Metallogenic geological characteristics and prospecting of the large pegmatite-type lithium deposit in the south of Fulugou, Karakoram
-
摘要:
研究目的 近年来,新疆喀喇昆仑地区伟晶岩型稀有金属矿产找矿工作取得了一系列重大突破,如何在现有基础上取得更大找矿突破成为业内关注重点。
研究方法 综合运用野外地表调查、深部钻探验证、系统取样、室内化验分析等手段开展找矿工作,并结合区域地球化学特征,对俘虏沟南一带及其外围找矿远景进行分析研究。
研究结果 圈定11条锂矿体,Li2O平均品位1.32%~1.89%,矿体长240~760 m,厚2.22~8.61 m,赋存于三叠系巴颜喀拉山群中,呈NWW—SEE走向,局部EW走向,倾向N—NE,倾角45°~60°,预测资源量大。
结论 俘虏沟南一带及其外围Li元素地球化学异常明显,区域锂矿资源禀赋优越,找矿前景良好,可作为新疆稀有金属矿产资源找矿勘查的重点区域。
Abstract:Objective In recent years, a series of major breakthroughs have been made in the prospecting of rare metal minerals in pegmatite type in the Karakoram region of Xinjiang. How to achieve greater breakthroughs in mineral exploration on the existing basis has become a focal point of attention within the industry.
Methods Comprehensive geological prospecting work was carried out by using the methods of field geomorphological survey, deep drilling verification, systematic sampling and indoor chemical analysis, the prospecting prospects of the southern section of Fulugou and its surrounding areas were analyzed and studied in combination with the characteristics of regional geochemistry.
Results 11 lithium ore bodies were delineated with an average Li2O grade of 1.32%~1.89%, a length of 240~760 m, a thickness of 2.22~8.61 m, and are hosted in the Triassic Bayan Mountains Group, with a strike of NWW—SEE and a local EW strike, a dip of N—NE, and an inclination of 45°~60°, and the estimated industrial ore resources of Li2O are height.
Conclusions The south of Fulugou and its periphery show obvious geochemical anomalies of Li element, the regional lithium resource endowment is superior, the prospecting is good, and it can be used as a key area for the prospecting and exploration of rare metal mineral resources in Xinjiang.
-
-
表 1 俘虏沟南伟晶岩型锂矿床矿体特征
Table 1. Ore body characteristics of pegmatite lithium deposits in the south Fulugou area
矿体编号 倾向/° 倾角/° 延长/m 宽度/m Li2O品位/% Li2O平均品位/% BeO品位/% BeO平均品位/% Li-1 20~45 55~58 620 2.70~11.30 1.00~2.52 1.70 0.041~0.069 0.051 Li-2 15~35 50~55 760 1.40~5.10 0.68~1.87 1.32 0.042~0.056 0.048 Li-3 15~40 50~58 460 1.30~9.20 0.91~1.76 1.40 0.040~0.047 0.044 Li-4 35~45 45~55 780 2.22~5.48 0.51~1.87 1.26 0.040~0.045 0.043 Li-5 35~40 50~58 500 8.90~11.85 1.78~1.95 1.89 0.041~0.048 0.045 Li-6 5~35 55~60 340 5.95~10.05 1.70~1.83 1.76 0.040~0.046 0.043 Li-7 5~45 55~60 600 3.72~19.55 1.61~1.70 1.65 0.045~0.055 0.049 Li-8 145 50 240 1.45~4.95 1.11~2.09 1.60 0.040~0.048 0.044 Li-9 65 50 515 1.65~4.88 0.96~2.06 1.66 0.044~0.047 0.045 Li-10 55 45 305 3.10~5.90 1.39~1.92 1.66 0.043~0.058 0.051 Li-11 40 55 380 1.13~5.10 1.19~1.54 1.37 0.046~0.061 0.054 表 2 矿区三叠系巴颜喀拉山群变质地层化学分析样品测试结果
Table 2. Test result of chemical analysis samples of metamorphic strata from Triassic Bayan Har Mountain Group in mining area
样品号 岩性 Li2O含量/% H1 变质砂岩 0.06 H2 变质砂岩 0.11 H3 变质砂岩 0.103 H4 变质砂岩 0.155 H5 黑云母石英片岩 0.120 H6 黑云母石英片岩 0.167 H7 黑云母石英片岩 0.089 H8 变质长石岩屑砂岩 0.12 H9 变质长石岩屑砂岩 0.14 H10 黑云母石英片岩 0.09 H11 变质长石石英砂岩 0.22 H12 变质长石石英砂岩 0.29 -
[1] Chen X Y, Wu J H, Tang W X, et al. 2023. Newly found giant granite−associated lithium resources in the Western Jiangxi Province, South China[J]. Earth Science, 48(10): 3957−3960 (in Chinese with English abstract).
[2] Dai H Z, Wang D H, Liu S B, et al. 2023. New progress in lithium prospecting abroad(2019~2021) and its significance to China's strategic mining resources exploration[J]. Acta Geologica Sinica, 97(2): 583−595 (in Chinese with English abstract).
[3] Feng J, Zhu Z X, Zhao T Y, et al. 2022. Subdivision of tectonic units and its metallogenesis in Xinjiang[J]. Geology in China, 49(4): 1154−1178 (in Chinese with English abstract).
[4] Hu J, Wang H, Han H W, et al. 2016. Genesis of the Dahongliutan iron deposit in the Tianshuihai Terrane, West Kunlun and its prospecting significance[J]. Geotectonica et Metallogenia, 40(5): 949−959 (in Chinese with English abstract).
[5] Huang L S, Zhu J H, Hu X Y, et al. 2023. Comprehensive prospecting information characteristics and prospecting prediction of pegmatite type lithium deposits in Karakoram area, Xinjiang[J]. Mineral Exploration, 14(9): 1525−1544 (in Chinese with English abstract).
[6] Jin M S, Gao Y B, Li K, et al. 2019. Remote sensing prospecting method for pegmatite type rare metal deposit taking Dahongliutan area in Western Kunlun for example[J]. Northwestern Geology, 52(4): 222−231 (in Chinese with English abstract).
[7] Kong H L, Li W Y, Ren G L, et al. 2023. Research status of pegmatite−hosted Li deposits and their exploration prospect in West China[J]. North Western Geology, 56(1): 11−30 (in Chinese with English abstract).
[8] Li K, Gao Y B, Teng J X, et al. 2019. Metallogenic geological characteristics, mineralization age and resource potential of the granite−pegmatite−type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang[J]. Northwestern Geology, 52(4): 206−221 (in Chinese with English abstract).
[9] Peng H L, He N Q, Wang M C, et al. 2018. Geological characteristics and metallogenic regularity of west track 509 rare polymetallic deposit in Dahongliutan region, Hetian, Xinjiang[J]. Northwestern Geology, 51(3): 146−154 (in Chinese with English abstract).
[10] Ren G L, Kong H L, Zhao K D, et al. 2022. Spectral characteristies and prospecting implications of lithium deposits in Dahongliutan area, Karakoram, Xinjiang[J]. Northwestern Geology, 55(4): 103−114 (in Chinese with English abstract).
[11] Tu Q J, Han Q, Li P, et al. 2019. Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 93(11): 2862−2873 (in Chinese with English abstract).
[12] Tang J L, Ke Q, Xu X W, et al. 2022. Magma evolution and mineralization oLongmenshan lithium−beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica, 38(3): 655−675 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.05
[13] Wang D H, Wang C H, Sun Y, et al. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1−8 (in Chinese with English abstract).
[14] Wang H, Li P, Ma H D, et al. 2017. Discovery of the Bailongshan superlarge lithium−rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 41(6): 1053−1062 (in Chinese with English abstract).
[15] Wang H, Fan Y H, Liao Y Y, et al. 2021. Geology and genesis of the Dahuangshan REE−Nb−Fe Dolymetallie mineralization zone in Karakoram Range[J]. Geological Bulletin of Ching, 40(6): 988−1000 (in Chinese with English abstract).
[16] Wang H, Huang L, Bai H Y, et al. 2022. Types, Distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 46(5): 848−866 (in Chinese with English abstract).
[17] Wang J S, He G J, Lei G M, et al. 2023. Survey report on the lithium beryllium deposit in the southern Karakash River of Hotan County, Xinjiang[R]. Wulumuqi Third Geological Brigade of Xinjiang geological and Mining Bureau: 169−178 (in Chinese with English abstract).
[18] Wei L Q. 2023. Study on lithium extraction from Spodumene and preparation of monohydrate lithium hydroxide[D]. Master's thesis of Kunming University of Science and Technology (in Chinese with English abstract).
[19] Wang H, Gao H, Ma H D, et al. 2024. Geological characteristics and pegmatite vein group zoning of the Xuefengling, Xuepen, and Shuangya lithium deposits in Karakorum, Hetian, Xiniiang[J]. Geotectonica et Metallogenia, 44(1): 57−68 (in Chinese with English abstract).
[20] Wen J H, Dai H Z, Chen C H, et al. 2025. The supply and demand status and resource guarantee degree of lithium in China.[J]. Geological Bulletin of China, 44(2/3): 245−258 (in Chinese with English abstract).
[21] Xing K, Zhu Q, Ren J P, et al. 2023. Research on the characteristics and market development trend of global lithium resources[J]. Geological Bulletin of China, 42(8): 1402−1421 (in Chinese with English abstract).
[22] Yan Q, Han S Q, Wang Y D, et al. 2018. Metallogenic and geological characteristics and potential analysis of Daoyanshan area in Western Kunlun Mountain, Xinjiang[J]. Mineral Exploration, 9(11): 2071−2076 (in Chinese with English abstract).
[23] Yu Y, Yang J F, Ma T, et al. 2023. Global exploration review 2023 and outlook for lithium, cobalt, and nickel battery metals[J]. Geology in China, 51(1): 368−370 (in Chinese with English abstract).
[24] Zhang C L, Ma H D, Zhu B Y, et al. 2019. Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect[J]. Geological Review, 65(5): 1077−1102 (in Chinese with English abstract).
[25] Zhang H S, Ji W L, Ma Z P, et al. 2020. Geochronology and geochemical study of the Cambrian andesite in Tianshuihai Terrane: Implications for the evolution of the Proto−Tethys Ocean in the West KunlunKarakoram Orogenic Belt[J]. Acta Petrologica Sinica, 36(1): 257−278 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.21
[26] 陈祥云, 吴俊华, 唐维新, 等. 2023. 赣西地区新探明巨量花岗岩型锂矿资源[J]. 地球科学, 48(10): 3957−3960.
[27] 代鸿章, 王登红, 刘善宝, 等. 2023. 国外锂矿找矿新进展(2019~2021年)及对我国战略性矿产勘查的启示[J]. 地质学报, 97(2): 583−595. doi: 10.3969/j.issn.0001-5717.2023.02.019
[28] 冯京, 朱志新, 赵同阳, 等. 2022. 新疆大地构造单元划分及成矿作用[J]. 中国地质, 49(4): 1154−1178.
[29] 胡军, 王核, 韩红卫, 等. 2016. 西昆仑甜水海地块大红柳滩铁矿床成因浅析及找矿意义[J]. 大地构造与成矿学, 40(5): 949−959.
[30] 黄理善, 朱景和, 胡祥云, 等. 2023. 新疆喀喇昆仑地区伟晶岩型锂矿床综合找矿信息特征与找矿预测[J]. 矿产勘查, 14(9): 1525−1544.
[31] 金谋顺, 高永宝, 李侃, 等. 2019. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例[J]. 西北地质, 52(4): 222−231. doi: 10.3969/j.issn.1009-6248.2019.04.017
[32] 孔会磊, 李文渊, 任广利, 等. 2023. 伟晶岩型锂矿床研究现状及其在中国西部的找矿前景[J]. 西部地质, 56(1): 11−30.
[33] 李侃, 高永宝, 滕家欣, 等. 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 52(4): 206−221. doi: 10.3969/j.issn.1009-6248.2019.04.016
[34] 彭海练, 贺宁强, 王满仓, 等. 2018. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 51(3): 146−154. doi: 10.3969/j.issn.1009-6248.2018.03.013
[35] 任广利, 孔会磊, 赵凯东, 等. 2022. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义[J]. 西北地质, 55(4): 103−114.
[36] 涂其军, 韩琼, 李平, 等. 2019. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 93(11): 2862−2873. doi: 10.3969/j.issn.0001-5717.2019.11.011
[37] 唐俊林, 柯强, 徐兴旺, 等. 2022. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 38(3): 655−675.
[38] 王登红, 王成辉, 孙艳, 等. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 4(5): 1−8.
[39] 王核, 李沛, 马华东, 等. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053−1062.
[40] 王辉, 范玉海, 廖友运, 等. 2021. 新疆喀拉昆仑山大黄山稀土-铌-铁钛多金属矿化带地质特征及矿床成因[J]. 地质通报, 40(6): 988−1000.
[41] 王核, 黄亮, 白洪阳, 等. 2022. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 46(5): 848−866.
[42] 王军山, 何国建, 雷国民, 等. 2023. 新疆和田县喀拉喀什河南-俘虏沟锂铍矿普查报告[R]. 新疆地矿局第三地质大队, 169−178.
[43] 韦良权. 2023. 从锂辉石中提取锂工艺及制备一水氢氧化锂研究[D]. 昆明理工大学硕士学位论文.
[44] 王核, 高昊, 马华东, 等. 2024. 新疆和田县雪风岭锂矿床、雪盆锂矿床和双牙锂矿床地质特征及伟晶岩脉群分带初步研究[J]. 大地构造与成矿学, 44(1): 57−68.
[45] 文佳豪, 代鸿章, 陈翠华, 等. 2025. 中国锂资源供需现状与资源保障程度研究[J]. 地质通报, 44(2/3): 245−258.
[46] 邢凯, 朱清, 任军平, 等. 2023. 全球锂资源特征及市场发展态势分析[J]. 地质通报, 42(8): 1402−1421.
[47] 严琼, 韩世强, 王一点, 等, 2018. 新疆西昆仑刀岩山一带成矿地质特征及潜力分析[J]. 矿产勘查, 9(11): 2071−2076.
[48] 余韵, 杨建锋, 马腾, 等. 2024. 2023年全球锂、钴、镍电池金属勘查形势与展望[J]. 中国地质, 51(1): 368−370.
[49] 张传林, 马华东, 朱炳玉, 等. 2019. 西昆仑-喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 65(5): 1077−1102.
[50] 张辉善, 计文化, 马中平, 等. 2020. 甜水海地块寒武纪安山岩的地球化学和年代学研究: 对西昆仑-喀喇昆仑造山带原特提斯洋演化的启示[J]. 岩石学报, 36(1): 257−278. doi: 10.18654/1000-0569/2020.01.21
-