-
摘要:
研究目的 对青海省成矿规律目前尚未进行系统总结,青海省成矿规律和特征不明。
研究方法 在收集前人资料的基础上,系统总结了青海省主要矿床时空分布的特点和成矿规律,建立了青海省主要矿产的成矿模式。
研究结果 青海省矿产资源丰富,主要有镍、金、锂、银、铜、锌、铅等优势金属矿产。其形成时代主要为志留纪—泥盆纪、石炭纪—二叠纪、三叠纪、古近纪、新近纪及第四纪,形成的重要金属矿床类型有:①岩浆型铜镍钴矿床;②碳酸岩型铌矿床;③斑岩-矽卡岩型铜钼铅锌矿床;④造山型金矿床;⑤浅成低温热液型银矿床;⑥喷流沉积(SEDEX)型铜铅锌钴矿床;⑦密西西比河谷型(MVT)铅锌矿床等,其中岩浆型铜镍矿床、造山型金矿床发育世界级大型—超大型矿床。根据其形成的地质背景,划分了13个二级构造单元和6个成矿省,经历了5个时间段的构造演化。
结论 青海省经历了3期(原、古、新)特提斯洋演化与成矿作用,具复杂的成矿地质环境,成矿作用具多期次、多类型、多矿源的特征。
Abstract:Objective It is poorly studied regarding the metallogenic patterns of Qinghai Province, and the metallogenic laws and characteristics of Qinghai Province are unknown.
Methods Based on the collection of previous data, this paper systematically summarizes the characteristics of the spatial and temporal distribution of the major mineral deposits in Qinghai Province and the metallogenetic pattern, and establishes the metallogenetic pattern of the major minerals in Qinghai Province.
Results Qinghai Province is famous for its abundant mineral resources, mainly including Ni, Au, Li, Ag, Cu, Zn and Pb, all of which are superior metal minerals. The mineralization mainly occurred in Silurian−Devonian, Carboniferous−Permian, Triassic, Paleogene, Neogene and Quaternary. The types of ore deposits that form main superior metal minerals include magmatic Cu−Ni−Co deposits, carbonatite−type Nb deposits, porphyry−skarn−type Cu−Mo−Pb−Zn deposits, orogenic−type Au deposits, epithermal Ag deposits, sedimentary exhalative (SEDEX) Cu−Pb−Zn−Co deposits, and Mississippi Valley Type (MVT) Pb−Zn deposits. Among these deposits, among which magmatic Cu−Ni deposits and orogenic−type Au deposits reached world−class large and super−large deposits. According to the geological environments of their formation, they are divided into 13 secondary tectonic units and 6 metallogenic provinces, which experienced the tectonic evolution of five periods.
Conclusions The formation of mineral deposits, which were closely related to the evolution of Proto−, Paleo− and Neo−Tethys Oceans, These deposits formed under complex environments characterized by the metallogeny of multiple−stages, multiple ore types, and multiple sources of ore−forming materials.
-
Key words:
- Qinghai Province /
- metallogenic regularity /
- Tethys /
- mineral resource /
- mineralization model /
- metallogeny
-
-
图 1 青海省Ⅳ级成矿单元划分图(各单元的具体位置和范围详见图中标识,各级成矿带名称见表1)
Figure 1.
图 5 青海省侏罗纪-白垩纪陆内造山阶段矿产分布图(据潘彤等,2022)
Figure 5.
表 1 青海省Ⅳ级成矿单元划分
Table 1. Class Ⅳ mineralization unit division of Qinghai Province
Ⅰ级成
矿域Ⅱ级成
矿省Ⅲ级成矿带 Ⅳ级成矿亚带 编号 名称 编号 名称 Ⅰ-2秦祁昆成矿域 Ⅱ-5阿尔
金—祁连成矿省Ⅲ-19 阿尔金成矿带(青海段) — — Ⅲ-20 河西走廊Cu−U−煤成矿带(青海段) — — Ⅲ-21 北祁连Au−Cu−Pb−Zn−Fe−Cr−煤−石棉−硫铁矿成矿带(青海段) Ⅳ-21-1 走廊南山北坡Cu−Cr−Fe−煤成矿亚带 Ⅳ-21-2 走廊南山南坡Au−Fe−Cu−Pb−Zn−板岩成矿亚带 Ⅳ-21-3 托来山−大坂山Au−Cu− Pb−Zn−Fe−Cr−石棉−煤−玉石成矿亚带 Ⅲ-22 中祁连Au−Cu−煤−石英岩−大理岩−石灰岩−石膏−粘土成矿带(青海段) Ⅳ-22-1 南尕日岛−花石峡W−Fe−煤炭−玄武岩−石英岩−石灰岩−白云岩成矿亚带 Ⅳ-22-2 木里−海晏Au−Ag−Ti−煤−石灰岩−白云岩成矿亚带 Ⅳ-22-3 大通−高庙Pb−Zn−W−煤−石膏−大理岩−石英岩−粘土成矿亚带 Ⅲ-23 南祁连Au−Ni−Pb−Zn −磷−石灰岩−花岗岩-石英岩成矿带(青海段) Ⅳ-23-1 哈拉湖−龙门Au−Pb−Zn−Fe−Cu−W−煤−石灰岩成矿亚带 Ⅳ-23-2 居洪图−石乃亥Au−Cu−硼−脉石英成矿亚带 Ⅳ-23-3 拉脊山Au−Ni−Fe−Cu−磷−玉石成矿亚带 Ⅳ-23-4 日月山−化隆Ni-Fe−Cu−萤石−石灰岩−石英岩成矿亚带 Ⅰ-2秦祁昆成矿域 Ⅱ-6昆仑成矿省 Ⅲ-24 柴达木盆地北缘Au−Pb−Zn −Ti−
Mn−Fe −Cr−Cu −W−稀有−煤−石棉−滑石−硫铁矿−石灰岩−大理岩
成矿带Ⅳ-24-1 俄博梁石棉−Au−Cu−石油−煤−石墨−石墨−白云母成矿亚带 Ⅳ-24-2 赛什腾山−布果特山Au−Cu−Pb−Zn−Fe−Mn−稀有−煤−盐类−重晶石−绿松石−红蓝宝石−石灰岩−大理岩−蛇纹岩成矿亚带 Ⅳ-24-3 欧龙布鲁克煤−磷−石灰岩−白云岩−(Fe−粘土)成矿亚带 Ⅳ-24-4 绿梁山−阿尔茨托山Cu−Pb−Zn−Au−Mn-Fe−Cr−Ti−稀有−U−
煤−石油−蛇纹岩−石灰岩成矿亚带Ⅲ-25 柴达木盆地Li−B−K−Na−Mg−盐类−石油−天然气−芒硝−天然碱成矿带 Ⅳ-25-1 柴西北石油−天然气−钾盐−钠盐−镁盐−硼成矿亚带 Ⅳ-25-2 柴中钾盐−钠盐−镁盐−锂盐−石油−天青石−芒硝成矿亚带 Ⅳ-25-3 昆北石油、天然气−硼−盐矿−芒硝成矿亚带 Ⅳ-25-4 达布逊湖钾镁盐−盐矿−天然气−天然碱成矿亚带 Ⅲ-26 东昆仑Ni−Au− Fe−Pb−Zn−Cu−
Ag−W−Sn−Co−Bi−Hg−Mn−玉
石−萤石−硅灰石−页岩气−重晶
石−大理岩−石灰岩−石墨−硫铁
矿成矿带(青海段)Ⅳ-26-1 祁漫塔格−都兰Ni−Fe−Cu−Pb−Zn−W-Sn-Co−Bi−Au−Ag−Mo−硅灰石−白云岩−石灰岩−石墨成矿亚带 Ⅳ-26-2 伯喀里克−香日德Au−Cu−Pb−Zn−Fe−Ni-Ag−W−Mo−石墨−萤
石−玉石–煤−花岗岩成矿亚带Ⅰ-2秦祁昆成矿域 Ⅱ-6昆仑成矿省 Ⅲ-26 东昆仑Ni−Au− Fe−Pb−Zn−Cu−
Ag−W−Sn−Co−Bi−Hg−Mn−
玉石−萤石−硅灰石− 页岩气−重
晶石−大理岩−石灰岩−石墨−
硫铁矿成矿带(青海段)Ⅳ-26-3 东昆仑南部Cu−Au−Co-Ni-W−Fe−Mn−V−Mo−石墨−大理岩−玉
石−石灰岩−煤成矿亚带Ⅳ-26-4 向前沟−满丈岗Au−Ag−Fe−Cu−Pb−Zn−花岗岩成矿亚带 Ⅳ-26-5 智益−铜峪沟Cu−Pb−Zn−Ag−Sn−Hg−重晶石−萤石−白云母−煤成矿亚带 Ⅱ-7秦岭-大别造山带成矿省 Ⅲ-28 西秦岭Au−Pb−Zn−Cu(Fe)−Hg−
W−Sb−As−干热岩−石灰岩−大理
岩−花岗岩−盐类−泥炭成矿带
(青海段)Ⅳ-28-1 宗务隆Pb−Zn−Au−稀有−石灰岩−花岗岩−大理岩成矿亚带 Ⅳ-28-2 青海南山−泽库Au−Ag−Cu−Pb−Zn−W−Sb−Fe−As−石墨−花岗岩−盐类−干热岩成矿亚带 Ⅳ-28-3 苦海−作母沟Hg−Au− Pb−Zn−Sb−W−泥炭成矿亚带 Ⅳ-28-4 西倾山Hg−Sb(Au)成矿亚带 Ⅰ-3特提斯成矿域 Ⅱ-8巴颜喀拉-松潘成矿省 Ⅲ-29 阿尼玛卿Cu−Co−Zn−Au −煤−砂金−石膏成矿带(青海段) Ⅳ-29-1 布喀大阪Au−石膏成矿亚带 Ⅳ-29-2 布青山−积石山Cu−Co−Zn−Au−煤成矿亚带 Ⅰ-3特提斯成矿域 Ⅱ-8巴颜喀拉-松潘成矿省 Ⅲ-30 北巴颜喀拉−马尔康Au−Sb−砂金−泥炭成矿带(青海段) Ⅳ-30-1 东大滩−年保玉则Au−Sb−泥炭成矿亚带 Ⅳ-30-2 雅拉达泽−班玛Au−泥炭成矿亚带 Ⅲ-31 南巴颜喀拉−雅江砂金−Sb−石膏−水晶−粘土成矿带(青海段) Ⅱ-9喀剌昆仑—三江成矿省 Ⅲ-32 义敦−香格里拉石膏-芒硝成矿带(青海段) Ⅲ-33 金沙江Fe−Ag−Cu−砂金石灰岩−粘土成矿带(青海段) Ⅳ-33-1 西金乌兰−玉树Cu−Ag−Fe−砂金成矿亚带 Ⅳ-33-2 曲柔尕卡−赵卡隆Cu−Pb−Zn−Ag−Fe成矿亚带 Ⅰ-3特提斯成矿域 Ⅱ-9喀剌昆仑−三江成矿省 Ⅲ-35 喀喇昆仑−羌北-Pb−Zn−Fe−Cu−
水晶−石膏成矿带(青海段)Ⅳ-35-1 纳保扎陇−郭纽曲Pb−Zn−Fe−Cu−石膏成矿亚带 Ⅳ-35-2 各拉丹东−唐古拉山东Fe−Cu−水晶−石膏成矿亚带 Ⅲ-36 昌都−普洱Pb−Zn−Mo−Cu−Ag−Fe−砂金−煤−硫铁矿−盐类−石膏成矿带(青海段) Ⅳ-36-1 下拉秀Pb−Zn−Cu成矿亚带 Ⅳ-36-2 乌兰乌拉−乌丽−草曲Cu−煤−砂金−石膏成矿亚带 Ⅳ-36-3 纳日贡玛−囊谦Pb−Zn−Mo−Cu−Ag−Fe−硫铁矿−盐类成矿亚带 Ⅳ-36-4 旦荣—解嘎Ag−Cu−Pb−Zn−煤成矿亚带 表 2 青海省前南华纪(2500~780 Ma)主要矿床成矿年代
Table 2. Age of mineralization of major pre--Nanhua Period (2500~780 Ma) deposits in Qinghai Province
表 3 青海省南华纪—泥盆纪(780~359.6 Ma)主要矿床成矿年代
Table 3. Age of mineralization of major Nanhua Period−Devonian (780~359.6 Ma) deposits in Qinghai Province
序号 产地和地质体 矿产 岩(矿)石 测试对象和方法 年龄/Ma 资料来源 1 昆仑青龙沟金矿床 金 蚀变岩型矿石 绢云母Ar−Ar 409.4±2.3 张德全等,2005 2 昆仑赛坝沟金矿床 金 石英脉 绢云母Ar−Ar 425.5±2.1 张德全等,2005 3 昆仑赛坝沟金矿床 金 黄铁绢英岩化蚀变糜棱岩金矿石 绢云母K−Ar 426±1.2 丰成友等,2002 4 昆仑按纳格闪长岩体 金 闪长岩 锆石U−Pb 474.1±2.4 孔会磊等,2014 5 昆仑按纳格金矿床 金 闪长玢岩脉 锆石U−Pb 478.3±5.7 孔会磊等,2014 6 昆仑赛坝沟金矿床 金 蚀变糜棱岩型金矿石 绢云母Ar−Ar 426±2 丰成友等,2002 7 昆仑驼路沟钴(金)矿床 钴 石英钠长石岩 锆石SHRIMP 468±9 丰成友等,2005 8 昆仑驼路沟钴(金)矿床 钴金 石英钠长石岩 黄铁矿Re−Os 432±23 丰成友等,2006 9 昆仑赛什腾山岩体 铜 石英闪长岩 锆石SHRIMP 465.4±3.5 吴才来等,2008 10 昆仑大格勒铌矿 铌稀土 碳酸岩 锆石U−Pb 418、382 王秉璋等,2024 11 昆仑雅克登塔格杂岩体 铜镍 二长花岗岩 锆石SHRIMP 394±13 谌宏伟等,2006 12 昆仑喀雅克登塔格杂岩体 铜镍 辉长岩 锆石SHRIMP 403.3±7.2 谌宏伟等,2006 13 昆仑夏日哈木 铜镍 榴辉岩 锆石U−Pb 415.0±5.5 潘彤等,2020 14 昆仑夏日哈木 铜镍 闪长岩 锆石U−Pb 382.5±2.5 王冠,2014 15 昆仑夏日哈木 铜镍 辉石岩 锆石U−Pb 393.5±3.4 王冠,2014 16 昆仑夏日哈木 铜镍 辉长岩 锆石U−Pb 422±l 王冠,2014 17 祁连下什堂岩体 镍 基性岩 锆石U−Pb 449.8±2.4 张照伟等,2013 18 祁连金佛寺花岗岩 多金属 二长花岗岩 锆石U−Pb 424.1±3.3 吴才来等,2010 19 祁连金佛寺花岗岩 多金属 二长花岗岩 锆石U−Pb 428.5±4.5 吴才来等,2010 20 昆仑锡铁山铅锌矿区 铅锌 辉长岩 锆石U−Pb 514.7±1.1 廖宇斌等,2020 21 祁连大黑山钨矿区 钨 黑云二长花岗岩 锆石U−Pb 450.2± 2.8 刘敏等,2017 表 4 青海省石炭纪—三叠纪主要矿床成矿年代
Table 4. Mineralization ages of major Carboniferous to Triassic deposits in Qinghai Province
序号 产地和地质体 相关矿产 岩(矿)石 测试对象和方法 年龄/Ma 资料来源 1 昆仑大场金矿 金 破碎蚀变带岩型矿石 绢云母Ar−Ar 218.6±3.2 张德全等,2005 2 昆仑五龙沟金矿 金 破碎带蚀变岩型矿石 绢云母Ar−Ar 236.5±0.5 张德全等,2005 3 昆仑五龙沟金矿 金 辉绿岩脉 锆石U−Pb 242.8±2.1 程龙等, 2019 4 昆仑五龙沟金矿 金 黑云母Ar−Ar 242.72±1.69 寇林林等,2010 5 昆仑野骆驼泉金矿 金 破碎带蚀变岩型矿石 绢云母Ar−Ar 246±3 张德全等,2005 6 柴达木盆地北缘滩间山金矿 金 斜长花岗斑岩 锆石U−Pb 350.4±3.2 贾群子等,2013 7 东昆仑阿斯哈金矿 金 闪长岩 锆石U−Pb 243.8±1.2 李碧乐等,2012a 8 东昆仑果洛龙洼金矿 金 石英脉型和构造破碎带型 绢云母Ar−Ar 202.6±4.4 肖晔等,2014 9 巴颜喀拉德尔尼铜钴 铜镍 斜长角闪岩 锆石U−Pb 310.0±4.7 焦洪林,2016 10 巴颜喀拉德尔尼铜钴矿 铜镍 富黄铁矿的矿石 矿石Re−Os 295.5±7.2 焦建刚等,2013 11 昆仑肯德可克钴铋金矿 铜铋 辉长岩脉中的斜长石 斜长石Ar−Ar 207.8±1.9 赵财胜等,2006 12 昆仑肯德可克钴矿 铜铋金 辉长岩脉中的斜长石 斜长石Ar−Ar 211.13±4.46 赵财胜等,2006 13 昆仑虎头崖多金属矿 铜 钾长花岗岩 锆石SHRIMP 219.9±1.3 丰成友等,2011 14 昆仑虎头崖多金属矿 铜 似斑状黑云二长花岗岩 锆石SHRIMP 227.3±1.8 丰成友等,2011 15 昆仑玛兴大板岩体 铜 二长花岗岩 锆石SIMS 218±2 吴祥珂等,2011 16 昆仑哈日扎多金属矿 多金属 花岗斑岩、石英闪长岩 锆石U−Pb 116-204 田承盛等, 2014 17 昆仑哈日扎多金属矿 铜 花岗闪长斑岩 锆石U−Pb 234.5±4.8 宋忠宝等,2013 18 昆仑卡而却卡铜多金属矿 铜 花岗闪长岩 锆石SHRIMP 237±2 王松等,2009 19 秦岭谢坑铜金矿 铜金 角闪安山岩 锆石U−Pb 242.1±1.2 郭现轻等,2011 20 秦岭谢坑铜金矿 铜金 辉长闪长岩 锆石U−Pb 243.8±l 郭现轻等,2011 21 昆仑下得波利铜钼矿 铜钼 花岗斑岩 锆石SIMS 244.2±2.1 刘建楠等,2012 22 昆仑肯德可克铁钴金属矿 铁 砂卡岩型矿 锆石U−Pb 229.5±0.5 肖晔等,2013 23 昆仑肯德可克铁钴金矿 铁 围岩 锆石U−Pb 227.1±1.2 潘晓萍等,2013 24 昆仑它温查汉铁多金属矿 铁 磁铁矿矿石 云母Ar−Ar 229.9±3.5 田承盛等,2013 25 昆仑它温查汉铁多金属矿 铁 磁铁矿矿石 云母Ar−Ar 230.7±2 田承盛等,2013 26 昆仑尕林格铁多金属矿 铁多金属 磁铁矿矿石 金云母Ar−Ar 234.1±3.7 于淼等,2015 27 昆仑索拉吉尔铜钼矿 钼 铜钼矿石 辉钼矿Re−Os 238.8±1.3 丰成友等,2009 28 昆仑鸭子沟多金属矿 铅锌钼 钾长花岗斑岩 锆石SHRIMP 224±1.6 李世金等,2008 29 昆仑鸭子沟多金属矿 铅锌钼 方铅矿、闪锌矿、辉钼矿 辉钼矿Re−Os 226.4±0.4 何书跃等,2009 30 秦岭江里沟岩体 钨铜 二长花岗岩 锆石U−Pb 264±1.4 孙小攀等,2013 31 昆仑野马泉铁多金属矿 多金属 中细粒正长花岗岩 锆石SHRIMP 204.1±2.6 刘云华等,2006 32 昆仑景忍多金属矿 多金属 砂卡岩 锆石U−Pb 235.4±1.8 丰成友等,2011 33 昆仑唯宝多金属矿 多金属 石英闪长岩 锆石U−Pb 223.3 ± 1.5 Ma 钟世华,2018 34 昆仑坑得弄舍金多金属矿 金多金属 流纹质岩屑晶屑凝灰岩 锆石U−Pb 259.5±1.7 王春辉, 2017 35 昆仑哈西亚图铁多金属矿 铁多金属 石英闪长岩 锆石U−Pb 246.8±1.8 南卡俄吾等,2014 36 昆仑哈西亚图矿床 金多金属 花岗闪长岩 锆石U−Pb 240.1±0.8 南卡俄吾等,2015 37 秦岭瓦勒根金矿床 金 含矿斑岩体花岗斑岩 锆石U−Pb 237 李德彪等,2014 38 昆仑什多龙钼铅锌矿床 钼铅锌 辉钼矿 辉钼矿Re−Os 236.2±2.1 李文良等,2014 39 昆仑它温查汉西铁多金属矿床 铁多金属 花岗闪长斑岩 锆石U−Pb 236.0±2.3 杨涛等,2018 40 昆仑瑙木浑金矿 金 石英闪长岩 锆石U−Pb 235.8±0.8 李金超等,2017 41 昆仑瑙木浑金矿 金 矿石蚀变绢云母 绢云母40Ar−39Ar 227.84±1.13 李金超等,2017 42 昆仑虎头崖多金属矿 铅锌 黑云二长花岗岩体 锆石U−Pb 234.2±1.5 时超等, 2017 43 秦岭加吾金矿 金 花岗斑岩 锆石U−Pb 233.4±4.3 王斌等,2014 44 昆仑托克妥Cu−Au(Mo)矿床 铜金(钼) 花岗闪长斑岩 锆石U−Pb 232.6±1.2 夏锐等,2014 45 昆仑托克妥Cu−Au(Mo)矿床 铜金(钼) 含矿斑岩二长花岗斑岩 锆石U−Pb 232.49±0.93 夏锐等,2014 46 昆仑野马泉铁锌多金属矿床 锌 磁铁矿共生的金云母 金云母Ar−Ar 222.0±1.3 刘建楠等, 2017 47 昆仑野马泉铁锌多金属矿床 锌 二长花岗岩 锆石U−Pb 229.5±2.2 刘建楠等, 2017 48 昆仑拉陵灶火中游钼矿 钼 含钼花岗岩体 锆石U−Pb 228.49±0.84 严玉峰等,2012 49 昆仑西藏大沟金矿床 金 花岗闪长斑岩 锆石U−Pb 225.0-218.6 李金超等, 2018 50 昆仑阿斯哈金矿床 金 石英闪长岩 锆石U−Pb 232.6±1.4 岳维好等,2019 51 昆仑阿斯哈金矿床 金 花岗斑岩 锆石 U−Pb 222.1±3.9 岳维好等, 2017 52 昆仑乌兰拜兴铁矿床 铁 乌兰拜兴石英闪长岩 锆石U−Pb 219.4±1.3 张勇等,2018 53 昆仑小圆山铁多金属矿 铁多金属 斑状英云闪长岩 锆石U−Pb 217.7±1.1 孔会磊等,2016 54 昆仑那更康切尔银矿床 银多金属 流纹斑岩 锆石U−Pb 217.4±3.1 国显正等,2019 55 秦岭江里沟钨多金属矿床 钨多金属 矽卡岩型和斑岩型辉钼矿 辉钼矿Re−Os 217±1 路东宇等,2015 表 5 青海省侏罗纪-白垩纪主要矿床成矿年代
Table 5. Age of mineralization of major Jurassic—Cretaceous deposits in Qinghai Province
序号 产地和地质体 相关矿产 年代 规模 1 祁连江仓煤矿区 煤、煤层气 侏罗纪 大型 2 昆仑鱼卡煤矿区 煤、煤层气 侏罗纪 大型 3 昆仑柏树山粘土矿床 粘土 侏罗纪 中型 4 昆仑吴曼通洞水晶矿床 水晶 白垩纪 超大型 5 昆仑团鱼山煤矿床 煤 侏罗纪 大型 6 祁连木里煤田哆嗦公马煤矿床 煤 侏罗纪 大型 表 6 青海省古近纪-第四纪主要矿床成矿年代
Table 6. Age of mineralization of Paleogene—Quaternary deposits in Qinghai Province
序号 产地和地质体 相关矿产 岩(矿)石类型 测试对象和方法 年龄/Ma 资料来源 1 三江风火山盆地风火山砂岩铜矿 铜 砂岩铜矿 磷灰石裂变径迹 22.5±2.3 杨祖龙等,2008 2 三江纳日贡玛铜钼矿 铜钼 黑云母花岗斑岩 锆石U−Pb 40.8±0.4 郝金华等,2012 3 三江陆日格斑岩钼矿 钼 硫化物矿石中 辉钼矿Re−Os 60.7±1.5 郝金华等,2013 4 三江纳日贡玛铜钼矿 铜钼 花岗闪长斑岩 锆石U−Pb 41.44±0.23 宋忠宝等,2011 5 三江纳日贡玛铜钼矿 铜钼 辉钼矿黄铜矿黄铁矿化 辉钼矿Re−Os 40.86±0.85 王召林等,2008 6 三江东莫扎抓铅锌矿 铅锌 似层状和透镜体矿体 黄铁矿与方铅矿Rb−Sr 34.747±0.015 田世洪等,2009 7 三江东莫扎抓铅锌矿 铅锌 似层状和透镜体矿体 闪锌矿Rb−Sr 35.015±0.034 田世洪等,2009 8 三江东莫扎抓铅锌矿 铅锌 似层状和透镜体矿体 闪锌矿与黄铁矿Sm−Nd 35.74±0.71 田世洪等,2009 9 三江东莫扎抓铅锌矿 铅锌 似层状和透镜体矿体 方解石Rb−Sr, Sm−Nd 35.4 田世洪等,2011 10 三江莫海拉亨铅锌矿 铅锌 似层状和透镜体矿体 方解石、萤石Sm−Nd 33.72±0.46 田世洪等,2009 11 三江莫海拉亨铅锌矿 铅锌 似层状和透镜体矿体 闪锌矿Rb−Sr 32.22±0.36 田世洪等,2009 12 三江莫海拉亨铅锌矿 铅锌 似层状和透镜体矿体 闪锌矿与方铅矿Rb−Sr 33.949±0.022 田世洪等,2009 13 三江莫海拉亨铅锌矿 铅锌 似层状和透镜体矿体 方解石Rb−Sr,Sm−Nd 34.3 田世洪等,2011 14 三江囊谦多金属矿 铅锌银 钙碱性次粗面岩 斜长石Ar−Ar等 37.6±1.6 杨大雄等,1988 15 昆仑一里坪 锂、卤水 石盐 石盐230Th 0.73~0.72 陈安东等,2017 16 昆仑一里坪 锂、卤水 石盐 石盐230Th 0.58~0.57 陈安东等,2017 17 昆仑一里坪 锂、卤水 石盐 石盐230Th 0.73~0.72 陈安东等,2017 18 昆仑一里坪 锂、卤水 石盐 石盐230Th 0.18 陈安东等,2017 表 7 青海省不同成矿带矿产地规模
Table 7. Statistics on the scale of mineralized sites in different metallogenic zones in Qinghai Province
成矿省 成矿带 矿点 小型 中型 大型 超大型 矿产地合计 占比/% 矿床合计 占比/% Ⅱ-5 Ⅲ-20 9 5 1 15 0.58 6 0.76 Ⅲ-21 198 60 13 6 277 10.71 79 10.00 Ⅲ-22 212 66 44 24 6 352 13.61 140 17.72 Ⅲ-23 147 39 7 3 2 198 7.65 51 6.46 Ⅱ-6 Ⅲ-24 212 51 17 17 7 304 11.75 92 11.65 Ⅲ-25 12 32 19 12 9 84 3.25 72 9.11 Ⅲ-26 436 129 47 20 3 635 24.55 199 25.19 Ⅱ-7 Ⅲ-28 177 41 16 8 1 243 9.39 66 8.35 Ⅱ-8 Ⅲ-29 40 5 1 46 1.78 6 0.76 Ⅲ-30 68 16 6 3 1 94 3.63 26 3.29 Ⅲ-31 53 13 1 1 68 2.63 15 1.90 Ⅱ-9 Ⅲ-32 4 4 0.15 0 0.00 Ⅲ-33 21 10 5 36 1.39 15 1.90 Ⅲ-35 52 5 1 2 60 2.32 8 1.01 Ⅲ-36 154 11 4 2 171 6.61 17 2.15 合计 1795 483 181 97 31 2587 100.00 792 100.25 占比/% 69.39 18.67 7.00 3.75 1.20 100.00 -
[1] Chen A D, Zheng M P, Shi L F, et al. 2017. Gypsum 230Th dating of the 15YZK01 drilling core in the Qaidam Basin: Salt deposits and their link to Quaternary glaciation and tectonic movement[J]. Acta Geoscientica Sinica, 38(4): 494−504 (in Chinese with English abstract).
[2] Chen H W, Luo Z H, Mo X X, et al. 2006. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica et Mineralogica, (1): 25−32 (in Chinese with English abstract).
[3] Chen J, Pan T, Li S P, et al. 2012. Tectonic evolution and mineralization of the Tethys on the northeastern margin of the Qinghai−Tibetan Plateau[R]. Qinghai Geological Survey (in Chinese with English abstract).
[4] Chen X, Gehrels G, Yin A, et al. 2015. Geochemical and Nd−Sr−Pb−O isotopic constrains on Permo−Triassic magmatism in eastern Qaidam Basin, northern Qinghai−Tibetan Plateau: Implications for the evolution of the Paleo−Tethys[J]. Journal of Asian Earth Sciences, 114: 674−692. doi: 10.1016/j.jseaes.2014.11.013
[5] Cheng L, Ding Q F, Deng Y L, et al. 2019. Petrogenesis of the Middle Triassic diabase veins in Wulonggou ore concentrated areas within East Kunlun Orogen: Chronologiy, geochemistry and tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 49(6): 1628−1648 (in Chinese with English abstract).
[6] Feng C Y, Li D S, Qu W J, et al. 2009. Re−Os isotopic dating of molybdenite from the Suolajier skarn−type copper−molybdenum deposit of Qimantag Mountain in Qinghaiprovince and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223−227 (in Chinese with English abstract).
[7] Feng C Y, Wang X P, Shu X F, et al. 2011. Chronology and geological significance of the Qimantag Hutouya lead−zinc polymetallic mine, Qinghai[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806−1817 (in Chinese with English abstract).
[8] Feng C Y, Zhang D Q, Dang X Y, et al. 2005. SHRIMP zircon U−Pb dating of quartz albitite from the Tuolugou cobalt (gold) deposit, Golmud, Qinghai, China−−Constraints on the age of the Naij Tal Group[J]. Geological Bulletin of China, 24(6): 501−505 (in Chinese with English abstract).
[9] Feng C Y, Zhang D Q, Qu W J, et al. 2006. Re−Os isotopic dating of pyrite in the Tuolugou SEDEX cobalt(gold) deposit, Golmud, Qinghai Province[J]. Acta Geologica Sinica, (4): 571−576 (in Chinese with English abstract).
[10] Feng C Y, Zhang D Q, She H Q, et al. 2002. Structural evolution of ductile shear belt and its constraints on gold mineralizations: Examplified by Yeluotuoquan gold deposit, Qinghai Province[J]. Mineral Deposits, 21(S1): 582−585 (in Chinese with English abstract).
[11] Feng Z X, Chen Z L, Li Z M, et al. 2020. Characteristics of ore−controlling structures and oreprospecting of the Xitieshan lead−zinc deposit, northern edge of the Qaidam basin, NW China[J]. Journal of Geomechanics, 26(3): 329−344 (in Chinese with English abstract).
[12] Gao Y B, Li W Y, Li K, et al. 2012. Chronology, Hf isotopes and geologic significance of granites associated with the Yemaquan iron ore mine, East Kunlun[J]. Mineral Deposits, 31(S1): 1021−1022 (in Chinese with English abstract).
[13] Guo G H, Zong S H, Li S Z, et al, 2023. Constructing discrimination diagrams for dranite mineralization potential by using machine learning and zircon trace elements: example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).
[14] Guo X Q, Yan Z, Wang Z Q, et al. 2011. Geological characteristics and associated magmatic ages of the Xiekeng skarn−type Cu−Au deposit in the West Qinling terrane[J]. Acta Petrologica Sinica, 27(12): 3811−3822 (in Chinese with English abstract).
[15] Guo X Z, Xie W H, Zhou H B, et al. 2019. Zircon U−Pb chronology and geochemistry of the rhyolite porphyry in the Nagengkangqieer silver polymetallic deposit, East Kunlun and their geological significance[J]. Earth Science, 44(7): 2505−2518 (in Chinese with English abstract).
[16] Han X L, Bao S D, Li D S. 2017. Geological characteristics and prospecting criteria of the Ag−Pb−Zn deposit in Qinghai mountain pass[J]. World Nonferrous Metals, (18): 109−111.
[17] Hao J H, Chen J P, Dong Q J, et al. 2012. Zircon LA−ICP−MS U−Pb dating for Narigongma porphyry molybdenite−copper deposit in southern Qinghai Province and its geological implication[J]. Geoscience, 26(1): 45−53 (in Chinese with English abstract).
[18] Hao J H, Chen J P, Dong Q J, et al. 2013. Early Paleocene diagenetic and metallogenic events of the lurige porphyry molybdenum−copper deposit in southern Qinghai, China: Evidence from zircon LA−ICP −MS U−Pb and molyhdenite Re−Os dating[J]. Acta Geologica Sinica, 87(2): 227−239 (in Chinese with English abstract).
[19] He S Y, Li D S, Li L L, et al. 2009. Re−Os age of molybdenite from the Yazgou copper (molybdenum) mineralized area in Eastern Kunlun of Qinghai Province and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).
[20] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of “Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).
[21] Hou Z Q, Song Y C, Li Z, et al. 2008. Thrust−controlled, sediments−hosted Pb−Zn−Ag−Cu deposits in eastern and northern margins of Tibetan orogenic belt: Geological features and tectonic model[J]. Mineral Deposits, (2): 123−144 (in Chinese with English abstract).
[22] Jia Q Z, Du Y L, Zhao Z J, et al. 2013. Zircon LA−MC−ICPMS U−Pb dating and geochemical characteristics of the plagiogranite porphyry from Tanjianshan gold ore district in north margin of Qaidam Basin[J]. Bulletin of Geological Science and Technology, 32(1): 87−93 (in Chinese with English abstract).
[23] Jiao H L. 2016. Genesis of copper polymetallic deposits in Delni, Qinghai and direction of mineral search[D]. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[24] Jiao J G, Lu H, Sun Y L, et al. 2013. Re-Os dating for Delni Cu(Zn−Co) ore deposit in Qinghai Province[J]. Geoscieence, 27(3): 577−584 (in Chinese with English abstract).
[25] Kong H L, Li J C, Li Y Z, et al. 2014. Geochemistry and zircon U−Pb geochronology of Annage diorite in the eastern section from east Kunlun in Qinghai Province[J]. Bulletin of Geological Science and Technology, 33(6): 11−17.
[26] Kong H L, Li J C, Li Y Z, et al. 2016. LA−MC−ICP−Ms zircon U−Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron− polymetallic ore district in Qimantag Mountail, Qinghai Province[J]. Bulletin of Geological Science and Technology, 35(1): 8−16 (in Chinese with English abstract).
[27] Kou L L, Luo M F, Zong K H, et al. 2010. 40Ar/39Ar dating of the No.Ⅰ gold−bearing shear zone on the gold−ore collected belt of the Wulonggou, Qinghai, and its significance[J]. Xinjiang Geology, 28(3): 330−333 (in Chinese with English abstract).
[28] Li B L, Shen X, Chen G J, et al. 2012a. Geochemical features of ore−forming fluids and metallogenesis of vein Ⅰ in Asiha gold ore deposit, Eastern Kunlun, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1676−1687 (in Chinese with English abstract).
[29] Li B L, Sun F Y, Yu X F, et al. 2012b. U−Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 28(4): 1163−1172 (in Chinese with English abstract).
[30] Li D B, Niu M L, Xia W J, et al. 2014. Petrology and LA−ICP−MS zircon U−Pb age of the ore−bearing porphyry in the Walegen gold deposit at the juncture of the Qinling−Qilian−Kunlun orogens[J]. Geological Bulletin of China, 33(7): 1055−1060 (in Chinese with English abstract).
[31] Li J C, Kong Hu L, Li Y Z, et al. 2017. Ar−Ar age of altered sericite, zircon U−Pb age of quartz diorite and geochemistry of the Naomuhun gold deposit, East Kunlun[J]. Acta Geologica Sinica, 91(5): 979−991 (in Chinese with English abstract).
[32] Li J C, Kong Hu L, Li Y Z, et al. 2018. Zircon U−Pb dating, geochemical characteristics and metallogenic significance of gronodiorite porphyry from the Xizangdagou gold deposit in East Kunlun, Qinghai Province[J]. Journal of Geomechanics, 24(2): 188−198 (in Chinese with English abstract).
[33] Li J J, Fang X M, Ma H Z, et al. 1996. Late Cenozoic geomorphologic evolution of the upper Yellow River and uplift of the Tibetan Plateau[J]. Scientia Sinica(Terrae), (4): 316−322 (in Chinese with English abstract).
[34] Li R S, Ji W H, Yang Y C, et al. 2008. Geology of the Kunlun Mountains and adjacent areas[M]. Beijing: Geology Press (in Chinese).
[35] Li S J, Sun F Y, Feng C Y et al. 2008. Geochronological study on Yazigou polymetallic deposit in eastern Kunlun, Qinhai Province[J]. Acta Geologica Sinica, (7): 949−955 (in Chinese with English abstract).
[36] Li S P, Pan T, Li Y X , et al. 2010. Geochemistry of the Duocai ophiolite in North Qiangtang Basin, Qinghai−Tibet Plateau: Environments for tectonics[J]. Geology in China, 37(6): 1592−1606 (in Chinese with English abstract).
[37] Li W L, Xia R, Qing M, et al. 2014. Re−Os molybdenite ages of the Shenduolong skarn Mo−Pb−Zn deposit and geodynamic framework, Qinghai Province[J]. Rock and Mineral Analysis, 33(6): 900−907 (in Chinese with English abstract).
[38] Li W Y, Zhang Z W, Gao Yo B, et al. 2011. Important metallogenic events and tectonic response of Qinling, Qilian and Kunlun orogenic belts[J]. Geology in China, 38(5): 1135−1149 (in Chinese with English abstract).
[39] Li X Y, Chen N S, Xia X P, et al. 2007. Onstraints on timing of the early−Paleoproterozoic magmatism and crustal evolution of the Oulongbuluke microcontinent: U−Pb and Lu−Hf isotope systematics of zircons from Mohe granitic pluton[J]. Acta Petrologica Sinica, 23(2): 513−522 (in Chinese with English abstract).
[40] Li Y Z, Kong H L, Nanka O W, et al. 2015. Analysis of matter source and metallogenic setting of metallogenic rock of Narigongma porphyry copper−molybdenum deposit in Qinghai Province[J]. Bulletin of Geological Science and Technology, 34(1): 1−9 (in Chinese with English abstract).
[41] Liao Y B, Li B L, Sun Y G, et al. 2020. Zircon U−Pb age, petrochemistry and Hf isotope characteristics of gabbro in Xitieshan Pb−Zn mining area in northern margin of Qaidam Basin[J]. World Geology, 39(3): 495−508 (in Chinese with English abstract).
[42] Liu C D, Mo X X, Luo Z H, et al. 2004. Crust−mantle magmatism mixing in East Kunlun: Evidence from zircon SHRIMP chronology[J]. Chinese Science Bulletin, (6): 596−602 (in Chinese with English abstract).
[43] Liu J N, Feng C Y, He S Y, et al. 2017. Zircon U−Pb and phlogopite Ar−Ar ages of the monzogranite from Yemaquan iron−zinc deposit in Qinghai Province[J]. Geotectonica et Metallogenia, 41(6): 1158−1170 (in Chinese with English abstract).
[44] Liu J N, Feng C Y, Qi F, et al. 2012. SIMS zircon U−Pb dating and fluid inclusion studies of Xiadeboli Cu−Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 28(2): 679−690 (in Chinese with English abstract).
[45] Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of mineralized and barren magmatic rocks for the pophryry−skarn deposits from the Qimantagh, east Kunlun: Based on machine learning and whole−rock compositions[J]. Northwestern Geology, 56(6): 41−56 (in Chinese with English abstract).
[46] Liu M. 2017. Study on the petrogenesis and mineralization in the Dahei Mountain area, Qinghai[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
[47] Liu Q S, Yuan W M, Feng X, et al. 2017. Geochemistry and genetic significance of the Yins'aocao marine facies volcanic type Zn−Cu deposits in Oilian Mountains, Qinghai Province[J]. Northwestern Geology, 50(4): 105−114 (in Chinese with English abstract).
[48] Liu Y H, Mo X X, Zhang X T, et al. 2006. The geochemical characteristics and the meaning of skarn−type deposits in Yemaquan area, Eastern Kunlun[J]. Geology and Mineral Resources of South China, (3): 31−36 (in Chinese with English abstract).
[49] Lu D Y, Ye H S, Yu M, et al. 2015. Geological features and molybdenites Re−Os isotopic dating of the Jiangligou W−Cu−Mo polymetallic deposit, West Qinling[J]. Acta Geologica Sinica, 89(4): 731−746 (in Chinese with English abstract).
[50] Lu S N. 2002. Discussion on the new subdivision of the Neoproterozoic in China[J]. Geological Review, (3): 242−248 (in Chinese with English abstract).
[51] Luo Z H, Ke S, Cao Y Q, et al. 2002. Late Indosinian mantle−derived magmatism in the East Kunlun[J]. Geological Bulletin of China, (6): 292−297 (in Chinese with English abstract).
[52] Ma G D, Han Y, Chen S L, et al. 2015. Metallogenic regularity of the gold−polymetallic deposits in Wulonggou Area, Qinghai Province[J]. Metal Mine, (10): 110−115 (in Chinese with English abstract).
[53] Ma S C. 2012. Zoning and genesis of alteration mineralization in the Hutouya Cu−Pb−Zn polymetallic deposit, Qimantag area, Qinghai[D]. Chinese Academy of Geological Sciences (in Chinese with English abstract).
[54] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and crustal growth in the East Kunlun orogenic belt[J]. Geological Journal of China Universities, (3): 403−414 (in Chinese with English abstract).
[55] Nanka O W, Jia Q Z, Li W Y, et al. 2014. LA−ICP−MS zircon U−Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron−polymetallic ore district in Eastern Kunlun[J]. Geological Bulletin of China, 33(6): 841−849 (in Chinese with English abstract).
[56] Nanka O W, Jia Q Z, Tang L, et al. 2015. Zircon U−Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron−polymetallic ore district in Eastern Kunlun[J]. Geology in China, 42(3): 702−712 (in Chinese with English abstract).
[57] Pan G, Wang L, Li R, et al. 2012. Tectonic evolution of the Qinghai−Tibet plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018
[58] Pan T, Wang F D. 2021. Exploration of Mineral Resources in Qinghai Province[J]. Qinghai Science and Technology, 28(6): 39−44 (in Chinese with English abstract).
[59] Pan T, Wang G R, Wang F D, et al. 2022. Annals of Geology of Mineral Resources of China−Qinghai Volume[R]. The Bureau of Geological Exploration and Development of Qinghai Province (in Chinese).
[60] Pan T, Zhang Y. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt[J]. Geotectonica et Metallogenia, 44(3): 447−464 (in Chinese with English abstract).
[61] Pan X P, Li R S, Yu P S et al. 2013. The age of country rocks of the Kendekeke Fe−Co polymetalic deposit in Qimantag area and its significance[J]. Acta Petrologica et Mineralogica, 32(1): 53−62 (in Chinese with English abstract).
[62] Pei X Z, Li R B, Li Z C, et al, 2018. Composition feature and formation process of Buqingshan composite accretionary Mélange belt in southern margin of east Kunlun orogen[J]. Earth Science, 43(12): 4498−4520 (in Chinese with English abstract).
[63] Qi S S, Li W F, Yu W J, et al. 2019. Regional Geological annals of China−Qinghai Volume[R]. The Qinghai Geological Survey Institute (in Chinese).
[64] Qi S S. 2013. Delineation of geotectonic units and characteristics of mineralization in Qinghai Province[J]. Management & Strategy of Qinghai Land & Resources, (5): 53−62 (in Chinese with English abstract).
[65] Qian Z Z, Tang Z L, Li W Y, et al. 2003. Metallogenic regularity of Qinling−Qilian−Kunlun metallogenic domain in Paleozoic[J]. Northwestern Geology, (1): 34−40 (in Chinese with English abstract).
[66] Ren J X, Niu G B, Liu Z G. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, (3): 85−93 (in Chinese with English abstract).
[67] Shi C, Li R S, He S P, et al. 2017. A study of the ore−forming age of the Hutouya deposit and its geological significance: Geochemistry and U−Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 36(6): 977−986 (in Chinese with English abstract).
[68] Song X Y, Yi J N, Chen L M, et al. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun Orogenic Belt, northern Tibet Plateau, China[J]. Economic Geology, 111: 29−55. doi: 10.2113/econgeo.111.1.29
[69] Song Y C, Hou Z Q, Yang T N, et al. 2011. Sediment−hosted Himalayan base metal deposits in Sanjiang region: Characteristics and genetic types[J]. Acta Petrologica et Mineralogica, 30(3): 355−380 (in Chinese with English abstract).
[70] Song Z B, Jia Q Z, Chen X Y, et al. 2011. The petrogenic age of Narigongma granitic diorite−porphyry in the northern part of the Sanjiang region and its geological implications[J]. Acta Geoscientica Sinica, 32(2): 154−162 (in Chinese with English abstract).
[71] Song Z B, Zhang Y L, Chen X Y, et al. 2013. Geochemical characteristics of Harizha granite diorite−porphyry in East Kunlun and their geological implications[J]. Mineral Deposits, 32(1): 157−168 (in Chinese with English abstract).
[72] Sun X P, Xu X Y, Chen J L, et al. 2013. Geochemical characteristics and chronology of the Jiangligou granitic pluton in west Qinling and their geological significance[J]. Acta Geologica Sinica, 87(3): 330−342 (in Chinese with English abstract).
[73] Tian C S, Feng C Y, Li J H, et al. 2013. 40Ar/39Ar geochronology of Tawenchahan Fe−polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, 32(1): 169−176 (in Chinese with English abstract).
[74] Tian C S, Zhang A K, Yuan W M, et al. 2014. Zircon fission frack dating evidence for tectonic events in the Hariza polymetallic ore district, eastern Kunlun Mountains, Qinghai−Tibet Plateau[J]. Geology and Exploration, 50(5): 833−839 (in Chinese with English abstract).
[75] Tian S H, Yang Z S, Hou Z Q, et al. 2009. Rb−Sr and Sm−Nd isochron ages of Dongmozhazhua and Mohailaheng Pb−Zn ore deposits in Yushu area, southern Qinghai and their geological implications[J]. Mineral Deposits, 28(6): 747−758 (in Chinese with English abstract).
[76] Tian S H, Yang Z S, Hou Z Q, et al. 2011. Confirmation of connection between Dongmozhazhua and Mohailaheng Pb−Zn ore deposits and thrust nappe system in Yushu area, southern Qinghai: Evidence from Rb−Sr and Sm−Nd isochron ages of macrocrystalline calcite[J]. Acta petrologica et Mineralogica, 30(3): 475−489 (in Chinese with English abstract).
[77] Wang B Z, Li W F, Jin T T, et al. 2024. Baddeleyite U−Pb geochronology of rare metal mineralized carbonatite and peridotite in Dagele area of east Kunlun orogen and its prospecting significance[J]. Earth Science, 49(4): 1245−1260 (in Chinese with English abstract).
[78] Wang B, Zhang D, Lu Y C, et al. 2014. Zircon U−Pb ages, Hf isotope characterization and geological significance of altered granite porphyry veins in the Gago gold mining area, Qinghai Province[J]. Mineral Deposits, 33(S1): 265−266 (in Chinese with English abstract).
[79] Wang C H. 2017. Geology and geochemistry of Kengdenongshe gold and polymetallic deposit in Maduo, Qinghai[D]. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[80] Wang G. 2014. Metallogenesis of Nickel deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Doctoral thesis of Jilin University (in Chinese with English abstract).
[81] Wang Q Y, Chen N S, Li X Y, et al. 2008. LA−ICPMS zircon U−Pb dating of the basal Dakeng Osaka Complex and thermal events in the Quanji Massif[J]. Chinese Science Bulletin, (14): 1693−1701 (in Chinese with English abstract).
[82] Wang S, Feng C Y, Li S J, et al. 2009. Zircon SHRIMP U−Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage Mountain, Qinghai Province, and its geological implications[J]. Geology in China, 36(1): 74−84 (in Chinese with English abstract).
[83] Wang Z L, Yang Z M, Yang Z S, et al. 2008. Narigongma porphery molybdenite copper deposit, northern extension of Yulong copper belt: Evidence from the age of Re−Os isotope[J]. Acta Petrologica Sinica, 24(3): 503−510 (in Chinese with English abstract).
[84] Wu B J. 2013. Study on mineralization conditions and deposit genesis of Galonggema copper polymetallic mine, Qinghai Province[D]. Master thesis of Central South University (in Chinese with English abstract).
[85] Wu C L, Gao Y H, Wu S P, et al. 2008. Zircon SHRIMP U−Pb dating and petrogeochemical characterization of the granites in the western section of the Chai North Margin[J]. Scientia Sinica(Terrae), (8): 930−949 (in Chinese with English abstract).
[86] Wu C L, Xu X Y, Gao Q M, et al. 2010. Early Palaezoic granitoid magmatism and tectonic evolution in North Qilian, NW China[J]. Acta Petrologica Sinica, 26(4): 1027−1044 (in Chinese with English abstract).
[87] Wu R C, Gu X X, Zhang Y M, et al. 2017. The sedimentary geochemical records about the tectonic evolution of the East Kunlun Orogenic Belt from Early Paleozoic to Early Mesozoic[J]. Geoscience, 31(4): 716−733 (in Chinese with English abstract).
[88] Wu X K, Meng F C, Xu H, et al. 2011. Zircon U−Pb dating, geochemistry and Nd−Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun[J]. Acta Petrologica Sinica, 27(11): 3380−3394 (in Chinese with English abstract).
[89] Xia R, Qing M, Wang C M, et al. 2014. The genesis of the orge−bearing porphyry of the Tuoketuo porphyry Cu−Au(Mo) deposit in the east Kunlun, Qinghai Province: Constraints from zircon U−Pb geochronological and geochemistry[J]. Journal of Jilin University(Earth Science Edition), 44(5): 1502−1524 (in Chinese with English abstract).
[90] Xia R. 2017. Paleotethys orogenic process and gold mineralization in East Kunlun[D]. Doctoral thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[91] Xiao Y, Feng C Y, Li D X, et al. 2014. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J]. Acta Geologica Sinica, 88(5): 895−902 (in Chinese with English abstract).
[92] Xiao Y, Feng C Y, Liu J N, et al. 2013. LA−MC−ICP−MS zircon U−Pb dating and sulfur isotope characteristics of Kendekeke Fe−polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 32(1): 177−186 (in Chinese with English abstract).
[93] Xu C K, Liu S B, Zhao Z J, et al. 2012. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai[J]. Acta Geologica Sinica, 86(10): 1621−1678 (in Chinese with English abstract).
[94] Xu Y L, Ba J, Wang Q Y, et al. 2011. LA−ICP−MS zircon U−Pb age of the Halihadeshan granite−gneiss in northeastern Dulan, Qinghai, and its tectonic implications[J]. Geological Bulletin of China, 30(7): 1037−1042 (in Chinese with English abstract).
[95] Yan Y F, Yang X S, Chen F B, et al. 2012. Characteristics of molybdenum−bearing granites in the middle reaches of the East Kunlun−Lalingzaohuo[J]. China Science and Technology Information, (18): 37−39 (in Chinese with English abstract).
[96] Yang D X, Wang P S. 1988. The determinations of plateau age by 40Ar/39Ar dating on cenozoic calcalkalic trachytes of Nangqen Basin, northern Transverse Mountains[J]. Geology of the Tibetan Plateau, (00): 39−44 (in Chinese with English abstract).
[97] Yang J S, Xu Z Q, Li H B, et al. 2005. The paleo−Tethyan volcanism and plate tectonic regime in the A’nyemaqen region of East Kunlun northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, (5): 369−380 (in Chinese with English abstract).
[98] Yang T, Zhang L, Zheng Z H, et al. 2018. Geological characteristics and genetic analysis of the Tawenchahanxi Fe−polymetallic deposit, Qinhai Province[J]. Acta Petrologica et Mineralogica, 37(3): 467−484 (in Chinese with English abstract).
[99] Yang T, Zhou H B, Zheng Z H, et al. 2017. Geological characteristics and genetic type of the Nagengkangqieer silver polymetallic deposit in East Kunlun[J]. Northwestern Geology, 50(4): 186−199 (in Chinese with English abstract).
[100] Yang Z L, Zhang D Q, She H Q, et al. 2008. Evidence from fission track thermochronology for the mineralization ages of sandstone copper deposits in the Fenghuoshan area, Qinghai[J]. Geology in China, (2): 293−297 (in Chinese with English abstract).
[101] Yang Z M, Hou Z Q, Yang Z S, et al. 2008. Genesis of porphyries and tectonic controls on the Narigongma porphyry Mo(Cu) deposit, southern Qinghai[J]. Acta Petrologica Sinica, 24(3): 489−502 (in Chinese with English abstract).
[102] Yong Y, Chen W, Zhang Y, et al. 2011. Zircon SHRIMP U−Pb dating and geochemistry of the Rangnianggongba gabbro in Yushu area, Qinghai Province[J]. Acta Petrologica et Mineralogica, 30(3): 419−426 (in Chinese with English abstract).
[103] Yu M, Feng C Y, Liu H C, et al. 2015. 40Ar/39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510−521 (in Chinese with English abstract).
[104] Yuan D Y, Champagnac J D, Ge W P, et al. 2011. Late Quaternary right−lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J]. Canadian Mineralogist, 123: 2016−2030.
[105] Yue W H, Zhou J X, Gao J G, et al. 2017. Geochemistry, zircon U−Pb dating and Hf isotopic compositions of the granite−porphyry in Asiha gold ore district, Dulan County, Qinghai Province[J]. Geotectonica et Metallogenia, 41(4): 776−789 (in Chinese with English abstract).
[106] Yue W H, Zhou J X. 2019. Geochemistry, zircon U−Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai Province[J]. Geological Bulletin of China, 38(2/3): 328−338 (in Chinese with English abstract).
[107] Zhang D Q, Dang X Y, She H Q, et al. 2005 Ar−Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J]. Mineral Deposits, (2): 87−98 (in Chinese with English abstract).
[108] Zhang P. 2018. Geological characteristics and genesis of the Naxiguole iron ore deposit in the East Kunlun orogenic belt[D]. Master thesis of Jilin University (in Chinese with English abstract).
[109] Zhang Y, He S Y, Liu Z G, et al. 2018. The mineralization period of the Wulanbaixing iron ore deposit in Qimantag: Evidence from zircon U−Pb dating of the quartz diorite, in Qinghai Province[J]. Geology in China, 45(6): 1308−1309 (in Chinese with English abstract).
[110] Zhang Z W, Li W Y, Gao Y B, et al. 2013. U−Pb chronology and tectonic significance of magnesian−ferrous mafic rocks in the Hualong area, Qinghai Province[C]//China Geological Society Youth Working Committee. Proceedings of the First National Youth Geology Conference. Geological Reviews: 154−155 (in Chinese with English abstract).
[111] Zhao C S, Yang F Q, Dai J Z. 2006. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J]. Mineral Deposits, 25(S1): 427−430 (in Chinese with English abstract).
[112] Zhong S, Feng C, Seltmann R, et al. 2017. Middle Devonian volcanic rocks in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Zircon chronology and tectonic implications[J]. Ore Geology Reviews, 84: 309−327. doi: 10.1016/j.oregeorev.2017.01.020
[113] Zhong S H. 2018. Study on the genesis of copper−lead−zinc deposits in Weibao, Xinjiang[D]. Doctoral thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).
[114] Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8
[115] Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews 139: 104560.
[116] Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524
[117] 陈安东, 郑绵平, 施林峰, 等. 2017. 柴达木盆地一里坪石膏230Th定年及成盐期与第四纪冰期和构造运动的关系[J]. 地球学报, 38(4): 494−504. doi: 10.3975/cagsb.2017.04.06
[118] 陈静, 潘彤, 李善平, 等. 2012. 青藏高原东北缘特提斯构造演化与成矿作用[R]. 青海省地质调查院.
[119] 谌宏伟, 罗照华, 莫宣学, 等. 2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, (1): 25−32. doi: 10.3969/j.issn.1000-6524.2006.01.003
[120] 程龙, 丁清峰, 邓元良, 等. 2019. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因: 年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 49(6): 1628−1648.
[121] 丰成友, 李东生, 屈文俊, 等. 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223−227. doi: 10.3969/j.issn.0254-5357.2009.03.006
[122] 丰成友, 王雪萍, 舒晓峰, 等. 2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 41(6): 1806−1817.
[123] 丰成友, 张德全, 党兴彦, 等. 2005. 青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U−Pb定年——对“纳赤台群”时代的制约[J]. 地质通报, 24(6): 501−505. doi: 10.3969/j.issn.1671-2552.2005.06.004
[124] 丰成友, 张德全, 屈文俊, 等. 2006. 青海格尔木驼路沟喷流沉积型钴(金)矿床的黄铁矿Re−Os定年[J]. 地质学报, (4): 571−576. doi: 10.3321/j.issn:0001-5717.2006.04.011
[125] 丰成友, 张德全, 佘宏全, 等. 2002. 韧性剪切构造演化及其对金成矿的制约——以青海野骆驼泉金矿为例[J]. 矿床地质, 21(S1): 582−585.
[126] 冯志兴, 陈正乐, 李正明, 等. 2020. 柴北缘锡铁山铅锌矿床控矿构造特征及找矿预测[J]. 地质力学学报, 26(3): 329−344. doi: 10.12090/j.issn.1006-6616.2020.26.03.030
[127] 高永宝, 李文渊, 李侃, 等. 2012. 东昆仑野马泉铁矿有关花岗岩年代学、Hf同位素及其地质意义[J]. 矿床地质, 31(S1): 1021−1022.
[128] 郭广慧, 钟世华, 李三忠, 等, 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.
[129] 郭现轻, 闫臻, 王宗起, 等. 2011. 西秦岭谢坑矽卡岩型铜金矿床地质特征与矿区岩浆岩年代学研究[J]. 岩石学报, 27(12): 3811−3822.
[130] 国显正, 谢万洪, 周洪兵, 等. 2019. 东昆仑那更康切尔银多金属矿床流纹斑岩锆石U−Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 44(7): 2505−2518.
[131] 韩晓龙, 保善东, 李得顺. 2017. 青海鄂拉山口银铅锌矿床成矿地质特征及找矿标志分析[J]. 世界有色金属, (18): 109, 111.
[132] 郝金华, 陈建平, 董庆吉, 等. 2012. 青海省纳日贡玛斑岩钼铜矿床成矿花岗斑岩锆石LA−ICP−MSU−Pb定年及地质意义[J]. 现代地质, 26(1): 45−53. doi: 10.3969/j.issn.1000-8527.2012.01.005
[133] 郝金华, 陈建平, 董庆吉, 等. 2013. 青海西南三江北段早古新世成岩、成矿事件: 陆日格斑岩钼矿LA−ICP−MS锆石U−Pb和辉钼矿Re−Os定年[J]. 地质学报, 87(2): 227−239. doi: 10.3969/j.issn.0001-5717.2013.02.007
[134] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242. doi: 10.3969/j.issn.1001-1552.2009.02.007
[135] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16. doi: 10.12401/j.nwg.2023157
[136] 侯增谦, 宋玉财, 李政, 等. 2008. 青藏高原碰撞造山带Pb−Zn−Ag−Cu矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质, (2): 123−144. doi: 10.3969/j.issn.0258-7106.2008.02.001
[137] 贾群子, 杜玉良, 赵子基, 等. 2013. 柴达木盆地北缘滩间山金矿区斜长花岗斑岩锆石LA−MC−ICPMS测年及其岩石地球化学特征[J]. 地质科技情报, 32(1): 87−93.
[138] 焦洪林. 2016. 青海德尔尼铜多金属矿床成因及找矿方向[D]. 中国地质大学(北京)硕士学位论文.
[139] 焦建刚, 鲁浩, 孙亚莉, 等. 2013. 青海德尔尼铜(锌钴)矿床Re−Os年龄及地质意义[J]. 现代地质, 27(3): 577−584.
[140] 孔会磊, 李金超, 栗亚芝, 等. 2014. 青海东昆仑东段按纳格闪长岩地球化学及锆石U−Pb年代学研究[J]. 地质科技情报, 33(6): 11−17.
[141] 孔会磊, 李金超, 栗亚芝, 等. 2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA−MC−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质科技情报, 35(1): 8−16.
[142] 寇林林, 罗明非, 钟康惠, 等. 2010. 青海五龙沟金矿矿集区Ⅰ号韧性剪切带40Ar/39Ar年龄及地质意义[J]. 新疆地质, 28(3): 330−333. doi: 10.3969/j.issn.1000-8845.2010.03.021
[143] 李碧乐, 沈鑫, 陈广俊, 等. 2012a. 青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J]. 吉林大学学报(地球科学版), 42(6): 1676−1687.
[144] 李碧乐, 孙丰月, 于晓飞, 等. 2012b. 东昆中隆起带东段闪长岩 U−Pb 年代学和岩石地球化学研究[J]. 岩石学报, 28(4): 1163−1172.
[145] 李德彪, 牛漫兰, 夏文静, 等. 2014. 秦祁昆结合部瓦勒根金矿床含矿斑岩体岩石学和LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 33(7): 1055−1060. doi: 10.3969/j.issn.1671-2552.2014.07.012
[146] 李吉均, 方小敏, 马海洲, 等. 1996. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑: 地球科学), (4): 316−322.
[147] 李金超, 孔会磊, 栗亚芝, 等. 2017. 青海东昆仑瑙木浑金矿蚀变绢云母Ar−Ar年龄、石英闪长岩锆石U−Pb年龄和岩石地球化学特征[J]. 地质学报, 91(5): 979−991. doi: 10.3969/j.issn.0001-5717.2017.05.002
[148] 李金超, 孔会磊, 栗亚芝, 等. 2018. 青海东昆仑西藏大沟金矿床花岗闪长斑岩锆石U−Pb年龄、地球化学及其成矿意义[J]. 地质力学学报, 24(2): 188−198. doi: 10.12090/j.issn.1006-6616.2018.24.02.020
[149] 李荣社, 计文化, 杨永成, 等. 2008. 昆仑山及邻区地质[M]. 北京: 地质出版社.
[150] 李善平, 潘彤, 李永祥 , 等. 2010. 青藏高原北羌塘盆地多彩地区蛇绿岩地球化学特征及构造环境[J]. 中国地质, 37(6): 1592−1606.
[151] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955. doi: 10.3321/j.issn:0001-5717.2008.07.013
[152] 李文良, 夏锐, 卿敏, 等. 2014. 应用辉钼矿Re−Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景[J]. 岩矿测试, 33(6): 900−907.
[153] 李文渊, 张照伟, 高永宝, 等. 2011. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质, 38(5): 1135−1149. doi: 10.3969/j.issn.1000-3657.2011.05.002
[154] 李晓彦, 陈能松, 夏小平, 等. 2007. 莫河花岗岩的锆石U−Pb和Lu−Hf同位素研究: 柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束[J]. 岩石学报, 23(2): 513−522. doi: 10.3969/j.issn.1000-0569.2007.02.027
[155] 栗亚芝, 孔会磊, 南卡俄吾, 等. 2015. 青海省纳日贡玛斑岩型铜钼矿床成矿岩体的物质来源及成矿背景分析[J]. 地质科技情报, 34(1): 1−9.
[156] 廖宇斌, 李碧乐, 孙永刚, 等. 2020. 柴达木盆地北缘锡铁山铅锌矿区辉长岩锆石U−Pb年代、岩石地球化学和Hf同位素特征[J]. 世界地质, 39(3): 495−508. doi: 10.3969/j.issn.1004-5589.2020.03.001
[157] 刘成东, 莫宣学, 罗照华, 等. 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据[J]. 科学通报, (6): 596−602. doi: 10.3321/j.issn:0023-074X.2004.06.018
[158] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56. doi: 10.12401/j.nwg.2023155
[159] 刘建楠, 丰成友, 何书跃, 等. 2017. 青海野马泉铁锌矿床二长花岗岩锆石U−Pb和金云母Ar−Ar测年及地质意义[J]. 大地构造与成矿学, 41(6): 1158−1170.
[160] 刘建楠, 丰成友, 亓锋, 等. 2012. 青海都兰县下得波利铜钼矿区锆石U−Pb测年及流体包裹体研究[J]. 岩石学报, 28(2): 679−690.
[161] 刘敏. 2017. 青海大黑山地区成岩成矿作用研究[D]. 中国地质大学(北京)博士学位论文.
[162] 刘青松, 袁万明, 冯星, 等. 2017. 青海省祁连县山阴凹槽海相火山岩型锌铜矿床地球化学特征及其成因意义[J]. 西北地质, 50(4): 105−114. doi: 10.3969/j.issn.1009-6248.2017.04.013
[163] 刘云华, 莫宣学, 张雪亭, 等. 2006. 东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J]. 华南地质, (3): 31−36.
[164] 陆松年. 2002. 关于中国新元古界划分几个问题的讨论[J]. 地质论评, (3): 242−248. doi: 10.3321/j.issn:0371-5736.2002.03.003
[165] 路东宇, 叶会寿, 于淼, 等. 2015. 西秦岭江里沟钨铜钼多金属矿床地质特征及辉钼矿Re−Os同位素年龄[J]. 地质学报, 89(4): 731−746. doi: 10.3969/j.issn.0001-5717.2015.04.006
[166] 罗照华, 柯珊, 曹永清, 等. 2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, (6): 292−297. doi: 10.3969/j.issn.1671-2552.2002.06.003
[167] 马国栋, 韩玉, 陈苏龙, 等. 2015. 青海五龙沟地区金多金属矿成矿规律[J]. 金属矿山, (10): 110−115. doi: 10.3969/j.issn.1001-1250.2015.10.024
[168] 马圣钞. 2012. 青海祁漫塔格地区虎头崖铜铅锌多金属矿床蚀变矿化分带及成因[D]. 中国地质科学院硕士学位论文.
[169] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, (3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[170] 南卡俄吾, 贾群子, 李文渊, 等. 2014. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA−ICP−MS锆石U−Pb年龄和岩石地球化学特征[J]. 地质通报, 33(6): 841−849. doi: 10.3969/j.issn.1671-2552.2014.06.007
[171] 南卡俄吾, 贾群子, 唐玲, 等. 2015. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U−Pb年龄与岩石地球化学特征[J]. 中国地质, 42(3): 702−712. doi: 10.3969/j.issn.1000-3657.2015.03.022
[172] 潘彤, 王福德. 2021. 青海省矿产资源探析[J]. 青海科技, 28(6): 39−44. doi: 10.3969/j.issn.1005-9393.2021.6.qhkj202106008
[173] 潘彤, 王贵仁, 王福德, 等. 2022. 中国矿产地质志·青海卷[R]. 青海省地质矿产勘查开发局.
[174] 潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应[J]. 大地构造与成矿学, 44(3): 447−464.
[175] 潘晓萍, 李荣社, 于浦生, 等. 2013. 祁漫塔格地区肯德可克铁钴多金属矿围岩时代及其意义[J]. 岩石矿物学杂志, 32(1): 53−62. doi: 10.3969/j.issn.1000-6524.2013.01.004
[176] 裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学 , 43(12): 4498−4520.
[177] 祁生胜, 李五福, 于文杰, 等. 2019. 中国区域地质志·青海卷[R]. 青海省地质调查院.
[178] 祁生胜. 2013. 青海省大地构造单元划分与成矿作用特征[J]. 青海国土经略, (5): 53−62. doi: 10.3969/j.issn.1671-8704.2013.05.018
[179] 钱壮志, 汤中立, 李文渊, 等. 2003. 秦祁昆成矿域古生代区域成矿规律[J]. 西北地质, (1): 34−40. doi: 10.3969/j.issn.1009-6248.2003.01.006
[180] 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, (3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008
[181] 时超, 李荣社, 何世平, 等. 2017. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U−Pb年龄证据[J]. 地质通报, 36(6): 977−986. doi: 10.3969/j.issn.1671-2552.2017.06.010
[182] 宋玉财, 侯增谦, 杨天南, 等. 2011. “三江”喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志, 30(3): 355−380. doi: 10.3969/j.issn.1000-6524.2011.03.002
[183] 宋忠宝, 贾群子, 陈向阳, 等. 2011. 三江北段纳日贡玛花岗闪长斑岩成岩时代的确定及地质意义[J]. 地球学报, 32(2): 154−162. doi: 10.3975/cagsb.2011.02.03
[184] 宋忠宝, 张雨莲, 陈向阳, 等. 2013. 东昆仑哈日扎含矿花岗闪长斑岩LA−ICP−MS锆石U−Pb定年及地质意义[J]. 矿床地质, 32(1): 157−168. doi: 10.3969/j.issn.0258-7106.2013.01.011
[185] 孙小攀, 徐学义, 陈隽璐, 等. 2013. 西秦岭江里沟花岗岩体地球化学特征、年代学及地质意义[J]. 地质学报, 87(3): 330−342. doi: 10.3969/j.issn.0001-5717.2013.03.004
[186] 田承盛, 丰成友, 李军红, 等. 2013. 青海它温查汉铁多金属矿床40Ar/39Ar年代学研究及意义[J]. 矿床地质, 32(1): 169−176. doi: 10.3969/j.issn.0258-7106.2013.01.012
[187] 田承盛, 张爱奎, 袁万明, 等. 2014. 青海东昆仑哈日扎多金属矿区构造活动的锆石裂变径迹定年分析[J]. 地质与勘探, 50(5): 833−839.
[188] 田世洪, 杨竹森, 侯增谦, 等. 2009. 玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb−Sr和Sm−Nd等时线年龄及其地质意义[J]. 矿床地质, 28(6): 747−758. doi: 10.3969/j.issn.0258-7106.2009.06.004
[189] 田世洪, 杨竹森, 侯增谦, 等. 2011. 青海玉树东莫扎抓和莫海拉亨铅锌矿床与逆冲推覆构造关系的确定——来自粗晶方解石Rb−Sr和Sm−Nd等时线年龄证据[J]. 岩石矿物学杂志, 30(3): 475−489.
[190] 王斌, 张栋, 路英川, 等. 2014. 青海省加吾金矿区蚀变花岗斑岩脉锆石U−Pb年龄、Hf同位素特征及其地质意义[J]. 矿床地质, 33(S1): 265−266.
[191] 王秉璋, 李五福, 金婷婷, 等. 2024. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U−Pb年代学研究和找矿意义[J]. 地球科学, 49(4): 1245−1260.
[192] 王春辉. 2017. 青海省玛多县坑得弄舍金多金属矿床地质地球化学特征[D].中国地质大学(北京)硕士学位论文.
[193] 王冠. 2014. 东昆仑造山带镍矿成矿作用研究[D]. 吉林大学博士学位论文.
[194] 王勤燕, 陈能松, 李晓彦, 等. 2008. 全吉地块基底达肯大坂岩群和热事件的LA−ICPMS锆石U−Pb定年[J]. 科学通报, (14): 1693−1701.
[195] 王松, 丰成友, 李世金, 等. 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U−Pb测年及其地质意义[J]. 中国地质, 36(1): 74−84. doi: 10.3969/j.issn.1000-3657.2009.01.005
[196] 王召林, 杨志明, 杨竹森, 等. 2008. 纳日贡玛斑岩钼铜矿床: 玉龙铜矿带的北延——来自辉钼矿Re−Os同位素年龄的证据[J]. 岩石学报, 24(3): 503−510.
[197] 吴碧娟. 2013. 青海省尕龙格玛铜多金属矿成矿条件与矿床成因研究[D]. 中南大学硕士学位论文.
[198] 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石SHRIMP U−Pb定年及其岩石地球化学特征[J]. 中国科学(D辑), (8): 930−949.
[199] 吴才来, 徐学义, 高前明, 等. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 26(4): 1027−1044.
[200] 吴祥珂, 孟繁聪, 许虹, 等. 2011. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd−Hf同位素组成[J]. 岩石学报, 27(11): 3380−3394.
[201] 武若晨, 顾雪祥, 章永梅, 等. 2017. 东昆仑造山带早古生代—早中生代构造演化的沉积地球化学记录[J]. 现代地质, 31(4): 716−733. doi: 10.3969/j.issn.1000-8527.2017.04.007
[202] 夏锐, 卿敏, 王长明, 等. 2014. 青海东昆仑托克妥Cu−Au(Mo)矿床含矿斑岩成因: 锆石U−Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版), 44(5): 1502−1524.
[203] 夏锐. 2017. 东昆仑古特提斯造山过程与金成矿作用[D]. 中国地质大学(北京)博士学位论文.
[204] 肖晔, 丰成友, 李大新, 等. 2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报, 88(5): 895−902.
[205] 肖晔, 丰成友, 刘建楠, 等. 2013. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 32(1): 177−186. doi: 10.3969/j.issn.0258-7106.2013.01.013
[206] 许娅玲, 巴金, 王勤燕, 等. 2011. 青海都兰东北部哈莉哈德山花岗片麻岩LA−ICP−MS锆石U−Pb年龄及构造意义[J]. 地质通报, 30(7): 1037−1042. doi: 10.3969/j.issn.1671-2552.2011.07.005
[207] 许长坤, 刘世宝, 赵子基, 等. 2012. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 86(10): 1621−1678. doi: 10.3969/j.issn.0001-5717.2012.10.006
[208] 严玉峰, 杨雪松, 陈发彬, 等. 2012. 东昆仑-拉陵灶火中游含钼花岗岩的特征[J]. 中国科技信息, (18): 37−39.
[209] 杨大雄, 王培生. 1988. 横断山北段囊谦盆地新生代钙碱性次粗面岩的40Ar/39Ar法坪年龄测定结果[C]//青藏高原地质文集: 39−44.
[210] 杨经绥, 许志琴, 李海兵, 等. 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, (5): 369−380. doi: 10.3969/j.issn.1000-6524.2005.05.004
[211] 杨涛, 张乐, 郑振华, 等. 2018. 青海省它温查汉西铁多金属矿床地质特征及成因分析[J]. 岩石矿物学杂志, 37(3): 467−484. doi: 10.3969/j.issn.1000-6524.2018.03.010
[212] 杨涛, 周洪兵, 郑振华, 等. 2017. 东昆仑那更康切尔银多金属矿床地质特征及成因类型[J]. 西北地质, 50(4): 186−199. doi: 10.3969/j.issn.1009-6248.2017.04.020
[213] 杨志明, 侯增谦, 杨竹森, 等. 2008. 青海纳日贡玛斑岩钼(铜)矿床: 岩石成因及构造控制[J]. 岩石学报, 24(3): 489−502.
[214] 杨祖龙, 张德全, 佘宏全, 等. 2008. 青海省风火山地区砂岩铜矿成矿时代的裂变径迹热年代学证据[J]. 中国地质, (2): 293−297. doi: 10.3969/j.issn.1000-3657.2008.02.013
[215] 雍拥, 陈文, 张彦, 等. 2011. 玉树地区让娘贡巴辉长岩锆石SHRIMP U−Pb测年和地球化学特征[J]. 岩石矿物学杂志, 30(3): 419−426. doi: 10.3969/j.issn.1000-6524.2011.03.007
[216] 于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/~39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521.
[217] 岳维好, 周家喜, 高建国, 等. 2017. 青海都兰县阿斯哈金矿区花岗斑岩岩石地球化学、锆石U−Pb年代学与Hf同位素研究[J]. 大地构造与成矿学, 41(4): 776−789.
[218] 岳维好, 周家喜. 2019. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U−Pb年龄与Hf同位素特征[J]. 地质通报, 38(2/3): 328−338.
[219] 张德全, 党兴彦, 佘宏全, 等. 2005. 柴北缘—东昆仑地区造山型金矿床的Ar−Ar测年及其地质意义[J]. 矿床地质, (2): 87−98. doi: 10.3969/j.issn.0258-7106.2005.02.001
[220] 张鹏. 2018. 东昆仑成矿带那西郭勒铁矿矿床地质特征及成因[D]. 吉林大学硕士学位论文.
[221] 张勇, 何书跃, 刘智刚, 等. 2018. 青海祁漫塔格乌兰拜兴铁矿床形成时代: 来自石英闪长岩锆石U−Pb定年证据[J]. 中国地质, 45(6): 1308−1309.
[222] 张照伟, 李文渊, 高永宝, 等. 2013. 青海省化隆地区镁铁质杂岩体U−Pb年代学研究及构造意义[C]//中国地质学会青年工作委员会. 第一届全国青年地质大会论文集. 地质论评: 154−155.
[223] 赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J]. 矿床地质, 25(S1): 427−430.
[224] 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.
-