Discovery of Early Cambrian grandiorite to the north of the Xar Moron River, Inner Mongolia and its geological significance for the Early Paleozoic tectonic evolution in the southeast of the Central Asian Orogenic Belt
-
摘要:
针对中亚造山带东南部“双井古陆”构造属性存在的争议,对内蒙古西拉木伦河一带前人划分为古元古代的东沟片麻状花岗闪长岩开展了年代学、岩石学及地球化学研究。研究表明,该岩体的锆石U−Pb年龄为526±2 Ma,属于早寒武世;结合“双井古陆”范围内其他年龄资料,进一步指示该古陆不是中亚造山带内早前寒武纪微陆块。该花岗闪长岩主要由斜长石、石英及角闪石组成,岩石SiO2含量介于64.20%~67.53%之间,Na2O和K2O含量分别为5.21%~5.75%和0.37%~0.56%,显示富钠贫钾的亚碱性系列岩浆岩特征;岩石铝饱和指数A/CNK介于0.77~0.85之间,属于偏铝质I型花岗岩类。岩石相对亏损Nb、Ta、P、Ti等高场强元素,显示俯冲带岩浆岩特征;全岩εNd(t)值介于−13.76~−15.84之间,平均下地壳两阶段模式年龄为2523~2361 Ma,指示岩浆源区可能存在太古宙—古元古代地壳物质。综合区域资料分析,东沟花岗闪长岩可能属于华北克拉通和西拉木伦河缝合带之间早古生代白乃庙岛弧的组成部分;该岩体的发现表明,中亚造山带东南部古亚洲洋板块的俯冲可能开始于寒武纪早期。
Abstract:In view of the controversy about the tectonic affinities of the ‘Shuangjing Paleocontinent’ in southeast Central Asian Orogenic Belt (CAOB), the geochronology, petrology and geochemistry of the Dong’gou gneissic granodiorite, which was originally classified as an early Precambrian intrusion, in the Xar Moron River area of Inner Mongolia have been studied. Zircon U−Pb dating shows that the granodiorite was formed in the Early Cambrian (526±2 Ma). Combined with other geochronological age data published in the region, it is suggested that ‘Shuangjing Paleocontinent’ was not an early Precambrian micro−continent in the CAOB. The Dong’gou granodiorite is mainly composed of plagioclase, quartz and amphibole. The contents of SiO2 of the rocks range from 64.20% to 67.53%, and the contents of Na2O and K2O are 5.21% to 5.75% and 0.37% to 0.56%, respectively, indicating the characteristics of subalkaline series magmatic rocks, which are rich in sodium and poor in potassium. The aluminum saturation index (A/CNK) of the rocks is between 0.77 and 0.85, further suggesting that the Dong’gou granodiorite belonging to meta−aluminous I−type granite. In terms of trace elements, the rocks are depleted in high field strength elements (HFSE) such as Nb, Ta, P and Ti, indicating the geochemical characteristics of the magmatic rocks formed in subduction setting. The whole rock εNd(t) values and lower crust two−stage model ages of the Dong’gou granodiorite are −13.76 to −15.84 and 2361 Ma to 2523 Ma, respectively, suggesting that there might be Archaean−Paleoproterozoic crustal material in the magmatic source. Based on the analysis of regional data, the Dong’gou granodiorite might belong to the Early Paleozoic Bainaimiao magmatic arc between the North China Craton and the Xar Moron River suture zone. The discovery of the pluton suggests that the subduction of the Paleo−Asian Ocean in southeast CAOB might have started in Early Cambrian.
-
-
图 1 欧亚板块大地构造分区图(a, 据Li, 2006修改)、中亚造山带地壳构造格架图(b, 据李锦轶等,2009修改)和内蒙古双井—半拉山地区地质简图(c, 据刘建峰等, 2022; 岩浆岩年龄资料据李锦轶等,2007;李益龙等,2008, 2009, 2012;Wu et al., 2011; 江思宏等,2014;Zhao et al., 2021;雷豪等,2021)
Figure 1.
图 6 东沟片麻状花岗闪长岩TAS图解(a, 据Middlemost, 1994)和An−Ab−Or标准矿物图解(b, 据Barker, 1979)
Figure 6.
图 8 东沟花岗闪长片麻岩及邻近岩体 (87Sr/86Sr)i−εNd(t)图(a,底图据Zindler et al., 1986)和年龄–εNd(t)图(b)
Figure 8.
图 9 东沟片麻状花岗闪长岩Y−Nb(a)和(Yb+Nb)−Rb(b)(底图据Pearce et al., 1984)构造环境判别图解
Figure 9.
表 1 东沟片麻状花岗闪长岩锆石LA−ICP−MS U−Th-Pb定年结果
Table 1. Zircon LA−ICP−MS U−Th-Pb data of the Dong’gou gneissic granodiorite
点号 含量/10−6 232Th/
238U同位素比值 年龄/Ma Pb 232Th 238U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 01 13.36 91.1 119 0.76 0.0579 0.0016 0.6816 0.0198 0.0856 0.0010 0.0249 0.0004 524 61 528 12 530 6 498 8 02 15.99 98.0 146 0.67 0.0584 0.0014 0.6870 0.0168 0.0854 0.0010 0.0269 0.0005 546 47 531 10 528 6 536 9 03 34.4 223 312 0.72 0.0577 0.0012 0.6893 0.0206 0.0859 0.0015 0.0255 0.0004 520 44 532 12 531 9 510 8 04 18.66 121 169 0.71 0.0568 0.0014 0.6730 0.0166 0.0851 0.0009 0.0258 0.0004 483 86 523 10 526 5 515 8 05 24.3 241 194 1.24 0.0579 0.0016 0.6894 0.0212 0.0860 0.0010 0.0268 0.0005 528 53 532 13 532 6 534 10 06 27.27 152 250 0.61 0.0564 0.0010 0.6657 0.0132 0.0853 0.0008 0.0265 0.0005 478 41 518 8 528 5 530 9 07 23.17 134 210 0.64 0.0570 0.0014 0.6722 0.0179 0.0852 0.0008 0.0263 0.0004 500 56 522 11 527 5 524 9 08 13.37 78.8 119 0.66 0.0568 0.0014 0.6670 0.0168 0.0853 0.0008 0.0263 0.0004 483 53 519 10 528 5 524 8 09 42.9 416 350 1.19 0.0582 0.0012 0.6785 0.0144 0.0844 0.0008 0.0251 0.0003 600 44 526 9 523 5 500 6 10 30.2 191 264 0.72 0.0571 0.0012 0.6726 0.0144 0.0851 0.0007 0.0260 0.0004 494 42 522 9 527 4 519 8 11 15.91 97.3 140 0.70 0.0574 0.0013 0.6778 0.0170 0.0853 0.0009 0.0257 0.0004 506 50 525 10 527 5 513 8 12 19.61 112 175 0.64 0.0572 0.0013 0.6774 0.0152 0.0853 0.0008 0.0263 0.0004 498 48 525 9 528 5 524 9 13 19.86 141 171 0.82 0.0582 0.0016 0.6751 0.0168 0.0840 0.0009 0.0260 0.0004 539 57 524 10 520 5 518 8 14 13.81 76.3 124 0.62 0.0580 0.0015 0.6762 0.0183 0.0845 0.0010 0.0258 0.0005 528 55 524 11 523 6 514 10 15 22.70 163 190 0.86 0.0576 0.0013 0.6755 0.0149 0.0850 0.0008 0.0257 0.0004 522 48 524 9 526 4 514 8 16 15.07 87.9 132 0.66 0.0573 0.0016 0.6740 0.0181 0.0853 0.0010 0.0259 0.0005 502 59 523 11 528 6 516 9 17 18.17 120 151 0.79 0.0578 0.0011 0.6859 0.0129 0.0859 0.0007 0.0269 0.0004 524 43 530 8 531 4 536 8 18 16.05 117 135 0.87 0.0577 0.0015 0.6772 0.0177 0.0849 0.0008 0.0257 0.0004 517 56 525 11 525 5 514 8 19 8.76 62.2 71.8 0.87 0.0569 0.0024 0.6692 0.0284 0.0854 0.0014 0.0281 0.0007 500 99 520 17 528 8 560 13 20 125.6 93.3 274 0.34 0.1580 0.0021 7.6327 0.1347 0.3493 0.0044 0.0895 0.0015 2435 23 2189 16 1931 21 1732 28 21 19.20 127 170 0.74 0.0582 0.0012 0.6865 0.0162 0.0853 0.0010 0.0264 0.0005 539 42 531 10 528 6 527 9 22 17.37 131 150 0.87 0.0576 0.0014 0.6827 0.0180 0.0857 0.0011 0.0257 0.0005 517 54 528 11 530 6 514 10 23 9.96 75.3 87.3 0.86 0.0579 0.0014 0.6658 0.0165 0.0835 0.0009 0.0254 0.0005 524 56 518 10 517 5 507 9 24 24.63 146 233 0.62 0.0569 0.0013 0.6366 0.0154 0.0809 0.0008 0.0253 0.0004 487 82 500 10 501 5 506 8 表 2 东沟片麻状花岗闪长岩主量、微量和稀土元素分析结果
Table 2. Contents of major, trace and rare earth elements of the Dong’gou gneissic granodiorite
元素 D1022-1 D1022-2 D1022-3 D1022-4 元素 D1022-1 D1022-2 D1022-3 D1022-4 SiO2 64.31 67.53 65.88 64.2 V 36.5 45.7 41.8 45.1 TiO2 0.22 0.3 0.31 0.42 Cr 3.2 6 4.2 1.1 Al2O3 16.61 16.71 17.58 18.24 Hf 2.04 2.36 2.34 4.27 TFe2O3 2.47 2.43 2.03 2.17 Sc 2.83 3.54 3.16 4.15 MnO 0.05 0.04 0.03 0.05 Ta 0.56 0.57 0.57 0.73 MgO 3.8 1.22 1.44 2.05 Co 4.88 2.12 2.27 2.95 CaO 6.57 6.26 5.94 6.69 U 0.28 0.76 0.77 0.67 Na2O 5.47 5.21 5.69 5.75 La 12 34 22.3 28.5 K2O 0.56 0.37 0.45 0.44 Ce 23.4 65.7 42.4 61.2 P2O5 0.07 0.11 0.11 0.16 Pr 2.93 6.88 5.22 6.61 烧失量 0.52 0.39 0.48 0.62 Nd 11.9 23.4 20.9 23.6 总计 100.65 100.57 99.94 100.79 Sm 2.04 3.91 3.46 4.1 A/CNK 0.77 0.82 0.85 0.82 Eu 0.51 1.16 1.12 0.97 Ba 132 118 149 135 Gd 1.75 2.96 2.87 3.29 Rb 11.6 4.1 6 6.4 Tb 0.28 0.43 0.42 0.47 Sr 519 478 449 541 Dy 1.6 2.34 2.35 2.64 Y 9.4 13.3 13.5 15.7 Ho 0.33 0.47 0.48 0.54 Zr 61 89 90 168 Er 1.02 1.43 1.47 1.71 Nb 4.69 5.97 6.39 8.73 Tm 0.16 0.21 0.22 0.26 Th 2.76 6.69 4.43 6.77 Yb 1.12 1.4 1.51 1.78 Pb 1.31 2.32 2.03 1.98 Lu 0.19 0.22 0.25 0.29 Ga 13.6 17.5 16.6 15.5 ΣREE 59.2 144.5 105 136 Ni 19.5 5.8 4.5 11.3 δEu 0.81 1 1.06 0.78 注:主量元素含量单位为%,微量、稀土元素含量单位为10−6。A/CNK=Al2O3/(Na2O+K2O+CaO)(分子比); ΣREE=稀土元素总量; δEu=2*EuN/(SmN+GdN) 表 3 东沟片麻状花岗闪长岩Sr−Nd同位素组成
Table 3. Sr−Nd isotopic compositions of the Dong’gou gneissic granodiorite
样品号 年龄/Ma Rb/10−6 Sr/10−6 87Rb/86Sr 87Sr/86Sr 2σ ISr Sm/10−6 D1022-1 526 14.63 544.2 0.07775 0.706719 14 0.70614 1.86 D1022-2 526 5.062 547.1 0.02677 0.706814 15 0.70661 3.88 D1022-3 526 7.857 528.2 0.04306 0.706620 15 0.70629 4.24 样品号 Nd/10-6 147Sm/144Nd 143Nd/144Nd 2σ TDM1/ Ma TDM2/ Ma εNd(t) fSm/Nd D1022-1 9.92 0.1136 0.511620 5 2319 2402 −14.29 −0.42 D1022-2 23.52 0.0999 0.511600 7 2069 2361 −13.76 −0.49 D1022-3 18.91 0.1357 0.511617 7 2976 2523 −15.84 −0.31 -
[1] Barker F. 1979. Trondhjemite: definition, environment and hypotheses of origin[C]//Barker F. Trondhjemites dacites and related rocks. Amsterdam: Elsevier: 1−12.
[2] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier: 63−114.
[3] Chen Y, Zhang Z C, Qian X Y, et al. 2020. Early to Mid−Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction−induced terrane accretion along the northern margin of the North China Craton[J]. Gondwana Research, 79: 263−282. doi: 10.1016/j.gr.2019.08.012
[4] Gao L M. 2004. Basic characteristics of the Xar Moron River fault and its geodynamic significance[D]. Master Thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).
[5] He X X, Tang S H, Zhu X K, et al. 2007. Precise measurement of Nd isotopic ratios by means of multi−collector magnetic sector inductively coupled plasma mass spectrometry[J]. Acta Geoscientica Sinica, 28(4): 405−410 (in Chinese with English abstract).
[6] He Z Y, Klemd R, Yan L L, et al. 2018. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon[J]. Scientific Reports, 8: 5054. doi: 10.1038/s41598-018-23393-4
[7] Hong D W, Zhang J S, Wang T, et al. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 23: 799−813.
[8] Huang B H, Ding Q H. 1998. The Angara flora from northern China[J]. Acta Geoscientica Sinica, 19(1): 97−104 (in Chinese with English abstract).
[9] Jahn B M, Wu F Y, Hong D W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East central Asia[J]. Proceedings of the Indian Academy of Science (Earth and Planetary Science), 109: 5−20. doi: 10.1007/BF02719146
[10] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 226(1): 73−100.
[11] Jian P, Liu D Y, Kröner A, et al. 2008. Time scale of an early to mid−Paleozoic orogenic cycle of the long−lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3/4): 233−259.
[12] Jiang S H, Liang Q L, Nie F J, et al. 2014. A preliminary study of zircon LA−MC−ICP−MS U−Pb ages of the Shuangjingzi complex in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1108−1123 (in Chinese with English abstract).
[13] Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction−related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on geochemistry. Elsevier, 4: 749−805.
[14] Khain E V, Bibikova E V, Kröner A, et al. 2002. The most ancient ophiolite of the Central Asian fold belt: U−Ph and Pb−Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 199: 311−325. doi: 10.1016/S0012-821X(02)00587-3
[15] Krӧner A, Kovach V, Belousova E, et al. 2014a. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 25: 103−125. doi: 10.1016/j.gr.2012.12.023
[16] Kröner A, Rojas−Agramonte Y. 2014b. The Altaids as seen by eduard suess, and present thinking on the Late Mesoproterozoic to Palaeozoic evolution of Central Asia[J]. Austrian Journal of Earth Sciences, 107(1): 156−168.
[17] Kuzmichev A B, Larionov A N. 2013. Neoproterozoic island arcs in East Sayan: duration of magmatism (from U−Pb zircon dating of volcanic clastics)[J]. Russian Geology and Geophysics, 54: 34−43.
[18] Lei H, Zhang G B, Xu B. 2021. The Late Paleozoic extending and thinning processes of the Xing'an−Mongolia orogenic belt: Geochemical evidence from the plutons in Linxi area, Inner Mongolia[J]. Acta Petrologica Sinica, 37(7): 2029−2050 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.05
[19] Li C Y, Wang Q, Liu X Y, et al. 1982. Explanatory notes to the tectonic map of China[M]. Beijing: Cartographic Publishing House (in Chinese).
[20] Li C Y, Wang Q, Liu X Y, et al. 1984. Tectonic evolution of Asia[J]. Bulletin of the Chinese Academy of Geological Science, 10: 3−10 (in Chinese with English abstract).
[21] Li J Y, Gao Li M, Sun G H, et al. 2007. Shuangjingzi middle Triassic syncollisional crust−derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino−Korean paleo−plates[J]. Acta Petrologica Sinica, 23: 565−582 (in Chinese with English abstract).
[22] Li J Y, Zhang J, Yang T N, et al. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584−605 (in Chinese with English abstract).
[23] Li J Y, Liu J F, Qu J F, et al. 2019a. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04
[24] Li J Y, Liu J F, Qu J F, et al. 2019b. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44(10): 3157−3177 (in Chinese with English abstract).
[25] Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26: 207−224. doi: 10.1016/j.jseaes.2005.09.001
[26] Li Y L, Zhou H W, Ge M C, et al. 2008. LA−ICPMS zircon U−Pb dating of migmatite from north Shuangjing schist in Linxi, Inner Mongolia[J]. Mineralogy and Petrology, 28(2): 10−16 (in Chinese with English abstract).
[27] Li Y L, Zhou H W, Zhong Z Q, et al. 2009. Collision processes of North China and Siberian Plates: Evidence from LA−ICP−MS zircon U−Pb age on deformed Granite in Xar Moron Suture Zone[J]. Earth Science, 34(6): 931−938 (in Chinese with English abstract).
[28] Li Y L, Zhou H W, Xiao W J, et al. 2012. Superposition of Paleo−Asian and west−pacific tectonic domains in the eastern section of the Solonker suture zone: Insights from petrology, geochemistry and geochronology of deformed diorite in Xar Moron fault zone, Inner Mongolia[J]. Earth Science, 37(3): 433−450 (in Chinese with English abstract).
[29] Liu B, Han B F, Xu Z, et al. 2016. The Cambrian initiation of intra−oceanic subduction in the southern Paleo−Asian Ocean: Further evidence from the Barleik subduction−related metamorphic complex in the West Junggar region, NW China[J]. Journal of Asian Earth Sciences, 123: 1−21.
[30] Liu J F, Li J Y, Sun L X, et al. 2016. Zircon U−Pb dating of the Jiujingzi ophiolite in Bairin Left Banner, Inner Mongolia: Constraints on the formation and evolution of the Xar Moron River suture zone[J]. Geology in China, 43(6): 1947−1962 (in Chinese with English abstract).
[31] Liu J F, Zhao S, Zhang W L, et al. 2022. Database of 1∶50000 regional geological map of Shuangjing—Bilutai area, east Inner Mongolia (within the standard 1∶50000 geological maps of K50E004017, K50E004018, K50E004019, K50E005017, K50E005018, K50E005019)[DB]. Geoscientific Data & Discovery Publishing System. DOI: 10.35080/data.A.2022.P012.
[32] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013
[33] Liu Y J, Ma Y F, Feng Z Q, et al. 2022. Paleozoic orocline in the eastern Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3468−3493 (in Chinese with English abstract).
[34] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.
[35] Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U−Pb isotope and trace element analyses by LA−ICP−MS[J]. Chinese Science Bulletin, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4
[36] Ludwig K R. 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California.
[37] Ma S X, Wang Z Q, Zhang Y L, et al. 2019. Bainaimiao arc as an exotic terrane along the northern margin of the North China Craton: Evidences from petrography, zircon U−Pb dating, and geochemistry of the Early Devonian deposits[J]. Tectonics, 38(8): 2606−2624. doi: 10.1029/2018TC005426
[38] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Review, 37: 215−224.
[39] Miyazaki T, Shuto K. 1998. Sr and Nd isotope ratios of twelve GSJ rock reference samples[J]. Geochemical Journal, 32: 345−350. doi: 10.2343/geochemj.32.345
[40] Nie F J, Pei R F, Wu L S, et al. 1995. Nd and Sr isotope study on greenschist and granodiorite of the Bainaimiao District, Inner Mongolia, China[J]. Acta Geoscientica Sinica, (1): 36−44 (in Chinese with English abstract).
[41] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[42] Qian C, Lu L, Wang Y, et al. 2020. Age and geochemistry of amphibolite in Shuangsheng area, eastern Inner Mongolia: New evidence from the Paleoproterozoic basement of Bainaimiao island arc[J]. Geological Bulletin of China, 39(6): 905−918 (in Chinese with English abstract).
[43] Ren J S, Niu B G, Liu Z G. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, 6(3): 85−93 (in Chinese with English abstract).
[44] Ren R, Han B F, Xu Z, et al. 2014. When did the subduction first initiate in the southern Paleo−Asian Ocean: New constraints from a Cambrian intra−oceanic arc system in West Junggar, NW China[J]. Earth and Planetary Science Letters, 388: 222−236. doi: 10.1016/j.jpgl.2013.11.055
[45] Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364: 209−307.
[46] Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: fragments of a synthesis[C]//Yin A, Harrison M. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press: 486−640.
[47] Shao J A, Wang Y, Tang K D. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China[J]. Acta Petrologica Sinica, 33(10): 3002−3010 (in Chinese with English abstract).
[48] Shao J A, Tian W, Tang K D, et al. 2018. Preliminary discussion on the role of microcontinental blocks in the evolution of the Central Asian orogenic belt: Taking the Xilinhaote microcontinental block as an example[J]. Earth Science Frontiers, 25(4): 1−10 (in Chinese with English abstract).
[49] Shi G H, Liu D Y, Zhang F Q, et al. 2003. SHRIMP U−Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 48(24): 2742−2748. doi: 10.1007/BF02901768
[50] SIGSNM (The Second Institute of Geological Survey of Nei Monggol (Inner Mongolia) Autonomous Region). 1995. Report of 1: 50000 Regional Geological Survey of Renjiayingzi Area (K50E004018)[R], (in Chinese).
[51] Song B, Zhang Y H, Wan Y S, et al. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(Supp.): 26−30 (in Chinese with English abstract).
[52] SRGSTLP (The Second Regional Geological Survey Team of Liaoning Province). 1971a. Report of 1∶
200000 Regional Geological Survey of Baitazimiao (L-50-XXXV) and Linxi Area (K-50-5)[R] (in Chinese).[53] SRGSTLP (The Second Regional Geological Survey Team of Liaoning Province). 1971b. Report of 1∶
200000 Regional Geological Survey of Wufendi area (K-50-XI)[R] (in Chinese).[54] Sun L X, Ren B F, Wang S Q, et al. 2018. Petrogenesis of the Mesoproterozoic gneissic granite in the Sonid Left Banner Area, Inner Mongolia, and its tectonic implications[J]. Acta Geologica Sinica, 92(11): 2167−2189 (in Chinese with English abstract).
[55] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the ocean basins. London: Geological Society Special Publications, 42: 313−345.
[56] Tang S H, Li J, Liang X R, et al. 2017. Reference Material Preparation of 143Nd/144Nd Isotope Ratio[J]. Rock and Mineral Analysis, 36(2): 163−170 (In Chinese with English abstract).
[57] TGIMEDIM (The Tenth Geological Institute of Mineral Exploration and Development, Inner Mongolia. 1997. Report of 1∶50000 Regional Geological Survey of Xiachang Area (K50E005018)[R](in Chinese).
[58] Wang H Z. 1981. Geotectonic units of China from the view—point of mobilism[J]. Earth Science, 1: 42−66 (In Chinese with English abstract).
[59] Wang Q. 1986. Recognition of the suture between the Sino−Korean and Siberian Paleoplates in the middle part of Inner Mongolia[J]. Acta Geologica Sinica, 60(1): 31−43 (in Chinese with English abstract).
[60] Wang Q, Liu X Y, Li J Y. 1991. Paleoplate tectonics in Nei Monggol of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 22: 1−15 (in Chinese with English abstract).
[61] Wang Y J, Fan Z Y. 1997. Discovery of Permian radiolarians in ophiolite belt on northern side of Xarmoron river, Nei Monggol and its geological significance[J]. Acta Palaeontologica Sinica, 36(1): 58−69 (in Chinese with English abstract).
[62] Wang Y, Fan Z Y, Fang S, et al. 1999. Geological information were discovered and their plate tectonic significance on the northern bank of Xarmoron river[J]. Geology of Inner Mongolia, (1): 6−27 (in Chinese with English abstract).
[63] Wang Z W, Liu Z Y, Yang Z N, et al. 2023. Magmatic and sedimentary records of Columbia−Rodinia supercontinent cycle in microcontinents within eastern central Asian orogenic belt[J]. Geological Review, 69(6): 2115−2140 (in Chinese with English abstract).
[64] Wilde S A, Dorsett−Bain H L, Lennon R G. 1999. Geological setting and controls on the development of graphite, sillimanite and phosphate mineralization within the Jiamusi Massif: An exotic fragment of Gondwanaland located in noah−eastern China?[J]. Gondwana Research, 2(1): 21−46.
[65] Wilde S A, Wu F Y, Zhang X Z. 2003. Late Pan−African magmatism in northeastern China: SHRIMP U Pb zircon evidence from granitoids in the Jiamusi Massif[J]. Precambrian Reseach, 122: 311−327.
[66] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022
[67] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1−30. doi: 10.1016/j.jseaes.2010.11.014
[68] Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constraints on interpretation of U−Pb age[J]. Chinese Science Bulletin, 49(15): 1554−1569. doi: 10.1007/BF03184122
[69] Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1069.
[70] Xiao W J, Windley B F, Huang B C, et al. 2009. End−Permian to mid−Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 98(6): 1189−1217. doi: 10.1007/s00531-008-0407-z
[71] Xiao W J, Windley B F, Han C M, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020
[72] Zhang J R, Wei C J, Chu H, et al. 2016. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China[J]. Lithos, 261: 262−277.
[73] Zhang J R, Wei C J, Chu H. 2018. Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, Northern China: Implication for the tectonic evolution of the Xing’an−Inner Mongolia Orogenic Belt[J]. Journal of Asian Earth Sciences, 167: 52−67. doi: 10.1016/j.jseaes.2018.04.007
[74] Zhang J, Qu J F, Liu J F, et al. 2021. The evolution of the Xar Moron tectonic belt in the eastern Central Asian Orogenic Belt: Constraints from evidences of deformation and low−temperature thermochronology[J]. Sedimentary Geology and Tethyan Geology, 41(2): 190−217 (in Chinese with English abstract).
[75] Zhang S H, Zhao Y, Ye H, et al. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern central Asian orogenic belt[J]. Geological Society of America Bulletin, 126: 1275−1300. doi: 10.1130/B31042.1
[76] Zhang W, Jian P. 2008. SHRIMP dating of early Paleozoic granites from north Damaoqi, Inner Mongolia[J]. Acta Geologica Sinica, 82(6): 778−787 (in Chinese with English abstract).
[77] Zhao P, Faure M, Chen Y, et al. 2015. A new Triassic shortening−extrusion tectonic model for Central−Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)[J]. Earth and Planetary Science Letters, 426: 46−57.
[78] Zhao S, Liu J F, Zhang Y T, et al. 2021. Geochronology and petrogenesis of the Yuanbaoshan leucogranite in southeast Inner Mongolia: Implications for the collision between the Sino−Korean and Siberian paleo−plates[J]. Lithos, 384/385: 105981.
[79] Zindler A, Hart S. 1986. Chemical geodynamics[J]. Annual Reviews of Earth and Planetary Science, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425
[80] 高立明. 2004. 西拉木伦河断裂带基本特征及其动力学意义[D]. 中国地质科学院硕士学位论文.
[81] 何学贤, 唐索寒, 朱祥坤, 等. 2007. 多接收器等离子体质谱(MC-ICPMS)高精度测定Nd同位素方法[J]. 地球学报, 28(4): 405−410. doi: 10.3321/j.issn:1006-3021.2007.04.012
[82] 黄本宏, 丁秋红. 1998. 中国北方安加拉植物群[J]. 地球学报, 19(1): 97−104.
[83] 江思宏, 梁清玲, 聂凤军, 等. 2014. 内蒙古林西双井子杂岩锆石LA−MC−ICP−MS测年初步研究[J]. 中国地质, 41(4): 1108−1123. doi: 10.3969/j.issn.1000-3657.2014.04.006
[84] 雷豪, 张贵宾, 徐备. 2021. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据[J]. 岩石学报, 37(7): 2029−2050. doi: 10.18654/1000-0569/2021.07.05
[85] 李春昱, 王荃, 刘雪亚, 等. 1982. 亚洲大地构造图说明书[M]. 北京: 地图出版社.
[86] 李春昱, 王荃, 刘雪亚, 等. 1984. 亚洲大地构造的演化[J]. 中国地质科学院院报, 10: 3−10.
[87] 李锦轶, 高立明, 孙桂华, 等. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 565−582. doi: 10.3969/j.issn.1000-0569.2007.03.004
[88] 李锦轶, 张进, 杨天南, 等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报: 地球科学版, 39(4): 584−605.
[89] 李锦轶, 刘建峰, 曲军峰, 等. 2019a. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.
[90] 李锦轶, 刘建峰, 曲军峰, 等. 2019b. 中国东北地区古生代构造单元: 地块还是造山带? [J]. 地球科学, 44(10): 3157−3177.
[91] 李益龙, 周汉文, 葛梦春, 等. 2008. 内蒙古林西县双井片岩北缘混合岩LA−ICPMS锆石U−Pb年龄[J]. 矿物岩石, 28(2): 10−16. doi: 10.3969/j.issn.1001-6872.2008.02.003
[92] 李益龙, 周汉文, 钟增球, 等. 2009. 华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石LA−ICP−MS U−Pb年龄证据[J]. 地球科学, 34(6): 931−938. doi: 10.3321/j.issn:1000-2383.2009.06.007
[93] 李益龙, 周汉文, 肖文交, 等. 2012. 古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加: 来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据[J]. 地球科学, 37(3): 433−450.
[94] 辽宁省第二区域地质测量队. 1971a. 白塔子庙幅(L-50-XXXV)和林西县幅(K-50-V)区域地质矿产报告书[R].
[95] 辽宁省第二区域地质测量队. 1971b. 五分地幅(K-50-XI)区域地质矿产报告书[R].
[96] 刘建峰, 李锦轶, 孙立新, 等. 2016. 内蒙古巴林左旗九井子蛇绿岩锆石U−Pb定年: 对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 43(6): 1947−1962. doi: 10.12029/gc20160607
[97] 刘建峰, 赵硕, 张文龙, 等. 2022. 中国地质调查局: 内蒙古东部双井—必鲁台地区(K50E004017, K50E004018, K50E004019, K50E005017, K50E005018, K50E005019图幅之内) 1∶50000区域地质图数据库[DB]. DOI: 10.35080/data.A.2022.P012.
[98] 刘永江, 马永非, 冯志强, 等. 2022. 中亚造山带东段古生代山弯构造[J]. 地质学报, 96(10): 3468−3493. doi: 10.3969/j.issn.0001-5717.2022.10.012
[99] 内蒙古自治区第二区域地质研究院. 1995. 任家营子幅(K50E004018)区域地质调查说明书[R].
[100] 内蒙古自治区第十地质矿产勘查开发院. 1997. 下场幅(K50E005018)区域地质调查说明书[R].
[101] 聂凤军, 裴荣富, 吴良士, 等. 1995. 内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究[J]. 地球学报, (1): 36−44.
[102] 钱程, 陆露, 汪岩, 等. 2020. 内蒙古白乃庙岛弧发现古元古代变质基底——来自双胜地区斜长角闪岩年龄和地球化学的证据[J]. 地质通报, 39(6): 905−918. doi: 10.12097/j.issn.1671-2552.2020.06.010
[103] 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 6(3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008
[104] 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代—早中生代构造环境的讨论[J]. 岩石学报, 33(10): 3002−3010.
[105] 邵济安, 田伟, 唐克东, 等. 2018. 初论微陆块在中亚造山带演化中的作用: 以锡林浩特微陆块为例[J]. 地学前缘, 25(4): 1−10.
[106] 宋彪, 张玉海, 万渝生, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(增刊): 26−30.
[107] 孙立新, 任邦方, 王树庆, 等. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义[J]. 地质学报, 92(11): 2167−2189. doi: 10.3969/j.issn.0001-5717.2018.11.001
[108] 唐索寒, 李津, 梁细荣, 等. 钕同位素比值143Nd/144Nd标准溶液研制[J]. 岩矿测试, 2017, 36(2): 163−170.
[109] 王鸿祯. 1981. 从活动论观点论中国大地构造分区[J]. 地球科学, 1: 42−66.
[110] 王荃. 1986. 内蒙古中部中朝与西伯利亚古板块间缝合线的确定[J]. 地质学报, 1: 31−43.
[111] 王荃, 刘雪亚, 李锦轶. 1991. 中国内蒙古中部的古板块构造[J]. 中国地质科学院院报, 22: 1−15.
[112] 王友, 樊志勇, 方曙, 等. 1999. 西拉木伦河北岸新发现地质资料及其构造意义[J]. 内蒙古地质, (1): 6−27.
[113] 王玉净, 樊志勇. 1997. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J]. 古生物学报, 36(1): 58−68.
[114] 王志伟, 刘振宇, 杨振宁, 等. 2023. 中亚造山带东部微陆块在Columbia-Rodinia超大陆演化中的岩浆-沉积记录[J]. 地质论评, 69(6): 2115−2140.
[115] 张进, 曲军峰, 刘建峰, 等. 2021. 中亚造山带东段西拉木伦构造带的性质与演化: 来自变形和低温热年代学的约束[J]. 沉积与特提斯地质, 41(2): 190−217.
[116] 张维, 简平. 2008. 内蒙古达茂旗北部早古生代花岗岩类SHRIMP U−Pb年代学[J]. 地质学报, 82(6): 778−787. doi: 10.3321/j.issn:0001-5717.2008.06.007
-