阿拉善南部地区石炭纪—二叠纪期间的构造体制转换

郑荣国, 张进. 2024. 阿拉善南部地区石炭纪—二叠纪期间的构造体制转换. 地质通报, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028
引用本文: 郑荣国, 张进. 2024. 阿拉善南部地区石炭纪—二叠纪期间的构造体制转换. 地质通报, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028
ZHENG Rongguo, ZHANG Jin. 2024. Tectonic switching during Carboniferous-Early Triassic within the southern Alxa. Geological Bulletin of China, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028
Citation: ZHENG Rongguo, ZHANG Jin. 2024. Tectonic switching during Carboniferous-Early Triassic within the southern Alxa. Geological Bulletin of China, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028

阿拉善南部地区石炭纪—二叠纪期间的构造体制转换

  • 基金项目: 国家自然科学基金项目《阿拉善地区增生杂岩对岩浆岩带向洋迁移机制的制约》(批准号:42272268)和中国地质调查局项目《古生代—中生代中亚造山带中段洋-陆转换专题地质调查》(编号:DD20230217)
详细信息
    作者简介: 郑荣国(1987− ),男,副研究员,从事造山作用与大陆地壳演化方面的研究工作。E−mail:rgzheng@163.com
  • 中图分类号: P54

Tectonic switching during Carboniferous-Early Triassic within the southern Alxa

  • 阿拉善地区位于中亚造山带南缘中段,该地区出露大量古生代的蛇绿混杂岩、增生杂岩和岩浆岩,记录了古亚洲洋闭合过程对大陆地壳的改造。本文系统总结了阿拉善南部地区蛇绿混杂岩及石炭纪—早三叠世岩浆岩的研究进展,收集整理了该地区岩浆岩的年代学、全岩地球化学和同位素数据。结果发现,阿拉善南部地区分布有早二叠世俯冲相关蛇绿混杂岩,中、晚二叠世高镁安山岩和埃达克岩,表明该地区的古大洋在晚二叠世尚未闭合。阿拉善南部地区岩浆岩的时空分布反映出该地区岩浆岩带向北西方向迁移的特征,揭示了阿拉善地块晚古生代向北增生的过程。阿拉善南部地区从早石炭世的前进型俯冲带转换为晚石炭世—二叠纪的后撤型俯冲带。

  • 加载中
  • 图 1  中亚造山带构造组成图(据Şengör et al., 1991Xiao et al., 2015修改)

    Figure 1. 

    图 2  阿拉善地区区域地质图

    Figure 2. 

    图 3  恩格尔乌苏蛇绿混杂岩地质图(据Zheng et al., 2014

    Figure 3. 

    图 4  阿拉善地区蛇绿混杂岩代表性岩石的稀土元素配分图(a)和微量元素蛛网图(b)(稀土元素和微量元素数据据Zheng et al., 2014, 2018

    Figure 4. 

    图 5  阿拉善南部地区侵入岩SiO2−(Na2O+K2O) (a,底图据Wilson, 1989)和SiO2−K2O图解(b,底图据Peccerillo et al., 1976)(地球化学数据据Zheng et al., 2022

    Figure 5. 

    图 6  阿拉善南部地区地质图及侵入体年代学数据(年代学数据据Zheng et al., 2019b

    Figure 6. 

    图 7  阿拉善南部晚古生代岩体特征图

    Figure 7. 

    图 8  阿拉善南部地区石炭纪—早三叠世构造演化示意图(据Zheng et al., 2022

    Figure 8. 

  • [1]

    Boekhout F, Roberts N M W, Gerdes A, et al. 2015. A Hf−isotope perspective on continent formation in the south Peruvian Andes[J]. Geological Society, London, Special Publications, 389: 305–321.

    [2]

    Chen Y, Wu T R, Zhang Z C, et al. 2020. Provenance of the Permo–Carboniferous sediments in the northern Alxa and its tectonic implications for the southernmost Central Asian Orogenic Belt[J]. Geoscience Frontiers, 11: 1415–1429.

    [3]

    Collins W J. 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30: 535–538.

    [4]

    Collins W J, Huang H Q, Bowden P, et al. 2020. Repeated S−I−A−type granite trilogy in the Lachlan Orogen, and geochemical contrasts with A−type granites in Nigeria: Implications for petrogenesis and tectonic discrimination[J]. Geological Society London Special Publications, 491(1): SP491−2018−159.

    [5]

    Cawood P A, Kröner A, Collins W J, et al. 2009. Accretionary orogens through Earth history, in earth accretionary systems in space and time[C]//Cawood P A, Kröner A. Geological Society of London, Special Publication, 318(1): 1–36.

    [6]

    Dan W, Li X H, Guo J H, et al. 2012. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U–Pb dating and Hf–O isotopes[J]. Gondwana Research, 21: 838−864. doi: 10.1016/j.gr.2011.09.004

    [7]

    Dan W, Li X H, Wang Q, et al. 2014a. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare−up triggered by a mantle−plume? [J]. Lithos, 204: 144–158.

    [8]

    Dan W, Li X H, Wang Q, et al. 2014b. Neoproterozoic S−type granites in the Alxa Block, westernmost North China and tectonic implications: In situ zircon U−Pb−Hf−O isotopic and geochemical constraints[J]. American Journal of Science, 314(1): 110−153. doi: 10.2475/01.2014.04

    [9]

    Dan W, Wang Q, Wang X C, et al. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces[J]. Lithos, 230: 133−145. doi: 10.1016/j.lithos.2015.05.016

    [10]

    Dan W, Li X H, Wang Q, et al. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry[J]. Gondwana Research, 32: 105−121. doi: 10.1016/j.gr.2015.02.011

    [11]

    Feng J Y, Xiao W J, Windley B, et al. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 78: 114−142. doi: 10.1016/j.jseaes.2013.01.020

    [12]

    Geng Y S, Wang X S, Shen Q H, et al. 2006. Redefinition of the Alxa Group of Precambrian metamorphic basement in Alxa region, Inner Mongolia[J]. Geology in China, 33: 138−145 (in Chinese with English abstract).

    [13]

    Geng Y S, Zhou X W. 2010. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 29(6): 779−795 (in Chinese with English abstract).

    [14]

    Geng Y S, Zhou X W. 2011. Characteristics of geochemistry and zircon Hf isotope of the early Neoproterozoic granite in Alax area, Inner Mongolia[J]. Acta Petrologica Sinica, 27(4): 897−908 (in Chinese with English abstract).

    [15]

    Geng Y S, Zhou X W. 2012. Early Permian magmatic events in the Alxa metamorphic basement: Evidence from geochronology[J]. Acta Petrologica Sinica, 28(9): 2667−2685 (in Chinese with English abstract).

    [16]

    Gong J H, Zhang J X, Wang Z Q, et al. 2016. Origin of the Alxa Block, western China: New evidence from zircon U–Pb geochronology and Hf isotopes of the Longshoushan Complex[J]. Gondwana Research, 36: 359−375. doi: 10.1016/j.gr.2015.06.014

    [17]

    Han B F, He G Q, Wang X C, et al. 2011. Late Carboniferous collision between the Tarim and Kazakhstan−Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth−Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001

    [18]

    Hu J M, Gong W B, Wu S J, et al. 2014. LA−ICP−MS zircon U−Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255: 756–770.

    [19]

    Jahn B M, Wu F Y, Hong D W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east−central Asia[J]. Journal of Earth System Science, 109: 5–20.

    [20]

    Kemp A I S, Hawkesworth C J, Collins W J, et al. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 284: 455−466. doi: 10.1016/j.jpgl.2009.05.011

    [21]

    Lin L N, Xiao W J, Wan B, et al. 2014. Geochronology and geological evidence for persistence of south−dipping subduction to Late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids[J]. American Journal of Science, 314: 679−703. doi: 10.2475/02.2014.08

    [22]

    Liu M, Zhang D, Xiong G Q, et al. 2016. Zircon U–Pb age, Hf isotope and geochemistry of Carboniferousintrusions from the Langshan area, Inner Mongolia: Petrogenesisand tectonic implications[J]. Journal of Asian Earth Sciences, 120: 139−158. doi: 10.1016/j.jseaes.2016.01.005

    [23]

    Liu Q, Zhao G C, Han Y G, et al. 2017. Timing of the final closure of the Paleo−Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 274/275: 19–30.

    [24]

    Liu C H, Zhao G C, Liu F L, et al. 2019. Late Precambrian tectonic affinity of the Alxa block and the North China Craton: Evidence from zircon U−Pb dating and Lu−Hf isotopes of the Langshan Group[J]. Precambrian Research, 326: 312−332. doi: 10.1016/j.precamres.2017.10.019

    [25]

    Moresi L N, Betts P G, Miller M S, et al. 2014. Dynamics of continental accretion[J]. Nature, 508: 7495.

    [26]

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63–81.

    [27]

    Peng R M, Zhai Y S, Wang J P, et al. 2010. Discovery of Neoproterozoic acid volcanic rock in the western section of Langshan, Inner Mongolia, and its geological significance[J]. Chinese Science Bulletin, 55: 2611−2620 (in Chinese with English abstract). doi: 10.1360/972010-266

    [28]

    Spencer C J, Roberts N M W, Santosh M. 2017. Growth, destruction, and preservation of earth’s continental crust[J]. Earth−Science Reviews, 172: 87–106.

    [29]

    Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: Fragments of a synthesism, in The Tectonic Evolution of Asia[C]//Yin A, Harrison T M.Cambridge Univ. Press, New York: 486−640.

    [30]

    Sengör A M C, Okurogullari A H. 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to Plate Tectonics[J]. Eclogae Geol. Helv. , 84: 535 –597.

    [31]

    Shi X J, Wang T, Zhang L, et al. 2014. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro– granodiorite–granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 208/209: 158–177.

    [32]

    Shi X J, Zhang L, Wang T, et al. 2016. Zircon geochronology and Hf isotopic compositions for the Mesoproterozoic gneisses in Zongnaishan area, northern Alxa and its tectonic affinity[J]. Acta Petrologica Sinica, 32(11): 3518−3536 (in Chinese with English abstract).

    [33]

    Song D F, Xiao W J, Collins A S, et al. 2017. New chronological constrains on the tectonic affinity of the Alxa Block, NW China[J]. Precambrian Research, 299: 230−243. doi: 10.1016/j.precamres.2017.07.015

    [34]

    Wang M M, Zhang L, Huo Y J, et al. 2019. Tectonic affinity of the northern Longshoushan−Beidashan: Constraints from the zircon U−Pb age and Hf isotopic compositions of the Haisen Chulu gneiss [J]. Acta Petrologica et Mineralogica, 38(5): 631−645 (in Chinese with English abstract).

    [35]

    Wang J R, Song C H, Gao J P. 1995. The original mechanism of the Enger Us ophiolitic mélange, North Alaxa [J]. Journal of Lanzhou University (Natural Sciences), 31(2): 140−147 (in Chinese with English abstract).

    [36]

    Wang T Y, Wang J R, Liu J K. 1993. Relationships between the North China and Tarim Plate[J]. Acta Geologica Sinica, 67: 287−300 (in Chinese with English abstract).

    [37]

    Wang T Y, Wang S Z, Wang J R. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alxa Region[M]. Lanzhou: Lanzhou University Press (in Chinese).

    [38]

    Wang Z Z, Han B F, Feng L X, et al. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 97: 337−351. doi: 10.1016/j.jseaes.2014.08.005

    [39]

    Wilson M. 1989. Igneous Petrogenesis[M]. Unwin Hyman Press, London: 295–323.

    [40]

    Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society of London, 164: 31−47. doi: 10.1144/0016-76492006-022

    [41]

    Wu S, Hu J, Ren M, et al. 2014. Petrography and zircon U−Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 94: 226−239. doi: 10.1016/j.jseaes.2014.05.011

    [42]

    Wu T R, He G Q. 1992. Ophiolitic mélange belts in the northern margin of the Alashan Block[J]. Geoscience, 6: 69−78 (in Chinese with English abstract).

    [43]

    Wu T R, He G Q. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alxa block[J]. Acta Geologica Sinica, 6: 373−385 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1993.mp6004001.x

    [44]

    Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477–507.

    [45]

    Xiao W J, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    [46]

    Xie L, Yin H Q, Zhou H R, et al. 2014. Permian radiolarians from the Engeerwusu suture zone in Alashan area, Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 33: 691−697 (in Chinese with English abstract).

    [47]

    Xue S, Ling M M, Liu Y L, et al. 2017. The genesis of early Carboniferous adakitic rocks at the southern margin of the Alxa Block, North China[J]. Lithos, 278/281: 181−194. doi: 10.1016/j.lithos.2017.01.012

    [48]

    Yin H Q. 2016. Late Paleozoic Sedimentary Characteristics and its Tectonic Evolution in Northern Alax area, Inner Mongolia [D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    [49]

    Zhang J X, Gong J H, Yu S Y, et al. 2013a. Neoarchean–Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: evidence from zircon U–Pb ages and Hf isotopic composition[J]. Precambrian Research, 235: 36−57. doi: 10.1016/j.precamres.2013.05.002

    [50]

    Zhang W, Wu T R, Feng J C, et al. 2013b. Time constraints for the closing of the Paleo−Asian Ocean in the Northern Alxa Region: evidence from Wuliji granites[J]. Science China: Earth Sciences, 56(1): 153−164. doi: 10.1007/s11430-012-4435-y

    [51]

    Zheng R G, Wu T R, Zhang W, et al. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 25: 842−858. doi: 10.1016/j.gr.2013.05.011

    [52]

    Zheng R G, Li J Y, Liu J F. 2017. The age of volcanic rocks of Amushan Formation on the northern margin of Alxa block: Evidence from zircon U−Pb data[J]. Geology in China, 44(3): 612−613 (in Chinese with English abstract).

    [53]

    Zheng R G, Li J Y, Xiao W J, et al. 2018. A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB[J]. Geoscience Frontiers, 9: 1355−1367. doi: 10.1016/j.gsf.2018.02.014

    [54]

    Zheng R G, Li J Y, Zhang J, et al. 2019a. Early Carboniferous High Ba–Sr Granitoid in Southern Langshan of Northeastern Alxa: Implications for Accretionary Tectonics along Southern Central Asian Orogenic Belt[J]. Acta Geologica Sinica (English Edition), 93(4): 820−844. doi: 10.1111/1755-6724.13803

    [55]

    Zheng R G, Zhang J, Xiao W J. 2019b. Association of Permian gabbro and granite in the Langshan, southern Central Asian Orogenic Belt: age, origin, and tectonic implications[J]. Lithos, 348/349: 105174.

    [56]

    Zheng R G, Li J Y, Zhang J. 2022. Juvenile hafnium isotopic compositions recording a Late Carboniferous−Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa[J]. GSA Bulletin, 134(5/6): 1375–1396.

    [57]

    Zheng R G, Li J Y, Xiao W J, et al. 2023a. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang−Alxa Block, northwest China[J]. GSA Bulletin, 135(5/6): 1109−1126.

    [58]

    Zheng R G, Zhang J, Xiao W J. 2023b. Continental crust delamination in a retreating subduction zone: a case study in the southern Alxa, Central Asian Orogenic Belt[J]. GSA Bulletin, 135(11/12): 3241–3257.

    [59]

    耿元生, 王新社, 沈其韩, 等. 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J]. 中国地质, 33: 138−145.

    [60]

    耿元生, 王新社, 吴春明, 等. 2010. 阿拉善变质基底古元古代晚期的构造热事件[J]. 岩石学报, 26: 1159−1170.

    [61]

    耿元生, 周喜文. 2011. 阿拉善地区新元古代早期花岗岩的地球化学和锆石 Hf 同位素特征[J]. 岩石学报, 27: 897−908.

    [62]

    耿元生, 周喜文. 2012. 阿拉善变质基底中的早二叠世岩浆热事件-来自同位素年代学的证据[J]. 岩石学报, 28, 2667–2685.

    [63]

    彭润民, 翟裕生, 王建平, 等. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义[J]. 科学通报, 55(26): 2611−2620.

    [64]

    史兴俊, 张磊, 王涛, 等. 2016. 阿拉善北部宗乃山地区片麻岩锆石 U−Pb年龄、Hf同位素特征及其构造归属探讨[J]. 岩石学报, 32(11): 3518−3536.

    [65]

    王毛毛, 张磊, 霍雨佳. 2019. 龙首山-北大山北部的属性-来自海森楚鲁片麻岩锆石U−Pb年龄和Hf同位素的约束[J]. 岩石矿物学杂志, 38(5): 631−645.

    [66]

    王金荣, 宋春晖, 高军平, 等. 1995. 阿拉善北部恩格尔乌苏蛇绿混杂岩的形成机制[J]. 兰州大学学报(自然科学版), 31(2): 140−147.

    [67]

    王廷印, 王士政, 1993. 华北板块和塔里木板块之关系[J]. 地质学报, 67: 287–300.

    [68]

    王廷印, 王士政, 王金荣. 1994. 阿拉善地区古生代陆壳的形成和演化[M]. 兰州: 兰州大学出版社.

    [69]

    吴泰然, 何国琦. 1992. 阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J]. 现代地质, 6: 69−78.

    [70]

    吴泰然, 何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 67: 97−108.

    [71]

    谢力, 尹海权, 周洪瑞, 等. 2014. 内蒙古阿拉善地区恩格尔乌苏缝合带二叠纪放射虫及其地质意义[J]. 地质通报, 33(5): 691−697.

    [72]

    尹海权. 2016. 内蒙古阿拉善地区北部古生代沉积及其大地构造演化特征[D]. 中国地质大学(北京) 博士学位论文.

    [73]

    郑荣国, 李锦轶, 刘建峰. 2017. 阿拉善地块北缘地区阿木山组火山岩时代: 锆石U−Pb 定年证据[J]. 中国地质, 44(3): 612−613.

  • 加载中

(8)

计量
  • 文章访问数:  156
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2024-08-17
修回日期:  2024-10-19
刊出日期:  2024-12-15

目录