陕西泾阳南部地下水水文地球化学成因机制及次生环境挑战

徐盼盼, 钱会, 张奇莹, 臧永琪, 刘源, 董佳毅. 2025. 陕西泾阳南部地下水水文地球化学成因机制及次生环境挑战. 地质通报, 44(5): 811-824. doi: 10.12097/gbc.2024.11.058
引用本文: 徐盼盼, 钱会, 张奇莹, 臧永琪, 刘源, 董佳毅. 2025. 陕西泾阳南部地下水水文地球化学成因机制及次生环境挑战. 地质通报, 44(5): 811-824. doi: 10.12097/gbc.2024.11.058
XU Panpan, QIAN Hui, ZHANG Qiying, ZANG Yongqi, LIU Yuan, DONG Jiayi. 2025. Hydrogeochemical genesis mechanism and secondary environmental challenges of groundwater in southern Jingyang, Shaanxi Province. Geological Bulletin of China, 44(5): 811-824. doi: 10.12097/gbc.2024.11.058
Citation: XU Panpan, QIAN Hui, ZHANG Qiying, ZANG Yongqi, LIU Yuan, DONG Jiayi. 2025. Hydrogeochemical genesis mechanism and secondary environmental challenges of groundwater in southern Jingyang, Shaanxi Province. Geological Bulletin of China, 44(5): 811-824. doi: 10.12097/gbc.2024.11.058

陕西泾阳南部地下水水文地球化学成因机制及次生环境挑战

  • 基金项目: 国家自然科学基金项目《渗流-化学协同作用下黄土微结构演化与强度特性响应研究》(批准号:42202311)、西安市青年人才托举计划项目《渗流条件下黄土的水-土耦合作用机制及其损伤灾变效应研究》(编号:959202313095)和 大学生创新创业训练计划项目《黄土-古土壤界面渗透特性与微观机理研究》(编号:S202410710325)
详细信息
    作者简介: 徐盼盼(1993− ),男,博士,副教授,从事地下水环境演化及水文地球化学研究。E−mail:panpanxu@chd.edu.cn
    通讯作者: 钱会(1963− ),男,博士,教授,从事旱区水文地质与工程地质研究。E−mail:qianhui@chd.edu.cn
  • 中图分类号: P342

Hydrogeochemical genesis mechanism and secondary environmental challenges of groundwater in southern Jingyang, Shaanxi Province

More Information
  • 研究目的

    陕西泾阳南部是典型的黄土分布区、人口居住聚集区、农业活动密集区、地质灾害频发区,研究该区地下水的水文地球化学成因机制及次生环境挑战,对黄土高原地下水资源开发利用、用水安全保障和生态地质环境保护具有重要意义。

    研究方法

    基于区内地下水调查、水样采集与分析,查明地下水主要离子分布特征;综合运用水化学方法和同位素理论,揭示地下水水文地球化学成因机制及其主控因子;借助综合权重水质指数、镁危害系数、钠百分比、Wilcox图、灌溉系数,评估地下水的饮用和灌溉适宜性,进而阐释其次生环境挑战。

    研究结果

    研究区地下水整体呈弱碱性,泾河南岸地下水的TDS范围为752~2108 mg/L,属淡水和微咸水,北岸地下水的TDS范围为1232~3768 mg/L,属微咸水和咸水;地下水优势阳离子为Na+和Mg2+,优势阴离子为HCO3与SO42−,水化学类型以HCO3·SO4−Na·Mg和HCO3·SO4·Cl−Na·Mg型为主,且北岸的水化学类型更复杂。水化学特征主要受岩石风化作用影响,其中以硅酸盐岩的风化溶解作用为主导;蒸发浓缩作用与阳离子交替吸附作用促进了地下水咸化;南岸地下水受农业活动影响显著,北岸地下水主要受工业活动、生活污水与人畜粪肥的综合影响。饮用水质等级以中等为主,引起健康风险的首要因子为总硬度、NO3、F和SO42−;大部分地下水不适宜直接灌溉,需采取措施,防止累盐,否则会诱发土壤盐渍化。

    结论

    陕西泾阳南部泾河两岸地下水的水化学特征分异,主要受控于硅酸盐岩风化作用,叠加蒸发浓缩作用与人类活动影响。地下水总硬度、硝酸盐、氟化物等健康风险因子超标,同时地下水咸化,易诱发土壤盐渍化。建议针对性开展地下水污染防治工作,以免面临更严峻的次生环境挑战。

  • 加载中
  • 图 1  研究区及采样点位(据胡伟, 2018修改)

    Figure 1. 

    图 2  研究区地下水Piper三线图

    Figure 2. 

    图 3  研究区地下水Gibbs图

    Figure 3. 

    图 4  地下水主要离子关系

    Figure 4. 

    图 5  地下水离子比值端元图

    Figure 5. 

    图 6  地下水硅酸盐稳定场

    Figure 6. 

    图 7  地下水阳离子交替吸附作用判别图解

    Figure 7. 

    图 8  地下水NO3/Ca2+−SO42−/Ca2+(a)和Cl−NO3/Cl(b)关系图解

    Figure 8. 

    图 9  地下水δ18O−δD(a)和Cl−δ18O(b)关系图解

    Figure 9. 

    图 10  地下水灌溉适宜性的Wilcox图

    Figure 10. 

    表 1  陕西泾阳南部地下水水化学参数统计特征

    Table 1.  Statistical characteristics of hydrochemical parameters of groundwater in southern Jingyang, Shaanxi Province

    类型 统计值 pH值 TDS TH K+ Na+ Ca2+ Mg2+ Cl SO42− HCO3 CO32− NO3 NO2 F SiO2
    泾河南岸 Max 8.53 2108 801 12.05 444 80.2 148 340 509 873 18 221 0.123 2.88 16.9
    Min 7.85 752 90.1 1.32 226 10 15.8 42 52.8 311 6 21.86 0.003 0.83 11.3
    Mean 8.21 1213 381.6 3.84 308 37.3 70.1 158 252.7 632 13 92.52 0.024 1.47 13.9
    Std 0.25 484.59 293.95 3.93 70.87 27.47 54.88 97.90 166.97 183.94 5.02 62.95 0.05 0.69 1.73
    CV 0.03 0.40 0.77 1.02 0.23 0.74 0.78 0.62 0.66 0.29 0.38 0.68 2.07 0.48 0.12
    泾河北岸 Max 8.19 3768 1727 15.45 532 281.0 249.0 850 889 879 / 453 0.086 1.10 17.3
    Min 7.42 1232 480 3.16 240 48.1 77.8 155 240 567 / 20.92 0.004 0.44 11.8
    Mean 7.79 1969 960 6.68 336 117.7 161.7 343 548 704 / 102.49 0.025 0.71 14.5
    Std 0.25 629.58 307.32 3.23 80.02 57.77 47.97 159.15 187.19 89.26 / 106.28 0.03 0.20 1.68
    CV 0.03 0.32 0.32 0.48 0.24 0.49 0.30 0.46 0.34 0.13 / 1.04 1.08 0.28 0.12
      注:Max表示最大值,Min表示最小值,Mean表示均值,Std表示标准差;CV表示变异系数,无量纲;pH为无量纲,其余成分单位均为mg/L;/表示未检出
    下载: 导出CSV
  • [1]

    Chen W Z, Tao L C, Li J T, et al. 2024. Hydrochemical characteristics and controlling factors of surface water in the Napahai Basin, a plateau wetland[J]. Earth Science Frontiers: 1−19[2025-04-07]. https://doi.org/10.13745/j.esf.sf.2024.6.39(in Chinese with English abstract).

    [2]

    Chen W, Wu Y, Zhang H X, et al. 2024. Hydrochemical characteristics and formation mechanism of groundwater in the western part of the Hepu Basin[J]. Environmental Science, 45(1): 194−206 (in Chinese with English abstract).

    [3]

    Deng L W, Lu L, Yuan D F, et al. 2024. Hydrochemical characteristics and genetic mechanisms of groundwater in the Dongjiang and Hanjiang River Basins[J]. Environmental Science & Technology, 47(4): 113−124 (in Chinese with English abstract).

    [4]

    Fu Q, Hou Y, Wang B, et al. 2018. Scenario analysis of ecosystem service changes and interactions in a mountain−oasis−desert system: A case study in Altay Prefecture, China[J]. Scientific reports, 8(1): 12939. doi: 10.1038/s41598-018-31043-y

    [5]

    Gao Y Y, Qian H, Ren W H, et al. 2020. Hydrogeochemical characterization and quality assessment of groundwater based on integrated−weight water quality index in a concentrated urban area[J]. Journal of Cleaner Production, 260: 121006. doi: 10.1016/j.jclepro.2020.121006

    [6]

    He J, Zhang H S, Cai W T, et al. 2023. Causes of shallow groundwater salinization in Taocheng district, Hengshui City[J]. Environmental Science, 44(8): 4314−4324 (in Chinese with English abstract).

    [7]

    Hou Q, Pan Y, Zeng M, et al. 2023. Assessment of groundwater hydrochemistry, water quality, and health risk in Hainan Island, China[J]. Scientific Reports, 13(1): 12104. doi: 10.1038/s41598-023-36621-3

    [8]

    Hu W. 2018. Study on the evaluation method of geological hazard susceptibility in Jingyang County based on GIS[D]. Master Thesis of Xi'an University of Science and Technology (in Chinese with English abstract).

    [9]

    Jiang F, Zhou J L, Zhou Y Z, et al. 2023. Hydrochemical characteristics of groundwater and identification of pollution sources in the plain area of the Bayi Basin[J]. Environmental Science, 44(11): 6050−6061 (in Chinese with English abstract).

    [10]

    Kawo N S, Karuppannan S. 2018. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia[J]. Journal of African Earth Sciences, 147: 300−311. doi: 10.1016/j.jafrearsci.2018.06.034

    [11]

    Li S J. 2021. Hydrochemical characteristics and pollution evaluation of groundwater on the Loess Plateau[D]. Master Thesis of Northwest A&F University (in Chinese with English abstract).

    [12]

    Li Z, Coles A E, Xiao J. 2019. Groundwater and streamflow sources in China's Loess Plateau on catchment scale[J]. Catena, 181: 104075. doi: 10.1016/j.catena.2019.104075

    [13]

    Li J, Ouyang H T, Zhou J L, et al. 2024. Main controlling factors of groundwater salinization and pollution in the Oasis Zone of the Che'erchen River Basin, Xinjiang[J]. Environmental Science, 45(1): 207−217 (in Chinese with English abstract).

    [14]

    Li M Y, Xie Y Q, Dong Y H, et al. 2024. Review: Recent progress on groundwater recharge research in arid and semiarid areas of China[J]. Hydrogeology Journal, 32(1): 9−30. doi: 10.1007/s10040-023-02656-z

    [15]

    Lin C Y, Sun Z X, Gao B, et al. 2021. Study on the hydrochemical characteristics and formation mechanism of groundwater in Lhasa area[J]. Earth Science Frontiers, 28(5): 49−58 (in Chinese with English abstract).

    [16]

    Liu H, Kang B, Guan Z T, et al. 2023. Hydrochemical characteristics and controlling factors of surface water and groundwater in Huainan coal mining area[J]. Environmental Science, 44(11): 6038−6049 (in Chinese with English abstract).

    [17]

    Liu J T, Peng Y M, Li C S, et al. 2021. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 258: 115947.

    [18]

    Liu H, Wei W, Song Y, et al. 2024. Hydrochemical characteristics, controlling factors and water quality evaluation of shallow groundwater in the Tan−Lu fault zone (Anhui Section)[J]. Environmental Science, 45(5): 2665−2677 (in Chinese with English abstract).

    [19]

    Liu X, Xiang W, Ma X J, et al. 2021a. Hydrochemical characteristics and influencing factors of shallow groundwater in the Central Loess Plateau[J]. China Environmental Science, 41(11): 5201−5209 (in Chinese with English abstract).

    [20]

    Liu X, Xiang W, Si B C. 2021b. Hydrochemical characteristics and controlling factors of shallow groundwater in the Weihe River and Jinghe River Basins[J]. Environmental Science, 42(6): 2817−2825 (in Chinese with English abstract).

    [21]

    Liu X, Xiang W, Si B C. 2021c. Characteristics of hydrochemistry and stable isotopes of hydrogen and oxygen in shallow groundwater of the Fenhe River Basin and their indicative significance[J]. Environmental Science, 42(4): 1739−1749 (in Chinese with English abstract).

    [22]

    Lu X H, Wang M Y, Gong X L, et al. 2024. Study on the transformation between surface water and groundwater in Plain Lakes and Marshes based on hydrogen and oxygen isotopes[J]. Journal of Hydraulic Engineering, 55(4): 416−427 (in Chinese with English abstract).

    [23]

    Niu M, Liu T S, Li H, et al. 2023. Study on the types and chemical characteristics of groundwater in Jingyang County[J]. Ground Water, 45(4): 72−74, 98 (in Chinese with English abstract).

    [24]

    Piper A M. 1944. A graphic procedure in the geochemical interpretation of water−analyses[J]. Eos, Transactions American Geophysical Union, 25(6): 914−928.

    [25]

    Sheng D R, Meng X H, Wen X H, et al. 2023. Hydrochemical characteristics, quality and health risk assessment of nitrate enriched coastal groundwater in northern China[J]. Journal of Cleaner Production, 403: 136872. doi: 10.1016/j.jclepro.2023.136872

    [26]

    Tahmasebi P, Mahmudy−Gharaie M H, Ghassemzadeh F, et al. 2018. Assessment of groundwater suitability for irrigation in a gold mine surrounding area, NE Iran[J]. Environmental earth sciences, 77(22): 766. doi: 10.1007/s12665-018-7941-1

    [27]

    Torres−Martínez J A, Mora A, Knappett P S K, et al. 2020. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi−tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 182: 115962. doi: 10.1016/j.watres.2020.115962

    [28]

    Wei S M, Ding G T, Yuan G X, et al. 2021. Hydrochemical characteristics and formation mechanism of groundwater in the Yinan area of the Dongwen River, Shandong Province[J]. Acta Geologica Sinica, 95(6): 1973−1983 (in Chinese with English abstract).

    [29]

    Xia Y, Xiao J, Wang W, et al. 2024. Nitrate dynamics in the streamwater−groundwater interaction system: Sources, fate, and controls[J]. Science of The Total Environment, 918: 170574. doi: 10.1016/j.scitotenv.2024.170574

    [30]

    Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits[J]. Geoderma, 369: 114321. doi: 10.1016/j.geoderma.2020.114321

    [31]

    Xiang W, Liu X, Si B C. 2024. Characteristics of stable isotopes of groundwater at the regional scale of the Loess Plateau and their indicative significance[J]. Environmental Science, 45(9): 5290−5297 (in Chinese with English abstract).

    [32]

    Xu P P. 2021. Study on the mechanism of water−soil interaction in the change of permeability of remolded loess[D]. Doctoral Dissertation of Chang'an University (in Chinese with English abstract).

    [33]

    Xu P P, Zhang Q Y, Qian H, et al. 2021. Investigating the mechanism of pH effect on saturated permeability of remolded loess[J]. Engineering Geology, 284: 105978. doi: 10.1016/j.enggeo.2020.105978

    [34]

    Xu P P, Feng W W, Qian H, et al. 2019. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central−western Guanzhong Basin, China[J]. International Journal of Environmental Research and Public Health, 16: 1492. doi: 10.3390/ijerph16091492

    [35]

    Yang B Q. 2015. Study on the Characteristics and disaster−causing mechanism of the loess landslide in Hetan Village, Southern Jingyang Loess Tableland[D]. Master Thesis of Chang'an University (in Chinese with English abstract).

    [36]

    Yang Y B, Shang W B, Liao X C, et al. 2023. Study on the dynamic variation characteristics of the groundwater level in Jingyang County[J]. Ground Water, 45(5): 99−101 (in Chinese with English abstract).

    [37]

    Zhang X X. 2016. Study on the characteristics of saturated permeability coefficient of the loess slope in the southern Jingyang Loess Tableland[D]. Master Thesis of Chang'an University (in Chinese with English abstract).

    [38]

    Zhang J, Chen L, Hou X, et al. 2022. Effects of multi−factors on the spatiotemporal variations of deep confined groundwater in coal mining regions, North China[J]. Science of the Total Environment, 823: 153741. doi: 10.1016/j.scitotenv.2022.153741

    [39]

    Zhang R Q, Liang X, Jin M G, et al. 2018. Fundamentals of hydrogeology (Seventh Edition)[M]. Beijing: Geological Publishing House: 53−54 (in Chinese).

    [40]

    Zhang Q Y, Qian H, Ren W H, et al. 2024. Salinization of shallow groundwater in the Jiaokou Irrigation District and associated secondary environmental challenges[J]. Science of the Total Environment, 908: 168445. doi: 10.1016/j.scitotenv.2023.168445

    [41]

    Zhang Q Y, Qian H, Xu P P, et al. 2021. Groundwater quality assessment using a new integrated−weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China[J]. Ecotoxicology and Environmental Safety, 111992: 212.

    [42]

    Zhang Q Y, Xu P P, Qian H, et al. 2020. Hydrogeochemistry and fluoride contamination in Jiaokou irrigation district, Central China: Assessment based on multivariate statistical approach and human health risk[J]. Science of the Total Environment, 741: 15.

    [43]

    Zhao W J, Qian H, Xu P P, et al. 2024. Tracing groundwater−surface water sources and transformation processes in the Ba River Basin through dual isotopes and water chemistry[J]. Applied Geochemistry, 176: 106199. doi: 10.1016/j.apgeochem.2024.106199

    [44]

    Zheng L, Jiang C, Chen X, et al. 2022. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin[J]. Journal of Environmental Management, 312: 114933. doi: 10.1016/j.jenvman.2022.114933

    [45]

    Zhou Y Z, Ma T, Yuan L, et al. 2024. Hydrochemical and isotopic characteristics of groundwater and its water quality evaluation in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663−675 (in Chinese with English abstract).

    [46]

    Zhou J L, Wu B, Wang Y P, et al. 2009. Distribution and quality evaluation of moderately saline groundwater in the Plain area of the Tarim Basin, Xinjiang[J]. China Rural Water and Hydropower, (9): 32−36 (in Chinese with English abstract).

    [47]

    陈伟志, 陶兰初, 李静婷, 等. 2024. 高原湿地纳帕海流域地表水水化学特征及控制因素[J/OL]. 地学前缘: 1−19[2025-04-07]. https://doi.org/10.13745/j.esf.sf.2024.6.39.

    [48]

    陈雯, 吴亚, 张宏鑫, 等. 2024. 合浦盆地西部地区地下水水化学特征及形成机制[J]. 环境科学, 45(1): 194−206.

    [49]

    邓立伟, 卢丽, 袁东方, 等. 2024. 东江和韩江流域地下水化学特征及成因机制[J]. 环境科学与技术, 47(4): 113−124.

    [50]

    何锦, 张怀胜, 蔡五田, 等. 2023. 衡水市桃城区浅层地下水咸化成因[J]. 环境科学, 44(8): 4314−4324.

    [51]

    胡伟. 2018. 基于GIS的泾阳县地质灾害易发性评价方法研究[D]. 西安科技大学硕士学位论文.

    [52]

    姜凤, 周金龙, 周殷竹, 等. 2023. 巴伊盆地平原区地下水水化学特征及污染源识别[J]. 环境科学, 44(11): 6050−6061.

    [53]

    李书鉴. 2021. 黄土高原地下水水化学特征以及污染评价[D]. 西北农林科技大学硕士学位论文.

    [54]

    李军, 欧阳宏涛, 周金龙. 2024. 新疆车尔臣河流域绿洲带地下水咸化与污染主控因素[J]. 环境科学, 45(1): 207−217.

    [55]

    林聪业, 孙占学, 高柏, 等. 2021. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 28(5): 49−58.

    [56]

    刘海, 康博, 管政亭, 等. 2023. 淮南煤矿区地表水和地下水水化学特征及控制因素[J]. 环境科学, 44(11): 6038−6049.

    [57]

    刘海, 魏伟, 宋阳, 等. 2024. 郯庐断裂带(安徽段)浅层地下水水化学特征、控制因素及水质评价[J]. 环境科学, 45(5): 2665−2677.

    [58]

    刘鑫, 向伟, 马小军, 等. 2021a. 黄土高原中部浅层地下水化学特征及影响因素[J]. 中国环境科学, 41(11): 5201−5209.

    [59]

    刘鑫, 向伟, 司炳成. 2021b. 渭河和泾河流域浅层地下水水化学特征和控制因素[J]. 环境科学, 42(6): 2817−2825.

    [60]

    刘鑫, 向伟, 司炳成. 2021c. 汾河流域浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J]. 环境科学, 42(4): 1739−1749.

    [61]

    卢小慧, 王梦瑶, 龚绪龙, 等. 2024. 基于氢氧同位素的平原湖荡地表水与地下水转化研究[J]. 水利学报, 55(4): 416−427.

    [62]

    牛盟, 刘甜思, 李辉, 等. 2023. 泾阳县地下水类型与化学特征研究[J]. 地下水, 45(4): 72−74,98.

    [63]

    魏善明, 丁冠涛, 袁国霞, 等. 2021. 山东省东汶河沂南地区地下水水化学特征及形成机理[J]. 地质学报, 95(6): 1973−1983. doi: 10.3969/j.issn.0001-5717.2021.06.021

    [64]

    向伟, 刘鑫, 司炳成. 2024. 黄土高原区域尺度地下水稳定同位素特征及其指示意义[J]. 环境科学, 45(9): 5290−5297.

    [65]

    徐盼盼. 2021. 重塑黄土渗透性变化的水-土作用机制研究[D]. 长安大学博士学位论文.

    [66]

    杨炳强. 2015. 泾阳南塬河滩村黄土滑坡的特征及致灾机理研究[D]. 长安大学硕士学位论文.

    [67]

    杨元波, 尚文斌, 廖显程, 等. 2023. 泾阳县地下水位动态变化特征研究[J]. 地下水, 45(5): 99−101.

    [68]

    曾邯斌, 苏春利, 谢先军, 等. 2021. 河套灌区西部浅层地下水咸化机制[J]. 地球科学, 46(6): 2267−2277.

    [69]

    张人权, 梁杏, 靳孟贵, 等. 2018. 水文地质学基础(第七版)[M]. 北京: 地质出版社: 53−54.

    [70]

    张小筱. 2016. 泾阳南塬黄土边坡饱和渗透系数特性研究[D]. 长安大学硕士学位论文.

    [71]

    周殷竹, 马涛, 袁磊, 等. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663−675. doi: 10.12029/gc20220401003

    [72]

    周金龙, 吴彬, 王毅萍, 等. 2009. 新疆塔里木盆地平原区中盐度地下水分布及其质量评价[J]. 中国农村水利水电, (9): 32−36.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  43
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-11-28
修回日期:  2025-02-15
刊出日期:  2025-05-15

目录