    [61]

    牛警徽, 田福泉, 邱敦方, 等. 2023. 山东旧店金矿床花岗岩类锆石 U−Pb 年龄及对招平断裂带南段岩浆活动规律的约束[J]. 地质通报, 42(5): 813−827. doi: 10.12097/j.issn.1671-2552.2023.05.012

    [62]

    潘小菲, 郭利军, 王硕, 等. 2009. 内蒙古维拉斯托铜锌矿床的白云母Ar/Ar年龄探讨[J]. 岩石矿物学杂志, 28(5): 473 479.

    [63]

    邵济安. 2007. 大兴安岭的隆起与地球动力学背景[M]. 北京: 地质出版社: 150−178.

    [64]

    覃锋, 刘建明, 曾庆栋, 等. 2009. 内蒙古克什克腾旗小东沟斑岩型钼矿床成岩成矿机制探讨[J]. 岩石学报, 25(12): 3357−3368.

    [65]

    王承洋. 2015. 内蒙古黄岗梁−甘珠尔庙成矿带铅锌多金属成矿系列与找矿方向[D]. 吉林大学博士学位论文.

    [66]

    王新宇, 侯青叶, 王瑾, 等. 2013. 内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究[J]. 现代地质, 27(1): 67−78. doi: 10.3969/j.issn.1000-8527.2013.01.007

    [67]

    武广, 刘瑞麟, 陈公正, 等. 2021. 内蒙古维拉斯托稀有金属−锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示[J]. 岩石学报, 37(3): 637−664.

    [68]

    肖路毅, 杨晓志. 2022. 锆石Ce氧逸度计和早期地球的氧化还原状态[J]. 高校地质学报, 28(4): 484−492.

    [69]

    薛怀民, 郭利军, 侯增谦, 等. 2010. 大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U−Pb年代学[J]. 岩石矿物学杂志, 29(6): 811−823. doi: 10.3969/j.issn.1000-6524.2010.06.016

    [70]

    张天福, 郭硕, 辛后田, 等. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn−(Li−Rb−Nb−Ta)多金属成矿作用的制约[J]. 地球科学, 44(1): 248−267.

    [71]

    赵志丹, 刘栋, 王青, 等. 2018. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 25(6): 124−135.

    [72]

    翟德高, 刘家军, 李俊明, 等. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J]. 矿床地质, 35(5): 1011−1022.

    [73]

    周振华, 高旭, 欧阳荷根, 等. 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制: 以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 38(5): 1004−1022.

    [74]

    周振华, 吕林素, 冯佳睿, 等. 2010. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报. 14(3): 667−679.

    [75]

    祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.3969/j.issn.1000-3657.2016.01.014

  • 加载中

(11)

(2)

计量
  • 文章访问数:  62
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2024-07-01
修回日期:  2024-10-16
刊出日期:  2025-04-15

目录