Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism
-
摘要:
活动大陆边缘巨型杂岩系如何演化成为成熟大陆的一部分,仍是一个亟待深入探究的重要科学问题。位于中亚造山带腹地的中国阿尔泰地区记录了复杂的地壳改造历史,同时也具备了成熟大陆地壳结构,是研究增生杂岩改造和大陆地壳成熟化的天然实验室。为此,本文以中国阿尔泰造山作用主期(志留纪—泥盆纪)为重点,系统总结了其增生杂岩在变质-变形、深熔作用及花岗岩化方面的进展。研究表明:①奥陶系增生杂岩在志留纪—泥盆纪经历了挤压-伸展-挤压的变形改造,并发育广泛的深熔作用;②地球化学对比和热力学模拟揭示,区内志留纪—泥盆纪花岗岩可能来源于奥陶系增生杂岩的深熔作用;③区域变形过程促进了地壳分异和成熟大陆地壳结构的形成。综合区域研究资料,认为志留纪—泥盆纪强烈地壳改造作用与该区域俯冲体系中俯冲板片前进和后撤的反复转换过程密切相关,后者控制了造山带中的地壳深熔、流动及成熟化过程。活动大陆边缘强烈的地壳改造作用造成增生杂岩转变为成熟大陆地壳,可能是增生型大陆地壳成熟化的又一重要机制。
Abstract:Giant accretionary complexes form at active margins by scraping off oceanic sediments from the subducting plate. Whether or not those compositionally complicated accretionary complexes would be ultimately transformed into mature continent crust remains an unsolved question that calls for further investigation. The Chinese Altai section of the Central Asian Orogenic Belt (CAOB), the largest accretionary orogenic belt on the earth, preserves complicated tectono−thermal geological records and is characterized by formation of mature continental crust, making it a natural laboratory for studying the reworking of accretionary complexes and their evolution into mature continental crust. This paper focuses on the main orogenic period (Silurian−Devonian) of the Chinese Altai and systematically summarizes its recent research progresses in terms of metamorphism−deformation, anatexis, and granitization. ① The Ordovician accretionary complex underwent multiple−stage deformation involving compression−extension−compression during the Silurian−Devonian period, accompanied by intense metamorphism and widespread anatexis during the extensional deformation stage; ② The Ordovician accretionary complexes and most Silurian−Devonian granites in the region exhibited significant similarities in their geochemical characteristics. More importantly, the chemical compositions of Silurian−Devonian granites resemble those of the modelled partial melts of the accretionary complex under regional anatexis P−T conditions. ③ Regional deformation processes facilitated crustal differentiation and the formation of mature continental crust. Together with regional available data, this contribution proposes that the intense crustal reworking during the Silurian−Devonian of the Chinese Altai Orogenic Belt was related to changes in the dynamics of the related supra−subduction system. The cyclic switching between subduction advance and retreat in accretionary orogenic belts could lead to changes of regional stress field and provide anomalous heat source for crustal anatexis, thus control the processes of crustal anatexis and mass redistribution. In these regards, anatexis of accretionary complexes, plays a pivotal role on transformation of active continental margin sediments into compositionally differentiated mature continental crust. This may be a key mechanism contributing to the peripheral continental growth in accretionary orogenic belts in general.
-
Key words:
- Chinese Altai /
- deformation-metamorphism /
- anatexis /
- crustal differentiation /
- mature continental crust
-
-
图 1 中亚造山带大地构造位置图(a,据Windley et al., 2018修改)、蒙古拼贴体地质简图(b,据Jiang et al., 2017修改)和中国阿尔泰地质简图(c)
Figure 1.
图 2 中国阿尔泰造山带志留纪—泥盆纪变形-变质过程模式图(据Wang et al., 2021; Jiang et al., 2022修改)
Figure 2.
图 3 中国阿尔泰志留纪—泥盆纪花岗岩地球化学特征(据Jiang et al., 2016; Huang et al., 2020修改)
Figure 3.
图 4 中国阿尔泰志留纪—泥盆纪花岗岩和哈巴河群变沉积岩(包括火山质组分和陆源碎屑组分)的 Nd 同位素特征(a)和两阶段Nd模式年龄图(b)(据Huang et al., 2020修改)
Figure 4.
图 5 哈巴河群深熔模拟熔体与区域志留纪—泥盆纪花岗岩类成分对比(地球化学图解据Conrad et al., 1988; Patiño et al., 1995; Montel et al., 1997修改,数据据Jiang et al., 2016; Huang et al., 2020)
Figure 5.
图 9 中国阿尔泰深熔地壳水平和垂向流动及花岗岩-混合岩穹隆形成的演化简图(据Wang et al., 2021修改)
Figure 9.
图 11 阿尔泰增生楔的构造-热演化与俯冲体系交替前进-后撤的构造示意图(据Kong et al., 2022修改)
Figure 11.
-
[1] Allegre C J, Courtillot V, Tapponnier P, et al. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0
[2] Allen M, Alsop G, Zhemchuzhnikov V. 2001. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan[J]. Journal of the Geological Society, 158: 83−95. doi: 10.1144/jgs.158.1.83
[3] Arndt N T, Goldstein S L. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling[J]. Tectonophysics, 161: 201−212. doi: 10.1016/0040-1951(89)90154-6
[4] Briggs S M, Yin A, Manning C E, et al. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System[J]. Geological Society of America Bulletin, 119: 944−960. doi: 10.1130/B26044.1
[5] Broussolle A, Aguilar C, Sun M, et al. 2018. Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U–Pb geochronology[J]. Lithos, 314/315: 400−424. doi: 10.1016/j.lithos.2018.06.005
[6] Broussolle A, Štípská P, Lehmann J, et al. 2015. P−T−t−D record of crustal−scale horizontal flow and magma−assisted doming in the SW Mongolian Altai[J]. Journal of Metamorphic Geology, 33: 359−383. doi: 10.1111/jmg.12124
[7] Broussolle A, Sun M, Schulmann K, et al. 2019. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis?[J]. Gondwana Research, 66: 183−206. doi: 10.1016/j.gr.2018.11.003
[8] Brown M. 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust[J]. Canadian Journal of Earth Sciences, 47: 655−694. doi: 10.1139/E09-057
[9] Brun J P. 1980. The cluster−ridge pattern of mantled gneiss domes in eastern Finland: Evidence for large−scale gravitational instability of the Proterozoic crust[J]. Earth & Planetary Science Letters, 47: 441−449.
[10] Burenjargal U, Okamoto A, Kuwatani T, et al. 2014. Thermal evolution of the Tseel terrane, SW Mongolia and its relation to granitoid intrusions in the Central Asian Orogenic Belt[J]. Journal of Metamorphic Geology, 32: 765−790. doi: 10.1111/jmg.12090
[11] Buriánek D, Schulmann K, Hrdličková K, et al. 2017. Geochemical and geochronological constraints on distinct Early−Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia[J]. Gondwana Research, 47: 200−227. doi: 10.1016/j.gr.2016.09.008
[12] Buslov M M, Fujiwara Y, Iwata K, et al. 2004. Late Paleozoic−Early Mesozoic Geodynamics of Central Asia[J]. Gondwana Research, 7: 791−808. doi: 10.1016/S1342-937X(05)71064-9
[13] Cai H M, Wang R, Liu G P, et al. 2022. Discovery of Late Devonian monzogranite from the Eastern Tianshan, and its constrains on the tectonic evolution of the Aqishan−Yamansu belt[J]. Geological Bulletin of China, 41(7): 1184−1190.
[14] Cai K D, Sun M, Yuan C, et al. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 18: 638−652. doi: 10.1016/j.gr.2010.02.010
[15] Cai K D, Sun M, Yuan C, et al. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127: 261−281. doi: 10.1016/j.lithos.2011.09.001
[16] Cai K D, Sun M, Yuan C, et al. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids[J]. Journal of Asian Earth Sciences, 42: 949−968. doi: 10.1016/j.jseaes.2010.11.020
[17] Chai F, Mao J, Dong L, et al. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny[J]. Gondwana Research, 16(2): 189−200.
[18] Chen B I N, Jahn B M 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications [J]. Geological Magazine, 139: 1−13.
[19] Clos F, Weinberg R F, Zibra I, et al. 2019. Archean diapirism recorded by vertical sheath folds in the core of the Yalgoo Dome, Yilgarn Craton[J]. Precambrian Research, 320: 391−402. doi: 10.1016/j.precamres.2018.11.010
[20] Coleman R G. 1989. Continental growth of northwest China[J]. Tectonics, 8: 621−635. doi: 10.1029/TC008i003p00621
[21] Collins W J. 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30: 535.
[22] Conrad W K, Nicholls I A, Wall V J, et al. 1988. Water−saturated and −undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences[J]. Journal of Petrology, 29(4): 765−803. doi: 10.1093/petrology/29.4.765
[23] Coward M P. 1981. Diapirism and gravity tectonics: report of a tectonic studies group conference held at Leeds University, 25–26 March 1980[J]. Journal of Structural Geology, 3: 89−95. doi: 10.1016/0191-8141(81)90059-6
[24] Currie C, Wang K, Hyndman R D, et al. 2004. The thermal effects of steady−state slab−driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc[J]. Earth Planetary Science Letters, 223: 35−48. doi: 10.1016/j.jpgl.2004.04.020
[25] Demoux A, Kröner A, Badarch G, et al. 2009. Zircon ages from the Baydrag block and the Bayankhongor ophiolite zone: Time constraints on Late Neoproterozoic to Cambrian subduction−and accretion−related magmatism in Central Mongolia[J]. The Journal of Geology, 117: 377−397. doi: 10.1086/598947
[26] Faure M, Lalevée F, Gusokujima Y, et al. 1986. The pre−Cretaceous deep−seated tectonics of the Abukuma massif and its place in the structural framework of Japan[J]. Earth & Planetary Science Letters, 77: 384−398.
[27] Fowler T, Osman A. 2001. Gneiss−cored interference dome associated with two phases of late Pan−African thrusting in the central Eastern Desert, Egypt[J]. Precambrian Research, 108: 17−43. doi: 10.1016/S0301-9268(00)00146-7
[28] Gates A E 1987. Transpressional dome formation in the Southwest Virginia Piedmont [J]. American Journal of Science, 287: 927−949.
[29] Gerdes A, Montero P, Bea F, et al. 2002. Peraluminous granites frequently with mantle−like isotope compositions: the continental−type Murzinka and Dzhabyk batholiths of the eastern Urals[J]. International Journal of Earth Sciences, 91: 3−19. doi: 10.1007/s005310100195
[30] Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 307: 501−516. doi: 10.1016/j.jpgl.2011.05.024
[31] Hanžl P, Schulmann K, Janoušek V, et al. 2016. Making continental crust: origin of Devonian orthogneisses from SE Mongolian Altai [J]. Journal of Geosciences: 25−50.
[32] Harris N, Inger S 1992. Trace element modelling of pelite−derived granites [J]. Contributions to Mineralogy Petrology, 110: 46−56.
[33] Hawkesworth C J, Kemp A I S. 2006. The differentiation and rates of generation of the continental crust [J]. Chemical Geology, 226: 134−143.
[34] He, G Q, Liu, D Q, Li, M S, et al. 1995. The five stage model of crustal evolution and metallogenic series of chief orogenic belts in Xinjiang[J]. Xinjiang Geology, 13: 99−194 (in Chinese with English abstract).
[35] Hu W W, Li P, Rosenbaum G, et al. 2020. Structural evolution of the eastern segment of the Irtysh Shear Zone: Implications for the collision between the East Junggar Terrane and the Chinese Altai Orogen (northwestern China)[J]. Journal of Structural Geology, 139: 104126. doi: 10.1016/j.jsg.2020.104126
[36] Huang Y Q, Jiang Y, Collett S, et al. 2020. Magmatic recycling of accretionary wedge: A new perspective on Silurian−Devonian I−type granitoids generation in the Chinese Altai[J]. Gondwana Research, 78: 291−307. doi: 10.1016/j.gr.2019.07.019
[37] Hyndman R D, Currie C A, Mazzotti S P. 2005. Subduction zone backarcs, mobile belts, and orogenic heat[J]. GSA Today, 15: 4−10. doi: 10.1130/1052-5173(2005)015<4:TNELOT>2.0.CO;2
[38] Jahn B M, Wu B M, Chen F, et al. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 91: 181−193. doi: 10.1017/S0263593300007367
[39] Jahn B M, Wu F Y, Chen B 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82−92.
[40] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 226: 73−100. doi: 10.1144/GSL.SP.2004.226.01.05
[41] Janoušek V, Jiang Y, Buriánek D, et al. 2018. Cambrian–Ordovician magmatism of the Ikh−Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia)[J]. Gondwana Research, 54: 122−149. doi: 10.1016/j.gr.2017.10.003
[42] Jiang Y D, Sun M, Zhao G C, et al. 2010. The similar to 390 Ma high-T Metamorphic event in the Chinese Altai: a consequence of ridge-subduction?[J]. American Journal of Science, 310(10): 1421−1452.
[43] Jiang Y D, Sun M, Zhao G, et al. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia[J]. Precambrian Research, 189: 140−154. doi: 10.1016/j.precamres.2011.05.008
[44] Jiang Y D, Štípská P, Sun M, et al. 2015. Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: A result of crustal thickening followed by doming of partially molten lower crust[J]. Journal of Metamorphic Geology, 33: 45−70. doi: 10.1111/jmg.12110
[45] Jiang Y D, Schulmann K, Sun M, et al. 2016. Anatexis of accretionary wedge, Pacific−type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt[J]. Tectonics, 35: 3095−3118. doi: 10.1002/2016TC004271
[46] Jiang Y D, Schulmann K, Kröner A, et al. 2017. Neoproterozoic−Early Paleozoic Peri−Pacific accretionary evolution of the Mongolian collage system: Insights from geochemical and U−Pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai[J]. Tectonics, 36: 2305−2331. doi: 10.1002/2017TC004533
[47] Jiang Y D, Schulmann K, Sun M, et al. 2019. Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia[J]. Tectonics, 38: 253−280. doi: 10.1029/2018TC005231
[48] Jiang Y D, Štípská P, Schulmann K, et al. 2022. Barrovian and Buchan metamorphic series in the Chinese Altai: P–T–t–D evolution and tectonic implications[J]. Journal of Metamorphic Geology, 40: 823−857. doi: 10.1111/jmg.12647
[49] Jull M, Kelemen P. 2001. On the conditions for lower crustal convective instability [J]. Solid Earth, 106: 6423−6446.
[50] Kelemen P B, Behn M D. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons[J]. Nature Geoscience, 9: 197−205. doi: 10.1038/ngeo2662
[51] Kong L J, Jiang Y, Schulmann K, et al. 2022. Petrostructural and geochronological constraints on Devonian extension−shortening cycle in the Chinese Altai: Implications for retreating−advancing subduction[J]. Tectonics, 41: e2021TC007195. doi: 10.1029/2021TC007195
[52] Kong X, Zhang C, Liu D, et al. 2019. Disequilibrium partial melting of metasediments in subduction zones: Evidence from O−Nd−Hf isotopes and trace elements in S−type granites of the Chinese Altai[J]. Lithosphere, 11: 149−168. doi: 10.1130/L1039.1
[53] Kroener A, Kovach V, Alexeiev D, et al. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data[J]. Gondwana Research, 50: 135−166. doi: 10.1016/j.gr.2017.04.006
[54] Kröner A, Lehmann J, Schulmann K, et al. 2010. Lithostratigraphic and geochronilogical constraints on the evolution of the Central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion[J]. American Journal of Science, 310: 523−574. doi: 10.2475/07.2010.01
[55] Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02
[56] Lehmann J, Schulmann K, Lexa O, et al. 2017. Detachment folding of partially molten crust in accretionary orogens: A new magma−enhanced vertical mass and heat transfer mechanism [J]. Lithosphere.
[57] Li H J. 2006. Confirmation of Altai−Mongolia microcontinent and its implications[J]. Acta Petrologica Sinica, 22(5): 1369−1379 (in Chinese with English abstract).
[58] Li P F, Sun M, Rosenbaum G, et al. 2015. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008
[59] Li P F, Sun M, Rosenbaum G, et al. 2016. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt[J]. Journal of Structural Geology, 87: 64−80. doi: 10.1016/j.jsg.2016.04.006
[60] Li P F, Sun M, Rosenbaum G, et al. 2017. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. Geological Society of America Bulletin, 129: 547−569. doi: 10.1130/B31541.1
[61] Li P F, Sun M, Shu C, et al. 2019. Evolution of the Central Asian Orogenic Belt along the Siberian margin from Neoproterozoic−Early Paleozoic accretion to Devonian trench retreat and a comparison with Phanerozoic eastern Australia[J]. Earth−Science Reviews, 198: 102951.
[62] Li Z, Yang X, Li Y, et al. 2014. Late Paleozoic tectono–metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic P–T pseudosection and zircon U–Pb dating of ultra−high−temperature granulite[J]. Lithos, 204: 83−96. doi: 10.1016/j.lithos.2014.05.022
[63] Liu W, Liu LJ, Liu XJ, et al. 2010. Age of the Early Devonian Kangbutiebao Formation along the southern Altay Mountains and its northeastern extension[J]. Acta Petrologica Sinica, 26(2): 387−400 (in Chinese with English abstract).
[64] Liu W, Liu X J, Xiao W J. 2012. Massive granitoid production without massive continental−crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U−Pb age, Hf−Nd−Sr isotopes and geochemistry[J]. American Journal of Science, 312: 629−684.
[65] Liu Z, Bartoli O, Tong L, et al. 2020. Permian ultrahigh–temperature reworking in the southern Chinese Altai: Evidence from petrology, P–T estimates, zircon and monazite U–Th–Pb geochronology[J]. Gondwana Research, 78: 20−40. doi: 10.1016/j.gr.2019.08.007
[66] Long X P, Sun M, Yuan C, et al. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution[J]. Sedimentary Geology, 208: 88−100. doi: 10.1016/j.sedgeo.2008.05.002
[67] Long X, Sun M, Yuan C, et al. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Tectonics, 26: TC5015.
[68] Long X, Yuan C, Sun M, et al. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution[J]. Tectonophysics, 480: 213−231.
[69] Martini A, Bitencourt M d F, Weinberg R F, et al. 2019. From migmatite to magma − crustal melting and generation of granite in the Camboriú Complex, south Brazil[J]. Lithos, 340/341: 270−286. doi: 10.1016/j.lithos.2019.05.017
[70] Montel J, Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts[J]. Contributions to Mineralogy and Petrology, 128(2): 176−196.
[71] Nguyen H, Hanžl P, Janoušek V, et al. 2018. Geochemistry and geochronology of Mississippian volcanic rocks from SW Mongolia: Implications for terrane subdivision and magmatic arc activity in the Trans−Altai Zone[J]. Journal of Asian Earth Sciences, 164: 322−343. doi: 10.1016/j.jseaes.2018.06.029
[72] Niu H, Sato H, Zhang H, et al. 2006. Juxtaposition of adakite, boninite, high−TiO2 and low−TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 28: 439−456. doi: 10.1016/j.jseaes.2005.11.010
[73] Paterson S R, Vernon R H, Tobisch O. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 11: 349−363. doi: 10.1016/0191-8141(89)90074-6
[74] Patiño Douce A E, Beard J S. 1995. Dehydration−melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 36(3): 707−738. doi: 10.1093/petrology/36.3.707
[75] Qu G, Zhang J. 1994. Oblique thrust systems in the Altay orogen, China[J]. Journal of Southeast Asian Earth Sciences, 9: 277−287. doi: 10.1016/0743-9547(94)90035-3
[76] Rudnick R L. 1995. Making continental crust[J]. Nature, 378: 571−578. doi: 10.1038/378571a0
[77] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 33: 267−309. doi: 10.1029/95RG01302
[78] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Treatise on Geochemistry.
[79] Sawyer E W. 1994. Melt segregation in the continental crust[J]. Geology, 22: 1019.
[80] Sawyer E W. 1996. Melt segregation and magma flow in migmatites: implications for the generation of granite magmas[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 87: 85−94. doi: 10.1017/S0263593300006507
[81] Sawyer E W. 1998. Formation and Evolution of Granite Magmas During Crustal Reworking: the Significance of Diatexites[J]. Journal of Petrology, 39: 1147−1167. doi: 10.1093/petroj/39.6.1147
[82] Schofield D I, D'Lemos R. 1998. Relationships between syn−tectonic granite fabrics and regional PTtd paths: An example from the Gander−Avalon boundary of NE Newfoundland[J]. Journal of Structural Geology, 20: 459−471. doi: 10.1016/S0191-8141(97)00117-X
[83] Sengör A M C, Natal'ln B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and paleozoic crustal growth in Eurasia.[J]. Nature, 364: 209−304.
[84] Shi W, Zhang J D, Liu W G, et al. 2015. Hronology and petrology characteristics of Early Devonian gnessic. Granites from East Altai Orogenic Belt.[J]. Xinjiang Geology, 33: 7 (in Chinese with English abstract).
[85] Shu T, Jiang Y D, Schulmann K, et al. 2022. Structure, geochronology, and petrogenesis of Permian peraluminous granite dykes in the southern Chinese Altai as indicators of Altai East Junggar convergence[J]. GSA Bulletin, 135(5/6): 1243−1264.
[86] Soejono I, Čáp P, Míková J, et al. 2018. Early Palaeozoic sedimentary record and provenance of flysch sequences in the Hovd Zone (western Mongolia): Implications for the geodynamic evolution of the Altai accretionary wedge system[J]. Gondwana Research, 64: 163−183. doi: 10.1016/j.gr.2018.07.005
[87] Soejono I, Janoušek V, Žáčková E, et al. 2017. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif[J]. International Journal of Earth Sciences, 106(6): 2109−2129.
[88] Soejono I, Peřestý V, Schulmann K, et al. 2021. Structural, metamorphic and geochronological constraints on Palaeozoic multi−stage geodynamic evolution of the Altai accretionary wedge system (Hovd Zone, western Mongolia)[J]. Lithos, 396: 106204.
[89] Štípská P, Schulmann K, Lehmann J, et al. 2010. Early Cambrian eclogites in SW Mongolia: Evidence that the Palaeo−Asian Ocean suture extends further east than expected[J]. Journal of Metamorphic Geology, 28: 915−933. doi: 10.1111/j.1525-1314.2010.00899.x
[90] Sun M, Yuan C, Xiao W, et al. 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 247: 352−383. doi: 10.1016/j.chemgeo.2007.10.026
[91] Sun M, Long X, Cai K, et al. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D: Earth Sciences, 52: 1345−1358. doi: 10.1007/s11430-009-0110-3
[92] Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3
[93] Tang G J, Chung S L, Hawkesworth C J, et al. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth Planetary Science Letters, 464: 142−154. doi: 10.1016/j.jpgl.2017.02.022
[94] Taylor S R. 1967. The origin and growth of continents [J]. Tectonophysics, 4: 17−34.
[95] Tong L, Xu YG, Cawood P A, et al. 2014. Anticlockwise P−T evolution at ~280Ma recorded from ultrahigh−temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?[J]. Journal of Asian Earth Sciences, 94: 1−11. doi: 10.1016/j.jseaes.2014.07.043
[96] Tong Y, Wang T, Hong D W, et al. 2007. Ages and origin of the early Devonian granites from thenorth part of Chinese Altai Mountains and its tectonic implications[J]. Acta Petrologica Sinica, 23(8): 1933−1944 (in Chinese with English abstract).
[97] Wan B, Xiao W, Zhang L, et al. 2011. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Implications for the accretionary history of the southern Altaids[J]. Journal of the Geological Society, 168: 1311−1321. doi: 10.1144/0016-76492011-021
[98] Wang S, Xu K, Huang Y Q, et al. 2018. Permian deformational history of western chinese Altai orogenic belt: Insights from structural and monazite U−Pb data[J]. Geotectonica et Metallogenia, 42: 798−811 (in Chinese with English abstract).
[99] Wang S, Jiang Y, Weinberg R, et al. 2021. Flow of Devonian anatectic crust in the accretionary Altai Orogenic Belt, central Asia: Insights into horizontal and vertical magma transfer[J]. GSA Bulletin, 133(11/12): 2501−2523.
[100] Wang T, Hong D W, Jahn, B M, et al. 2006. Timing, petrogenesis and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen[J]. Journal of Geology, 114: 735−751. doi: 10.1086/507617
[101] Wang T, Jahn B M, Kovach V P, et al. 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 110: 359−372. doi: 10.1016/j.lithos.2009.02.001
[102] Wang W, Wei C J, Wang T, et al. 2009. Confirmation of pelitic granulite in the Altai orogen and its geological significance[J]. Chinese Sci. Bull., 54: 918−923 (in Chinese with English abstract). doi: 10.1360/csb2009-54-7-918
[103] Wedepohl K H. 1995. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 59: 1217−1232. doi: 10.1016/0016-7037(95)00038-2
[104] Wei C J, Clarke G, Tian W, et al. 2007. Transition of metamorphic series from the Kyanite− to andalusite−types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations[J]. Lithos, 96: 353−374. doi: 10.1016/j.lithos.2006.11.004
[105] Wei C J, Wang W, Zhang Y H, et al. 2008. Low−pressure metamorphic belt and metapelitic granulites in the Altai orogenic Belt, Xinjiang [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27: 284−285 (in Chinese).
[106] Weinberg R F, Mark G. 2008. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India[J]. Geological Society of America Bulletin, 120: 994−1009. doi: 10.1130/B26227.1
[107] Weinberg R F, Hasalova P, Ward L, et al. 2013. Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia[J]. Geological Society of America Bulletin, 125: 1282−1300. doi: 10.1130/B30781.1
[108] Weinberg R F, Hasalová P. 2015. Water−fluxed melting of the continental crust: A review[J]. Lithos, 212/215: 158−188. doi: 10.1016/j.lithos.2014.08.021
[109] Weinberg R F, Becchio R, Farias P, et al. 2018. Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana[J]. Earth−Science Reviews, 187: 219−247. doi: 10.1016/j.earscirev.2018.10.001
[110] Wilhem C, Windley B F, Stampfli G M. 2012. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth−Science Reviews, 113: 303−341. doi: 10.1016/j.earscirev.2012.04.001
[111] Windley B F, Kroner A, Guo J, et al. 2002. Neoproterozoic to Paleozoicgeology of the Altai orogen, NW China[J]. Journal of Geology, 110: 719−737. doi: 10.1086/342866
[112] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022
[113] Windley B F, Xiao W J. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 61: 73−87. doi: 10.1016/j.gr.2018.05.003
[114] Xiao W J, Kusky T. 2009. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction[J]. Gondwana Research, 16: 167−169. doi: 10.1016/j.gr.2009.05.001
[115] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254
[116] Xiao W J, Huang B, Han C, et al. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2/3): 253−273.
[117] Xiao W J, Song D F, Fwindley B, et al. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 34 (in Chinese).
[118] Xu J F, Castillo P R, Chen F R, et al. 2003. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution[J]. Chemical Geology, 193: 137−154. doi: 10.1016/S0009-2541(02)00265-6
[119] Xu K, Jiang Y, Wang S, et al. 2021. Multi−phase tectonothermal evolution in the SE Chinese Altai, central Asia: Structures, U−Pb monazite ages and tectonic implications[J]. Lithos, 392: 106148.
[120] Yakymchuk C, Siddoway C S, Fanning C M, et al. 2013. Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf–O perspective from West Antarctica [J]. Geological Society, London, Special Publications, 383: 169−210.
[121] Yuan C, Sun M, Xiao W, et al. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids[J]. Chemical Geology, 242: 22−39. doi: 10.1016/j.chemgeo.2007.02.013
[122] Zhang C, Santosh M, Luo Q, et al. 2019. Impact of residual zircon on Nd−Hf isotope decoupling during sediment recycling in subduction zone[J]. Geoscience Frontiers, 10: 241−251. doi: 10.1016/j.gsf.2018.03.015
[123] Zhang C L, Santosh M, Zou H B, et al. 2012. Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 52: 117−133. doi: 10.1016/j.jseaes.2012.02.016
[124] Zhang J, Sun M, Schulmann K, et al. 2015. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process[J]. Journal of Structural Geology, 73: 64−82. doi: 10.1016/j.jsg.2015.02.007
[125] Zhang X, Zhang H, Tang Y, et al. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 249: 262−281. doi: 10.1016/j.chemgeo.2008.01.005
[126] Zhuag Y X. 1994. The pressure−temperature−space−time (P–T−S−t) evolution of metamorphism and development mechanism of the thermal−structural−gneiss domes in the Chinese Altaides[J]. Acta Geologica Sinica, 68: 35−47 (in Chinese).
[127] 蔡宏明, 王蓉, 刘桂萍, 等. 2022. 东天山晚泥盆世二长花岗岩的发现及其对阿奇山−雅满苏带构造演化的制约[J]. 地质通报, 41(7): 1184−1190. doi: 10.12097/j.issn.1671-2552.2022.07.005
[128] 何国琦, 刘德权, 李茂松, 等. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列[J]. 新疆地质, 13: 99−194.
[129] 李会军. 2006. 阿尔泰-蒙古微大陆的确定及其意义[J]. 岩石学报, 22: 1369−1379. doi: 10.3321/j.issn:1000-0569.2006.05.025
[130] 刘伟, 刘丽娟, 刘秀金, 等. 2010. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J]. 岩石学报, 26(2): 387−400.
[131] 施文翔, 张建东, 刘崴国, 等. 2015. 阿尔泰造山带东段早泥盆世片麻状花岗岩岩石地球化学及年代学特征[J]. 新疆地质, 33: 456−462. doi: 10.3969/j.issn.1000-8845.2015.01.003
[132] 童英, 王涛, 洪大卫, 等. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J]. 岩石学报, 28: 1933−1944. doi: 10.3969/j.issn.1000-0569.2007.08.014
[133] 汪晟, 徐扛, 黄艳琼, 等. 2018. 中国阿尔泰造山带西部二叠纪构造演化: 来自构造地质及独居石U−Pb年代学的制约[J]. 大地构造与成矿学, 42: 798−811.
[134] 王伟, 魏春景, 王涛, 等. 2009. 中国阿尔泰造山带泥质麻粒岩的确定及地质意义[J]. 科学通报, 54: 918−923.
[135] 魏春景, 王伟, 张颖慧, 等. 2008. 新疆阿尔泰造山带低压变质带与泥质麻粒岩[J]. 矿物岩石地球化学通报, 27: 284−285. doi: 10.3969/j.issn.1007-2802.2008.z1.152
[136] 肖文交, 宋东方, Fwindley B , 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.
[137] 庄育勋. 1994. 中国阿尔泰造山带变质作用PTSt演化和热−构造−片麻岩穹窿形成机制[J]. 地质学报, 68: 35−47.
-