Proto-Tethys and Paleo-Tethys collisional magmas and porphyry mineralization: A case study of the Qimantagh area, East Kunlun Mountains
-
摘要:
研究目的 特提斯分为原特提斯、古特提斯和新特提斯,分别大致对应于早古生代、晚古生代和中生代期间的大洋。研究表明,新特提斯洋闭合后形成的(后)碰撞花岗岩类普遍具有高氧逸度和富水的特征,使这些地区形成了许多大型—超大型斑岩铜矿。然而,关于原特提斯和古特提斯斑岩铜矿的成矿潜力,特别是这2个古大洋闭合后的(后)碰撞阶段是否具备类似潜力,尚未进行系统研究。东昆仑祁漫塔格地区记录了原、古特提斯从俯冲到闭合阶段的构造演化和成矿历史,成为研究原特提斯和古特提斯斑岩成矿作用的天然实验室和绝佳场所。
研究方法 本文综述了东昆仑祁漫塔格地区以往报道的花岗岩类年龄和地球化学资料,着重讨论了与斑岩-矽卡岩矿床有关的花岗岩类特征,揭示原特提斯和古特提斯斑岩成矿规律,服务新一轮找矿突破战略行动。
研究结果 东昆仑祁漫塔格地区花岗岩类主要集中出现于2个时期,即435~370 Ma和245~196 Ma,分别形成于原特提斯洋和古特提斯洋闭合后的碰撞阶段,而与大洋俯冲有关的花岗岩类出露很少。2期碰撞花岗岩类具有类似的地球化学特征,主要落入高钾钙碱性和钾玄岩系列范围内,属于偏铝质—弱过铝质岩石,亏损Na和Ta,岩浆源区表现出壳幔混合特征。
结论 综合前人研究成果,提出原、古特提斯洋经历了类似的演化过程:①俯冲阶段,原、古特提斯洋壳均以平板俯冲的形式向陆块俯冲,抑制了弧岩浆作用,导致东昆仑祁漫塔格地区弧花岗岩类不发育;②碰撞阶段,俯冲板片裂离导致软流圈上涌,形成了大规模的壳幔混合成因的碰撞花岗岩类。与新特提斯碰撞花岗岩类相比,原特提斯和古特提斯碰撞花岗岩类普遍具有较低的氧逸度和水含量。这些特征可以解释为何青藏高原北部没有发现大型—超大型斑岩铜矿床。尽管如此,青藏高原北部矽卡岩铜多金属矿床找矿潜力巨大,应该作为未来找矿的主攻类型和方向。
Abstract:Objective Tethys can be divided into Proto−Tethys, Paleo−Tethys and Neo−Tethys according to its evolutionary history, roughly corresponding to the Early Paleozoic, Late Paleozoic and Mesozoic oceans, respectively. In recent years, a large number of studies in the southern Tibetan Plateau, Iran, Pakistan and other areas have shown that the (post−) collisional granite formed after the closure of the New Tethys Ocean is generally characterized by high oxygen fugacity and high water contents, which has led to the formation of many large to super−large porphyry copper deposits in these areas. How about the metallogenic potential of Proto−Tethys and Paleo−Tethys porphyry deposits? Does the (post−) collisional stage after the closure of the two paleo−oceans also have the metallogenic potential of large to super−large porphyry copper deposits? These problems have not been systematically studied before. The Qimantagh area in the East Kunlun Orogenic Belt records the tectonic evolution and metallogenic history of Proto− and Paleo−Tethys from subduction to closed stages. Thus, this area is a natural laboratory and excellent place to study the porphyry mineralization of Proto−Tethys and Paleo−Tethys.
Methods In this paper, the age and geochemical data of granites previously reported in Qimantagh area of the East Kunlun Orogenic Belt are reviewed, and the granite characteristics related to porphyrie−skarn deposits are particularly studied. The purpose of this paper is to reveal the metallogenic regularity of Proto−Tethys and Paleo−Tethys porphyry and serve a new round of prospecting breakthrough strategy.
Results The granites in the Qimantagh area of the East Kunlun Orogenic Belt mainly occurred in two periods, i.e., 435~370 Ma and 245~196 Ma. These granites formed in the collisional stage after the closing of the Proto−Tethys and the Paleo−Tethys Oceans, respectively. In contrast, the granites related to oceanic subduction were rarely found. The two stage collisional granites have similar geochemical characteristics, mainly fall into the range of high−K calc−alkaline and shoshonitic series, belong to metaluminous to weakly peraluminous rocks with depleted Nb and Ta, and display characterisitics of crustal−mantle mixing in the sources of parental magmas.
Conclusions Based on the results of previous studies, this paper proposes that the Proto−Tethys and Paleo−Tethys experienced similar evolutionary processes. ① During the subduction stage, the Proto−Tethys and Paleo−Tethys subducted to the continent in the form of flat subduction, which inhibited arc magmatism and resulted in the scarcity of arc granites in Qimantagh area, East Kunlun. ② During the collisional stage, the subduction plate was detached which led to the upwelling of the asthenosphere mantle, forming a large number of collisional granites of crustal−mantle mixing origin. However, compared with the Neo−Tethys collisional granites, the Proto−Tethys and Paleo−Tethys collisional granites generally have lower oxygen fugacity and water content. These characteristics may explain why no large and super−large porphyry copper deposits have been found in the northern part of the Tibetan Plateau. In spite of this, the skarn copper polymetallic deposits in the north of the Qinghai−Tibet Plateau have great prospecting potential and should be the main type and direction of prospecting in the future.
-
Key words:
- Proto-Tethys /
- Paleo-Tethys /
- porphyry system /
- Qinghai /
- Qimantagh
-
-
图 1 特提斯构造域古特提斯和新特提斯缝合带位置(a,据吴福元等, 2020; 朱日祥等, 2022修改)和东亚原特提斯缝合带位置(b,据Li et al., 2018b修改)
Figure 1.
图 2 东昆仑祁漫塔格成矿带地质图 (据Zhong et al., 2021b修改)
Figure 2.
图 3 东昆仑祁漫塔格地区出露岩浆岩和成矿花岗岩年龄核密度图解(成矿岩体数据来源见表1)
Figure 3.
图 4 东昆仑祁漫塔格成矿带构造演化模式图(据Zhong et al., 2021b修改)
Figure 4.
图 7 东昆仑祁漫塔格地区2期碰撞花岗岩类全岩Sr−Nd同位素图解(据Zhong et al., 2021b修改)
Figure 7.
图 8 祁漫塔格地区斑岩-矽卡岩矿床成矿岩体与冈底斯斑岩铜矿带碰撞斑岩铜矿成矿岩体锆石成分对比(冈底斯锆石数据据Wang et al., 2018; 祁漫塔格锆石数据据Zhong et al., 2021;Eu/Eu*和Ce/Ce*计算据Zhong et al., 2019;
$f_{{\mathrm{O}}_{2}} $ 计算据Loucks et al., 2020;FMQ曲线据O'Neill, 1987)Figure 8.
表 1 东昆仑祁漫塔格地区主要斑岩-矽卡岩矿床成岩成矿年龄
Table 1. Intrusive and mineralization ages for major porphyry-skarn deposits from the Qimantagh area, East Kunlun Mountains
矿床或矿点 矿床类型 采样位置 矿带 样品描述 定年矿物 定年方法 年龄/Ma 参考文献 柯可卡尔德 矽卡岩钨
锡矿床37°57'36.0"N; 88°56'21.9"E 二长花岗岩 锆石 LA−ICP−MS 429.5±3.2 高永宝, 2013 37°57'30"N; 88°56'23"E 正长花岗岩 白云母 Ar−Ar 411.7±2.6 Zhou et al., 2016 37°57'36"N; 88°56'24"E 黑钨矿-白云母-石英脉 白云母 Ar−Ar 412.8±2.4 37°57'28"N; 88°56'26"E 黑钨矿-白云母-石英脉 白云母 Ar−Ar 413.8±2.6 37°57'31.7"N; 88°56'26.7"E 锡石-石英脉 锡石 LA−MC−ICP−MS 426±13 Deng et al., 2018 37°57'31.7"N; 88°56'26.7"E 锡石-石英脉 锡石 ID−TIMS 416±1 矿石 锡石 LA−MC−ICP−MS 427±13 高永宝, 2013 白干湖 矽卡岩钨
锡矿床二长花岗岩 锆石 LA−ICP−MS 431.3 ± 4.0 Zheng et al., 2018 37°56'18"N; 88°54'21"E 二长花岗岩 锆石 LA−ICP−MS 428.2±4.2 王冠等, 2014 37°55'24"N; 88°52'44"E 正长花岗岩 锆石 LA−ICP−MS 422.5±2.3 37°56'13"N; 88°54'44"E 正长花岗岩 锆石 LA−MC−ICP−MS 413.6±2.4 Zhou et al., 2016 巴什尔西 矽卡岩钨
锡矿床二长花岗岩 锆石 LA−ICP−MS 433.2 ± 3.4 Zheng et al., 2018 ZK1202 黑钨矿-锡石-白云母脉 白云母 Ar−Ar 422.7±4.5 郑震等, 2016 黑钨矿-锡石-白云母脉 白云母 Ar−Ar 421.8±2.7 戛勒赛 矽卡岩钨锡矿床 37°47'51.3"N; 88°42'25.4"E 更长花岗岩 锆石 LA−ICP−MS 429.5±3.3 高永宝等, 2012 野马泉 矽卡岩铁矿 36°59'27.9"N; 91°56'51.6"E M3 二长闪长岩 锆石 LA−ICP−MS 226.5±3.6 刘建楠, 2018 ZK6461 M13 二长花岗岩 锆石 LA−ICP−MS 400.5±1.4 Chen et al., 2018 M1 闪长岩 锆石 LA−ICP−MS 228±3 Yin et al., 2017 M1 斑状花岗闪长岩 锆石 LA−ICP−MS 225±2 M1 斑状花岗闪长岩 锆石 LA−ICP−MS 221±2 M1 矿石 金云母 Ar−Ar 225±1.5 ZK11304 M3 二长岩 锆石 LA−ICP−MS 223.5±1.7 Yao , 2015 36°58'37"N; 91°58'06"E M1 二长花岗岩 锆石 LA−MC−ICP−MS 223.3±0.5 Zhang et al., 2017a 37°00'09"N; 91°59'13"E M5 石英二长闪长岩 锆石 LA−MC−ICP−MS 220.11±0.49 ZK10029, 602m M13 花岗闪长岩 锆石 LA−ICP−MS 402.4±1.3 36°58'29.5"N; 91°58'19.6"E M1 斑状二长花岗岩 锆石 LA−ICP−MS 229.5±2.2 刘建楠, 2018 36°58'28.2"N; 92°01'33.8"E M13 花岗闪长岩 锆石 LA−ICP−MS 402.8±5.4 X: 16413522; Y: 4095325 M13 花岗闪长岩 锆石 LA−ICP−MS 392.4±2.2 Song et al., 2014 ZK507 M5 矿石 金云母 Ar−Ar 222.0±1.3 刘建楠, 2018 ZK6801 M13 二长花岗岩 锆石 LA−ICP−MS 393±2 高永宝等, 2014 ZK6057 M13 花岗闪长岩 锆石 LA−ICP−MS 386±1 36°59'20"N; 91°58'09"E M1 斑状石英二长花岗岩 锆石 LA−ICP−MS 219±1 36°58'30"N; 91°58'20"E M1 正长花岗岩 锆石 LA−ICP−MS 213±1 M13 花岗闪长岩 锆石 LA−ICP−MS 400.8±1.4 乔保星等, 2016 M13 花岗闪长岩 锆石 LA−ICP−MS 220.53±0.69 ZK50101 M1 二长花岗岩 锆石 LA−ICP−MS 226.0 ± 1.9 Zhong et al., 2021a ZK50101 M1 二长花岗岩 锆石 LA−ICP−MS 226.2 ± 2.6 36°58'29.04"N; 91°58'20.33"E M1 正长花岗岩 锆石 LA−ICP−MS 231.5 ± 1.6 ZK4863 M13 花岗闪长岩 锆石 LA−ICP−MS 405.0 ± 3.4 ZK6453 M13 花岗闪长岩 锆石 LA−ICP−MS 397.5 ± 3.1 ZK6805 M13 花岗闪长岩 锆石 LA−ICP−MS 390.5 ± 2.8 ZK6449 M13 二长花岗岩 锆石 LA−ICP−MS 406.3 ± 3.4 ZK9605 M13 二长花岗岩 锆石 LA−ICP−MS 396.2 ± 3.1 ZK6061 M13 花岗闪长岩 锆石 LA−ICP−MS 397.4 ± 3.4 它温查汗 矽卡岩铁矿 花岗闪长斑岩 锆石 LA−ICP−MS 233.5±0.9 Yao et al., 2017 36°57'09.81"N;
92°44'58.66"E花岗闪长斑岩 锆石 LA−MC−ICP−MS 236.0±2.3 杨涛等, 2017 36°57'09.81"N;
92°44'58.66"E二长花岗斑岩 锆石 LA−MC−ICP−MS 229.9±2.0 ZK25401 矿石 白云母 Ar−Ar 230.7±2.0 田承盛等, 2013 花岗岩 锆石 LA−ICP−MS 227.7±0.6 丰成友等, 2012 于沟子 矽卡岩铁矿 37°43'6.1"N;
89°40'57.1"E矿石 辉钼矿 Re−Os 210.1± 4.8 丰成友等, 2010 37°43'06.21" N;
89°41'00.91" E正长花岗岩 锆石 LA−ICP−MS 210.0±0.6 高永宝, 2013 小圆山 矽卡岩铁矿 ZK6703 英云闪长岩 锆石 LA−MC−ICP−MS 217.7±1.1 孔会磊等, 2016 斜长花岗斑岩 锆石 LA−MC−ICP−MS 216.9±1.9 孔会磊等, 2015 那陵郭勒河西 矽卡岩铁矿 36°52'50.7"N; 92°49'54.48"E 闪长岩 锆石 LA−MC−ICP−MS 240.5±1.7 张雷, 2013 36°50'50.4"N; 92°50'43.68"E 花岗斑岩 锆石 LA−MC−ICP−MS 227±1 36°50'50.4"N; 92°50'43.68"E 花岗斑岩 锆石 LA−MC−ICP−MS 229.51±0.87 那陵郭勒河东 矽卡岩铁矿 正长花岗岩 锆石 LA−ICP−MS 225.2±1.2 薛宁等, 2009 36°48.309'N; 92°51.585'E 闪长二长花岗岩岩 锆石 LA−ICP−MS 420.6±2.6 郝娜娜, 2014 尕林格 矽卡岩铁矿 37°07'34"N; 92°09'35"E Ⅰ 石英二长闪长岩 锆石 LA−ICP−MS 228.3±0.5 高永宝等, 2012 37°06'31"N; 92°11'04"E Ⅲ 石英二长岩 锆石 LA−ICP−MS 234.4±0.6 ZK0307 Ⅱ 矿石 金云母 Ar−Ar 235.8±1.7 于淼等,2015 ZK0404 Ⅱ 辉石闪长岩 锆石 LA−ICP−MS 228.2±2 白宜娜等, 2016 Ⅱ 闪长岩 锆石 LA−ICP−MS 223.4±2.7 于淼, 2017 Ⅱ 闪长岩 锆石 LA−ICP−MS 219.56±0.89 Ⅳ 闪长岩 锆石 LA−ICP−MS 218.2±1.1 Ⅰ 花岗闪长岩 锆石 LA−ICP−MS 229.51±0.56 Ⅱ 花岗闪长岩 锆石 LA−ICP−MS 229.38±0.79 Ⅳ 花岗闪长岩 锆石 LA−ICP−MS 226.2±1.5 Ⅳ 闪长玢岩 锆石 LA−ICP−MS 217.6±1.0 Ⅴ 闪长玢岩 锆石 LA−ICP−MS 226.4±3.7 肯德可克 矽卡岩铁钴矿 矿石 石榴子石 LA−ICP−MS 234 ± 4 Su et al., 2024 矿石 榍石 LA−ICP−MS 231.8 ± 7.5 矿石 金云母 Ar−Ar 214 Wu et al., 2011 二长花岗岩 锆石 LA−MC−ICP−MS 229.5±0.5 肖晔等, 2013 37°00'45.7"N; 91°49'24.9"E 二长花岗岩 锆石 LA−ICP−MS 230.5±4.2 奚仁刚等, 2010 辉长岩 斜长石 Ar−Ar 207.8±1.9 赵财胜等, 2006 36°55.33'N; 91°40.17'E 二长花岗岩 锆石 LA−MC−ICP−MS 218±2 吴祥珂等, 2011 群力 矽卡岩铁矿 透辉石矽卡岩 白云母 Ar−Ar 407±2.8 何书跃等, 2018 牛苦头 矽卡岩铅锌矿 黑云母花岗闪长岩 锆石 LA−ICP−MS 393.7±4.9 李加多等, 2019 ZK1609 花岗闪长岩 锆石 LA−ICP−MS 394.0±1.3 姚磊等, 2016 M1 花岗闪长岩 锆石 LA−ICP−MS 362.2±2.7a 王新雨等, 2023 M1 二长花岗岩 锆石 LA−ICP−MS 361.8±3.4a M1 矿石 黄铁矿 Re−Os 359.2±6.3a M1 斑状花岗岩 锆石 LA−ICP−MS 222.7±2.2 王新雨等, 2024 M1 矿石 石榴子石 LA−ICP−MS 219±12 四角羊 黑云母二长花岗岩 锆石 K-Ar 196 李洪普等, 2011 景忍-迎庆沟 矽卡岩铅锌矿 正长花岗岩 锆石 SHRIMP 204.1±2.6 刘云华等, 2006 37°1'36.36"N; 91°31'25.26"E 正长花岗斑岩 锆石 LA−MC−ICP−MS 221.1±1.3 张爱奎, 2013 37°4'21.12"N; 91°45'1.68"E 花岗岩 锆石 LA−MC−ICP−MS 232.74±0.92 37°4'21.12"N; 91°45'1.68"E 花岗岩 锆石 LA−MC−ICP−MS 232.9±1.5 37°37'08"N; 91°30'49"E 二长花岗斑岩 锆石 LA−ICP−MS 211.6±1.4 韩海臣等, 2018 虎头崖 矽卡岩铜铅锌矿 矿石 磷灰石 LA−ICP−MS 443.0±5.9 张斌武, 2022 二长花岗岩 磷灰石 LA−ICP−MS 228.1±1.5 钾长花岗岩 磷灰石 LA−ICP−MS 228.9±2.8 矿石 磷灰石 LA−ICP−MS 228.7±2.8 37°03'50.5"N; 91°40'37.5"E Ⅵ 斑状二长花岗岩 锆石 LA−ICP−MS 232.3±1.4 Zhong et al., 2021b 37°04'10.5"N; 91°39'37.6"E Ⅲ 斑状二长花岗岩 锆石 LA−ICP−MS 230.3±1.5 37°04'01.9"N; 91°37'12.5"E Ⅱ 二长花岗岩 锆石 LA−ICP−MS 221.6±0.7 X: 16383205; Y: 415100 Ⅵ 二长花岗岩 锆石 LA−MC−ICP−MS 217.5±1.1 张爱奎等, 2013 37°03'44"N; 91°39'51"E Ⅰ & Ⅲ 花岗闪长岩 锆石 SHRIMP 235.4±1.8 丰成友等, 2011 37°04'09"N; 91°37'23"E Ⅱ 二长花岗岩 锆石 LA−ICP−MS 219.2±1.4 37°05'20"N; 91°36'05"E Ⅴ 矿石 辉钼矿 Re−Os 225.0±4.0 37°03'19"N; 91°38'01"E Ⅶ 矿石 辉钼矿 Re−Os 230.1±4.7 Ⅲ 二长花岗岩 锆石 LA−MC−ICP−MS 230.3±3.7 瞿泓滢等, 2015 37°05'16"N; 91°36'00"E Ⅴ 花岗闪长岩 锆石 LA−MC−ICP−MS 224.3±0.6 李侃等, 2015 ZK1501 Ⅷ 正长花岗岩 锆石 LA−MC−ICP−MS 239.7±0.8 ZK1901 Ⅵ 花岗岩 锆石 LA−MC−ICP−MS 233.6±1.8 姚磊, 2015 ZK001 Ⅵ 花岗斑岩 锆石 LA−ICP−MS 232.7±1.8 张晓飞等, 2016 37°4'21.3"N; 91°41'28.7"E Ⅵ 斑状黑云母二长花岗岩 锆石 LA−ICP−MS 234.2±1.5 时超等, 2017 ? 二长花岗岩 锆石 LA−MC−ICP−MS 221.0±3.4 汪洋, 2017 Ⅰ 二长花岗岩 锆石 LA−ICP−MS 235.0±1.5 姚磊, 2015 Ⅱ 花岗岩 锆石 LA−ICP−MS 231.7±2.7 Ⅵ 二长花岗斑岩 锆石 LA−ICP−MS 222.8±2.6 楚鲁套海 矽卡岩铜铅锌矿 花岗闪长岩 锆石 SIMS 226.4±1. 7 丰成友等, 2012 维宝 矽卡岩铜铅锌矿 矿石 白云母 Ar−Ar 226.61±2.34 Fang et al., 2018 37°09.984'N; 91°04.462'E 石英闪长岩 锆石 LA−ICP−MS 223.3±1.5 钟世华,2018 37°06.114'N; 91°11.254'E 辉石闪长岩 锆石 SIMS 224.6±2.9 卡而却卡 矽卡岩铜铅锌矿 ? 花岗闪长岩 锆石 SHRIMP 237±2 王松等, 2009 X:16323846; Y:4071935 B 斑状黑云母二长花岗岩 锆石 LA−ICP−MS 410.1±2.6 陈博等, 2012 B 矿石 辉钼矿 Re−Os 238.8±1.3 丰成友等, 2009 36°48'06.6"N; 90°58'33.3"E C 花岗闪长岩 锆石 LA−ICP−MS 234.4±0.6 高永宝, 2013 36°46'34"N; 90°04'54"E B 花岗闪长岩 锆石 LA−ICP−MS 244.0±1.4 姚磊, 2015 36°48'59.4"N; 90°58'35.3"E B 斑状二长花岗岩 锆石 LA−ICP−MS 242.1±1.2 Zhong et al., 2021b ZK, M1-11 28.5m ? 花岗闪长岩 锆石 LA−ICP−MS 211.8±1.1 36°45'39"N; 91°01'51"E B 斑状黑云母二长花岗岩 锆石 LA−ICP−MS 406.4±4.2 姚磊等, 2016 36°45'39.6"N; 91°01'54.1"E B 矿石 辉钼矿 Re−Os 245.5±1.6 高永宝等, 2018 36°45'42.1"N; 91°01'44.1"E B 矿石 金云母 Ar−Ar 233.9±1.4 C 花岗闪长岩 锆石 LA−ICP−MS 245.1±1.5 Yao et al., 2017 斑岩铜矿 91°01'06"N; 36°45'48"E A 斑状黑云母二长花岗岩 锆石 SHRIMP 227.3±1.8 丰成友, 2012 A 斑状二长花岗岩 锆石 LA−ICP−MS 220.42±0.79 李积清等, 2016 36°48'41"N; 90°58'26"E A 斑状二长花岗岩 锆石 LA−ICP−MS 226.5±0.5 张勇等, 2017 骆驼峰 斑岩铜矿 正长花岗岩 锆石 LA−ICP−MS 218±2 顾焱等, 2019 花岗闪长岩 锆石 LA−ICP−MS 233±2 鸭子沟 斑岩铜矿 花岗斑岩 锆石 SHRIMP 224.0±1.6 李世金等, 2008 矿石 辉钼矿 Re−Os 224.7±3.4 丰成友等, 2009 莫河下拉 斑岩铜矿 11MZK08 花岗斑岩 锆石 LA−ICP−MS 222±1 许庆林, 2014 乌兰乌珠尔 斑岩铜矿 37°23'41"N; 91°25'53"E 斑状钾长花岗岩 锆石 LA−MC−ICP−MS 388.9±3.7 郭通珍等, 2011 ZK701 花岗斑岩 锆石 SHRIMP 215.1±4.5 佘宏全等, 2007 二长花岗岩 锆石 LA−ICP−MS 413±5 谈生祥等, 2011 长山 斑岩钼矿 ZK3101 正长花岗岩 锆石 SHRIMP 219.9±1.3 丰成友等, 2012 拉陵灶火中游 斑岩钼矿 36°31.715´N; 93°14.957´E 斑状钾长花岗岩 锆石 LA−ICP−MS 216.1±3.0 吴宗昌, 2017 36°31.715´N; 93°14.957´E 斑状花岗岩 锆石 LA−ICP−MS 216.1±2.4 36°30'59"N; 93°17'35"E 矿石 辉钼矿 Re−Os 214.5±4.9 王富春等, 2013 36°30'51"N; 93°17'35"E 矿石 辉钼矿 Re−Os 240.8±4.0 花岗岩 锆石 LA−MC−ICP−MS 228.49±0.84 严玉峰, 2012 36°31'09"N; 93°18'15"E 花岗闪长岩 锆石 LA−ICP−MS 242.6±3.4 Chen et al., 2015 小灶火 斑岩钼矿 正长花岗岩 锆石 LA−ICP−MS 226±1 陈静等, 2018 拉陵沟脑 斑岩钼矿 36°24'12"N; 93°18'05"E 花岗闪长岩 锆石 LA−ICP−MS 238.6±2.9 Chen et al., 2015 注:上标a代表报道的年龄可能存在问题,见3.2节讨论 -
[1] Atherton M P, Ghani A A. 2002. Slab breakoff: A model for Caledonian, Late Granite syn−collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland[J]. Lithos, 62(3/4): 65−85.
[2] Bai Y N, Sun F Y, Qian Y, et al. 2016. Zircon U−Pb geochronology and geochemistry of pyroxene diorite in the Galinge iron−polymetallic deposit, East Kunlun[J]. Global Geology, (1): 17−27 (in Chinese with English abstract).
[3] Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 144(3): 347−364. doi: 10.1007/s00410-002-0402-5
[4] Bergomi M A, Zanchetta S, Tunesi A. 2015. The Tertiary dike magmatism in the Southern Alps: Geochronological data and geodynamic significance[J]. International Journal of Earth Sciences, 104: 449−473. doi: 10.1007/s00531-014-1087-5
[5] Bonin B. 2004. Do coeval mafic and felsic magmas in post−collisional to within−plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 78(1/2): 1−24.
[6] Chen J, Wang B Z, Li B, et al. 2015. Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb isotopic compositions of Middle Triassic granodiorites from the Kaimuqi area, East Kunlun, Northwest China: Implications for slab breakoff[J]. International Geology Review, 57(2): 257−270. doi: 10.1080/00206814.2014.1003105
[7] Chen J, Wang B Z, Lu H F, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: Evidence for post−collisional slab break−off[J]. International Geology Review, 60(4): 479−95. doi: 10.1080/00206814.2017.1346487
[8] Chen B, Zhang Z Y, Geng J Z, et al. 2012. Zircon LA−ICP−MS U−Pb age of monzogranites in the Kaerqueka copper−polymetallic deposit of Qimantag, Western Qinghai Province[J]. Geological Bulletin of China, (2/3): 463−468 (in Chinese with English abstract).
[9] Chen J, Hu J C, Lu Y Z, et al. 2018a. Geochronology, geochemical characteristics of molybdenum ore−bearing syenogranite from Xiaozhaohuo area in East Kunlun and its geological significance[J]. Gold Science and Technology, 26(4): 465−472 (in Chinese with English abstract).
[10] Deng J, Wang Q, Li G, et al. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 26(2): 419−437. doi: 10.1016/j.gr.2013.08.002
[11] Deng X H, Chen Y J, Bagas L, et al. 2018. Cassiterite U−Pb geochronology of the Kekekaerde W−Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization[J]. Ore Geology Reviews, 100: 534−544. doi: 10.1016/j.oregeorev.2017.02.018
[12] Deng Z, Zhong S, Yan J, et al. 2024. Magma mixing formed mineralized Middle–Late Triassic granitoids in the Qimantagh Metallogenic Belt, NW China: A case study from the Hutouya skarn deposit[J]. Ore Geology Reviews, 106192.
[13] Ding L. 2024. New Advances in the Study of Tethyan Geodynamic System[J]. Science China Earth Sciences, 54(3): 892−896 (in Chinese with English abstract).
[14] Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006
[15] Dong Y, Sun S, He D, et al. 2024. Early Paleozoic back−arc basin in the East Kunlun Orogen, northern Tibetan Plateau: Insight from the Wutumeiren ophiolitic mélange[J]. Lithos, 464/465: 107460. doi: 10.1016/j.lithos.2023.107460
[16] Du L H, Huang Y, Gao X, et al. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia [J]. Geological Bulletin of China, 44(4):633-648 (in Chinese with English abstract).
[17] Duan X P, Meng F C, Jia L H. 2019. Early Paleozoic mantle evolution of East Kunlun Orogenic Belt in Qinghai, NW China: evidence from the geochemistry and geochronology of the Late Ordovician to Late Silurian mafic−ultramafic rocks in the Qimantag region[J]. International Geology Review, 62(15): 1883−1903.
[18] Fang J, Zhang L, Chen H, et al. 2018. Genesis of the Weibao banded skarn Pb−Zn deposit, Qimantagh, Xinjiang: Insights from skarn mineralogy and muscovite 40Ar−39Ar dating[J]. Ore Geology Reviews, 100: 483−503. doi: 10.1016/j.oregeorev.2017.06.001
[19] Feng C Y, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).
[20] Feng C Y, Li D S, Qu W J, et al. 2009. Re−Os Isotopic dating of molybdenite from the Suolajier skarn−type copper−molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223−227 (in Chinese with English abstract).
[21] Feng C Y, Li D S, Wu Z S, et al. 2010. Major types, time−space distribution and metallogenesis of polymetallic deposits in the Qimantagh metallogenic belt, Eastern Kunlun Area[J]. Northwestern Geology, 43(4): 10−17 (in Chinese with English abstract).
[22] Feng C Y, Wang X P, Shu X F. et al. 2011. Isotopic chronology of the Hutouya skarn lead−zinc polymetallic ore district in the Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806−1817 (in Chinese with English abstract).
[23] Fu H, Han J H, Sun Y X, et al. 2024. Tethys orogenic belt[J]. Sedimentary Geology and Tethyan Geology, 44(1): 100−133 (in Chinese with English abstract).
[24] Gao Y B, Li K, Qian B, et al. 2018. The metallogenic chronology of Kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re−Os and phlogopite Ar−Ar ages[J]. Geotectonica et Metallogenia, 42(1): 96−107 (in Chinese with English abstract).
[25] Gao Y B, Li W Y, Ma X G, et al. 2012a. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 48(2): 36−47 (in Chinese with English abstract).
[26] Gao Y B, Li W Y, Li K, et al. 2012b. Genesis and chronology of the Baiganhu−Jialesai W−Sn mineralization belt, Qimantage, East Kunlun Mountain, NW China[J]. Northwestern Geology, 45(4): 229−241 (in Chinese with English abstract).
[27] Gao Y B. 2013. The intermediate−acid intrusive magmatism and mineralization in Qimantag, East Kunlun Mountains[D]. Doctoral Thesis of Chang'an University (in Chinese with English abstract).
[28] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract).
[29] Geng J. 2023. Study on magmatic rocks and mineralization of two stage in Niukutou Mining area, Qinghai Province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[30] Gerrits A R, Inglis E C, Dragovic B, et al. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet[J]. Nature Geoscience, 12: 1029−1033. doi: 10.1038/s41561-019-0471-y
[31] Gu Y, Qian Y, Li Y J, et al. 2019. Geochronology, geochemistry, and tectonic significance of Middle and Late Triassic granites in the Luotuofeng area, East Kunlun[J]. Mineral Exploration, 10(4): 724−736 (in Chinese with English abstract).
[32] Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing discrimination diagrams for granite mineralization potential by ssing machine learning and zircon trace elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).
[33] Guo T, Liu R, Chen F, et al. 2011. LA−MC−ICP−MS zircon U−Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantagh Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, (8): 1203−1211 (in Chinese with English abstract).
[34] Han H C, Wang G L, Ding Y J, et al. 2018. LA−ICP−MS zircon U−Pb age of late Triassic intrusive rocks in Bayinhudousen area, East Kunlun and its tectonic significance[J]. Northwestern Geology, 51(1): 144−58 (in Chinese with English abstract).
[35] Hao N N, Yuan W M, Zhang A K, et al. 2014b. Late Silurian to Early Devonian granitoids in the Qimantage Area, East Kunlun Mountains: LA−ICPMS zircon U–Pb ages, geochemical features and geological setting[J]. Geological Review, 60(1): 201−15 (in Chinese with English abstract).
[36] He Y, Li S, Hoefs J, et al. 2011. Post−collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 75: 3815−3838. doi: 10.1016/j.gca.2011.04.011
[37] He S Y, Bai G L, Liu Z G, et al. 2025. A preliminary discussion on the metallogenetic pattern of Qinghai Province[J/OL]. Geological Bulletin of China, 44(4): 649-678 (in Chinese with English abstract).
[38] He S Y, Li D S, Bai G L, et al. 2018. The report on 40Ar/39Ar age of muscovite from the Qunli Fe−polymetallic deposit in the Qimantag area, Qinghai Province[J]. Geology in China, 45(1): 201−202 (in Chinese with English abstract).
[39] He S Y, Li D S, Li L L, et al. 2009. Re−Os age of molybdenite from the Yazigou Copper (Molybdenum) mineralized area in Eastern Kunlun of Qinghai Province and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).
[40] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of“Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).
[41] Hou Z, Pan X, Yang Z, et al. 2007. Porphyry Cu–(Mo–Au) deposits not related to oceanic−slab subduction: examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 21: 332−351 (in Chinese with English abstract).
[42] Hou Z, Zheng Y, Yang Z, et al. 2012. Contribution of mantle components within juvenile lower−crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 48: 173−192.
[43] Hou Z Q. 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30−58 (in Chinese with English abstract).
[44] Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) deposits no related to oceanic slab subduction: Examples from Chinese porphyry deposits in continental−settings[J]. Geoscience, (2): 332−351 (in Chinese with English abstract).
[45] Hu C, Li M, Feng C, et al. 2023. Petrogenesis and metallogenic potential of the early Devonian Yugusayi mafic−ultramafic complex in Qimantagh, East Kunlun orogenic belt[J]. International Geology Review, 65: 1056−1076. doi: 10.1080/00206814.2021.1878474
[46] Jia L, Meng F, Feng H. 2018. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai−Tibet Plateau—crustal relics of the Paleo−Tethys ocean[J]. Mineralogy and Petrology, 112: 317−339. doi: 10.1007/s00710-017-0544-9
[47] Kong H L, Li J C, Huang J, et al. 2015. Zircon U−Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron−polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 42(3): 521−533 (in Chinese with English abstract).
[48] Kong H L, Li J C, Li Y Z, et al. 2016. LA−MC−ICP−MS zircon U−Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron−polymetallic ore district in Qimantage Mountain, Qinghai Province[J]. Geologcal Science and Technology Information, 35(1): 8−16 (in Chinese with English abstract).
[49] Kou G C, Feng J W, Luo B, et al. 2017. Zircon U−Pb dating and geochemistry of the volcanic rocks from Maoniushan Formation in Amunike area, Qinghai Province, and its geological implications[J]. Geological Bulletin of China, 36(2/3): 275−284 (in Chinese with English abstract).
[50] Lee R G, Dilles J H, Tosdal R M, et al. 2017. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons[J]. Economic Geology, 112: 245−273. doi: 10.2113/econgeo.112.2.245
[51] Li C S, Zhang Z W, Li W Y, et al. 2015a. Geochronology, petrology and Hf–S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China. Lithos, 216/217: 224−240.
[52] Li J Q, Chen J, Shi Q R, et al. 2016. The genesis of porphyritic monzogranite of the Kaerqueka deposit in the East Kunlun: Evidence from zircon U–Pb dating and Sr–Nd isotopic compositions[J]. Journal of Mineralogy and Petrology, 36(3): 87−95 (in Chinese with English abstract).
[53] Li H M, Shi Y D, Liu Z G, et al. 2006. Geological features and origin of the Baigan Lake W−Sn deposit in the Ruoqiang area, East Kunlun Mountains, China[J]. Geological Bulletin of China, (2/3): 277−281 (in Chinese with English abstract).
[54] Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract).
[55] Li J D, Wang X Y, Zhu X Y, et al. 2019. The preliminary discussion of the Hercynian metallogenic period in Qimantag area−with the example of Niukutou lead and zinc deposit[J]. Mineral Exploration, 10(8): 1775−1783 (in Chinese with English abstract).
[56] Li K, Gao Y, Qian B, et al. 2015b. Geochronology, geochemical characteristics, and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, (3): 630−645 (in Chinese with English abstract).
[57] Li S, Suo Y, Li X, et al. 2018. Microplate tectonics: new insights from micro−blocks in the global oceans, continental margins and deep mantle[J]. Earth−Science Reviews, 185: 1029−1064. doi: 10.1016/j.earscirev.2018.09.005
[58] Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011
[59] Li S J, Sun F Y, Feng C Y, et al. 2008. Geochronological study on the Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province[J]. Acta Geologica Sinica, 82(7): 949−955 (in Chinese with English abstract).
[60] Li S Z, Zhao S J, Li X Y, et al. 2016. ProtoTehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity[J]. Acta Petrologica Sinica, 32(9): 2609−2627 (in Chinese with English abstract).
[61] Li S Z, Zhao S J, Yu S, et al. 2016. Proto−Tehtys Ocean in East Asia (Ⅱ): Affinity and assmbly of Early Paleozoic micro−continental blocks[J]. Acta Petrologica Sinica, 32(9): 2628−2644 (in Chinese with English abstract).
[62] Li W, Yang Z, Cao K, et al. 2019. Redox−controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 174: 12. doi: 10.1007/s00410-019-1546-x
[63] Li W Y. The Paleo−Tethys tectonic evolution and Corresponding Metallogenesis[J/OL]. Acta Geologica Sinica, 1−19 (in Chinese with English abstract).
[64] Li Z H, Cui F Y, Yang S T, et al. 2023. Key geodynamic processes and driving forces of Tethyan evolution[J]. Science China Earth Sciences, 53(12): 2701−2722 (in Chinese with English abstract).
[65] Liu J N, Feng C Y, He S Y, et al. 2017. Zircon U−Pb and phlogopite Ar−Ar ages of the monzogranite from Yemaquan iron−zinc deposit in Qinghai Province[J]. Geotectonica et Metallogenia, 41(6): 1158−70 (in Chinese with English abstract).
[66] Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224. doi: 10.1016/j.tecto.2005.02.007
[67] Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of mineralized and barren magmatic rocks for the pophryry−skarn deposits from the Qimantagh, East Kunlun: Based on machine learning and whole−Rock compositions[J]. Northwest Geology, 56(6): 41−56 (in Chinese with English abstract).
[68] Loucks R R, Fiorentini M L, Henríquez G J, 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology 61, egaa034.
[69] Lu J P, Li J, Qin X F, et al. 2005. The Yinieke'agan granite mass in Qimantag, eastern Kunlun and its tectonic significance[J]. Sedimentary and Tethyan Geology, (4): 46−54 (in Chinese with English abstract).
[70] Lv P R, Yao W G, Zhang H S, et al. 2020. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica, 94(8): 2291−2310 (in Chinese with English abstract).
[71] Mao J W, Zhou Z H, Feng C Y, et al. 2012. A preliminary study of the Triassic large−scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437−1471 (in Chinese with English abstract).
[72] McCarthy A, Chelle−Michou C, Müntener O, et al. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc[J]. Geology, 46: 1059−1062.
[73] Meng X, Kleinsasser J M, Richards J P, et al. 2021. Oxidized sulfur−rich arc magmas formed porphyry Cu deposits by 1.88 Ga[J]. Nature Communications, 12(1): 2189. doi: 10.1038/s41467-021-22349-z
[74] Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1−33. doi: 10.1016/j.jseaes.2012.12.020
[75] O'Neill H S C. 1987. Quartz−fayalite−iron and quartz−fayalite−magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4)[J]. American Mineralogist, 72(1/2): 67−75.
[76] Peng B, Sun F Y, Li B L, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits[J]. Ore Geology Reviews, 73: 13−28. doi: 10.1016/j.oregeorev.2015.10.014
[77] Qiao B, Pan T, Chen J. 2016. Geochronology, Geochemical characteristics, and geological significance of granodiorite in the Yemaquan iron polymetallic deposit of the East Kunlun, Qinghai Province[J]. Journal of Qinghai University (Natural Science Edition), (1): 63−73 (in Chinese with English abstract).
[78] Qu H Y, Feng C Y, Pei R F, et al. 2015. Thermochronology of the Hutouya skarn−type copper−lead−zinc polymetallic ore district in the Qimantage Area, Qinghai Province[J]. Acta Geologica Sinica, (3): 498−509 (in Chinese with English abstract).
[79] Qu H Y, Liu J N, Pei R F, et al. 2018. Thermochronology of the monzonitic granite related to the Hutouya Cu−Pb−Zn polymetallic deposit in Qiman Tage, Qinghai Province[J]. Geology in China, 45(3): 511−527 (in Chinese with English abstract).
[80] Richards J P, Şengör A C. 2017. Did Paleo−Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 45: 591−594.
[81] Richards J P, Spell T, Rameh E, et al. 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan[J]. Economic Geology, 107: 295−332. doi: 10.2113/econgeo.107.2.295
[82] Şengör A C. 1979. Mid−Mesozoic closure of Permo–Triassic Tethys and its implications[J]. Nature, 279: 590−593. doi: 10.1038/279590a0
[83] She, H Q, Zhang D Q, Jing X Y, et al. 2007. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai[J]. Geology in China, (2): 306−314 (in Chinese with English abstract).
[84] Shen P, Hattori K, Pan H, et al. 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace−Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt[J]. Economic Geology, 110: 1861−1878. doi: 10.2113/econgeo.110.7.1861
[85] Shi C, Li R, He S, et al. 2017. A study of the ore−forming age of the Hutouya deposit and its geological significance: Geochemistry and U−Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 36(6): 977−86 (in Chinese with English abstract).
[86] Shu Q, Chang Z, Lai Y, et al. 2019. Zircon trace elements and magma fertility: insights from porphyry (−skarn) Mo deposits in NE China[J]. Mineralium Deposita, 54(5): 645−656.
[87] Siégel C, Bryan S E, Allen C M, et al. 2018. Use and abuse of zircon−based thermometers: A critical review and a recommended approach to identify antecrystic zircons[J]. Earth−Science Reviews, 176: 87−116. doi: 10.1016/j.earscirev.2017.08.011
[88] Song S, Bi H, Qi S, et al. 2018. HP–UHP Metamorphic belt in the East Kunlun Orogen: final closure of the Proto−Tethys ocean and formation of the Pan−North−China continent[J]. Journal of Petrology, 59: 2043−2060. doi: 10.1093/petrology/egy089
[89] Song X Y, Yi J N, Chen L M, et al. 2016. The giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29
[90] Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U−Pb age of Yemaquan deep variscan granodiorite in Qimantage area, Eastern Kunlun and its significance[J]. Geoscience, 28(6): 1161−1169 (in Chinese with English abstract).
[91] Spakman W, Hall R. 2010. Surface deformation and slab–mantle interaction during Banda arc subduction rollback[J]. Nature Geoscience, 3: 562−566. doi: 10.1038/ngeo917
[92] Su H M, Che Y Y, Liu T, et al. 2024. Multiple generations of garnet and their genetic significance in the Niukutou cobalt−rich Pb−Zn−(Fe) skarn deposit, East Kunlun orogenic belt, western China[J]. Ore Geology Reviews, 106308.
[93] Tan S X, Guo T Z, Dong J S, et al. 2011. Geological characteristics and significance of the peraluminous granite in Late Silurian Epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University (Nature Science), 29(1): 36−43 (in Chinese with English abstract).
[94] Tang J X. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent majormetallogenic belts.[J]. Acta Petrologica Sinica, 35(3): 617−624 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.01
[95] Tang J X, Duoji, Liu H F, et al. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic Belt[J]. Acta Geoscientica Sinica, 33(4): 393−410.
[96] Tian C S, Feng C Y, Li H J, et al. 2013. 40Ar−39Ar geochronology of Tawenchahan Fe−Polymetallic deposit in Qimantag mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, (1): 169−176 (in Chinese with English abstract).
[97] Van Staal C R, Wilson R A, McClelland W. 2015. Discussion: Taconian orogenesis, sedimentation and magmatism in the southern Quebec−northern Vermont Appalachians: Stratigraphic and detrital mineral record of Iapetan suturing[J]. American Journal of Science, 315: 486−500. doi: 10.2475/05.2015.04
[98] Wang R, Weinberg R F, Collins W J, et al. 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth−Science Reviews, 181: 122−143. doi: 10.1016/j.earscirev.2018.02.019
[99] Wang B Z, Pan T, Ren H D, et al. 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U−Pb ages, lithogeochemistry and Hf isotopes of high−Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 28(1): 318−333 (in Chinese with English abstract).
[100] Wang G, Sun F Y, Li B L, et al. 2014b. Petrography, zircon U−Pb geochronology, and geochemistry of the mafic−ultramafic intrusion in the Xiarihamu Cu−Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).
[101] Wang R, Zhu D C, Wang Q, et al. 2020. Porphyry mineralization in the Tethyan orogen[J]. Scientia Sinica (Terrae), 50(12): 1919−1946 (in Chinese with English abstract). doi: 10.1360/SSTe-2019-0233
[102] Wang S, Feng C Y, Li S J, et al. 2009. Zircon sHRIMP U−Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage mountain, Qinghai Province, and its geological Implications[J]. Geology in China, 36(1): 74−84 (in Chinese with English abstract).
[103] Wang X Y, Wang S, Liu M, et al. Study on the chronology and trace element characteristics of skarn mineral in the Niukutou Deposit, Qimantag region, Qinghai Province[J/OL]. Earth Science Frontiers: 1−27 (in Chinese with English abstract).
[104] Wang Y. 2017. Study on the geological characteristics and enrichment regularities of mineralization of Hutouya copper−iron deposit, Qimantage, Qinghai Province[D]. Master Thesis of Jilin University: 1−58 (in Chinese with English abstract).
[105] Wang Z Z, Han B F, Feng C Y, et al. 2014. Geochronology and geochemistry of granites in the Baiganhu Area, Xinjiang, and their tectonic implications[J]. Acta Petrologica et Mineralogica, 33(4): 597−616 (in Chinese with English abstract).
[106] Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
[107] Wu X K, Meng F C, Xu H, et al. 2011. Zircon U−Pb Dating, Geochemistry, and Nd−Hf Isotopic Compositions of the Maxingdaban Late Triassic Granitic Pluton from Qimantag in the Eastern Kunlun[J]. Acta Petrologica Sinica, 27(11): 3380−3394 (in Chinese with English abstract).
[108] Wu Z C. 2017. Genesis and Exploration Prospect of the Bo Wu Porphyry Molybdenum Deposit in the East Kunlun Orogenic Belt[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[109] Xi R G, Xiao P X, Wu Y Z, et al. 2010. The geological significances, composition, and age of the monzonitic granite in the Kendekeke iron mine[J]. Northwestern Geology, 43(4): 195−202 (in Chinese with English abstract).
[110] Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60. doi: 10.1016/j.lithos.2015.07.018
[111] Xiao Y, Feng C Y, Liu J N, et al. 2013. M. LA−MC−ICP−MS zircon U−Pb dating and sulfur isotope characteristics of the Kendekeke Fe−polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 32(1): 177−186 (in Chinese with English abstract).
[112] Xin R C. 2024. Global Tethys tectonic domain and its spatiotemporal distribution[J/OL]. Sedimentary Geology and Tethyan Geology: 1−20 (in Chinese with English abstract).
[113] Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224. doi: 10.1007/s00710-011-0187-1
[114] Xu B. 2019. Chronology, Geochemistry, and Tectonic Setting of Late Triassic Igneous Rocks in the Ageteng Area, Qimantage, Qinghai[D]. Master Thesis of Jilin University:1−48 (in Chinese with English abstract).
[115] Xue N, An Y S, Li W F, et al. 2009. Characteristic and genesis of normal granite in the Yemaquan Area of Qinghai[J]. Journal of Qinghai University (Natural Science), 27(2): 18−22 (in Chinese with English abstract).
[116] Yan Y F, Yang X S, Chen F B, et al. 2012. Molybdenum containing granites in Lalingzaohuo of the East Kunlun resources and environment[J]. Resources and Environment, 18(4): 37−39 (in Chinese with English abstract).
[117] Yang T, Li Z M, Zhang L, et al. 2017. Geological and geochemical characteristics of the Tawenchahanxi granites in East Kunlun and its tectonic significance[J]. Geological Journal of China Universities, 23(3): 452−464 (in Chinese with English abstract).
[118] Yao L, Dong S Y, Lü Z C, et al. 2020. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt: Implications for the subduction of the Palaeo−Tethys Ocean and continent–continent collision[J]. Geological Journal, 55: 147−172 (in Chinese with English abstract). doi: 10.1002/gj.3340
[119] Yao L, Lü Z, Zhao C, et al. 2017. Zircon U–Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China[J]. Ore Geology Reviews, 91: 387−403. doi: 10.1016/j.oregeorev.2017.09.017
[120] Yao L. 2015. Petrogenesis of the Triassic Granitoids and Skarn Mineralization in the Qimantag Area, Qinghai Province, and Their Geodynamic Setting[D]. Doctoral Thesis of China University of Geosciences (Beijing): 1−175(in Chinese with English abstract).
[121] Yao L, Lv Z C, Zhao C S, et al. 2016a. Geochronological study of granitoids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin, 35(7): 1158−1169 (in Chinese with English abstract).
[122] Yao L, Lv Z C, Zhao C S, et al. 2016b. LA−ICP−MS zircon U−Pb dating of granitic rocks in the B zone of the Niukutou and Ka'erquka deposits, East Kunlun Qimantagh: implications for Devonian diagenesis and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169 (in Chinese with English abstract).
[123] Yin S, Ma C, Xu J. 2017. Geochronology, geochemical and Sr–Nd–Hf−Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai−Tibet Plateau: Implications for magmatic fractional crystallization and sub−solidus hydrothermal alteration[J]. Lithos, 294/295: 339−355. doi: 10.1016/j.lithos.2017.10.012
[124] Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168
[125] Yu M, Feng C Y, He S Y, et al. 2017. The Qimantagh Orogen as a window to the crustal evolution of the northern Tibetan Plateau[J]. Acta Geologica Sinica, 91: 703−723 (in Chinese with English abstract).
[126] Yu M. 2017. Geochemistry and zonation of the Galinge iron deposit, Qinghai Province[D]. Master Thesis of China University of Geosciences (Beijing): 106.
[127] Yu M, Feng C, Liu H, et al. 2015. 40Ar−39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, (3): 510−521 (in Chinese with English abstract).
[128] Yu S, Peng Y, Zhang J, et al. 2021. Tectono−thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto−Tethys Ocean[J]. Earth−Science Reviews, 215: 103547. doi: 10.1016/j.earscirev.2021.103547
[129] Yuan W M, Mo X X, Zhang A K, et al. 2017. Discovery of new porphyry belts in Eastern Kunlun Mountainsl Oinghai: Tibet Plateau[J]. Earth Science Frontiers, 24(6): 1−9 (in Chinese with English abstract).
[130] Zhang A, Mo X, Yuan W, et al. 2017a. Petrogensis and tectonic setting of the Yemaquan granite from the iron−polymetallic ore area of Qimantag, Eastern Kunlun Mountains, Qinghai–Tibet Plateau[J]. Island Arc, 26(4): e12190. doi: 10.1111/iar.12190
[131] Zhang J Y, Ma C Q, Xiong F H, et al. 2014. Early Paleozoic high−Mg diorite−granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break−off[J]. Lithos, 210: 129−146.
[132] Zhang L, Zhang H, Zhang S, et al. 2017b. Lithospheric delamination in post−collisional setting: evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China[J]. Lithos, 288: 20−34.
[133] Zhang A K, Liu G L, Feng C Y, et al. 2013. Geochemical Characteristics and Ore−Controlling Factors of the Hutouya Polymetallic Deposit, Qinghai Province[J]. Mineral Deposits, (1): 94−108 (in Chinese with English abstract).
[134] Zhang A S, Xie G Q, Liu W Y, et al. 2023. Identification of the first intermediate−sulfidation epithermal gold deposit in the Timok Metallogenic zone of Serbia, Western Tethys: A case study of the Zlatno Brdo gold deposit[J]. Geotectonica et Metallogenia, 47(5): 1110−1123 (in Chinese with English abstract).
[135] Zhang C Y, Zhao Y, Liu J, et al. 2019. Provenance analysis of the Maoniushan Formation in the North Qaidam basin and its tectonic significance[J]. Acta Geologica Sinica, 93(3): 712−723 (in Chinese with English abstract).
[136] Zhang X, Li Z, Jia Q, et al. 2016. Geochronology, geochemistry, and geological significance of granite porphyry in the Hutouya polymetallic deposit, Qimantage area, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 46(3): 749−765 (in Chinese with English abstract).
[137] Zhang Y L, Ni J Y, Shen Y X, et al. 2018. Zircon U−Pb ages and geological significance of volcanic rocks from Maoniushan Formation in the northern margin of Qaidam Basin[J]. Geoscience, 32(2): 329−334 (in Chinese with English abstract).
[138] Zhang Y, Zhang D M, Liu G Y, et al. 2017. M. Zircon U−Pb dating of porphyroid monzonitic granite in the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance[J]. Geological Bulletin of China, 36(2/3): 270−274 (in Chinese with English abstract).
[139] Zhang Z W, Wang Y L, Qian B, et al. 2017. Zircon SHRIMP U−Pb age of the Binggounan magmatic Ni−Cu deposit in East Kunlun Mountains and tectonic implications[J]. Acta Geologica Sinica, 91(4): 724−735 (in Chinese with English abstract).
[140] Zhang Z Y, Sun F Y, Wang Q, et al. 2019. Zircon U−Pb chronology and geochemical characteristics of Late Devonian granite porphyry in the Mohexiala silver polymetallic deposit of Eastern Kunlun, Qinghai[J]. Global Geology, 38(2): 309−321 (in Chinese with English abstract).
[141] Zhao C S, Yang F Q, Dai J Z. 2006. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J]. Mineral Deposits, 25: 427−430 (in Chinese with English abstract).
[142] Zhao S F, Wu Z S, Zhang A K, et al. 2014. Geological features, deposit genesis and prospecting potential of Changshan molybdenum deposit in Qimantage, Qinghai Province[J]. Northwestern Geology, 47(1): 179−187 (in Chinese with English abstract).
[143] Zhao Z Y. 2019. Mineralogy and Mineralization of the Skarn at the Niukutou Deposit, Qinghai[D]. Master Thesis of China University of Geosciences (Beijing)(in Chinese with English abstract).
[144] Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto−Tethys Ocean[J]. Lithos, 296/299: 181−194. doi: 10.1016/j.lithos.2017.10.019
[145] Zheng Z, Chen Y J, Deng X H, et al. 2016. Muscovite 40Ar/39Ar dating of the Baiganhu W−Sn orefield, Qimantag, East Kunlun Mountains, and its geological implications[J]. Geology in China, 43(4): 1341−1352 (in Chinese with English abstract).
[146] Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8
[147] Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews: 139.
[148] Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524
[149] Zhong S, Seltmann R, Qu H, et al. 2019. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method[J]. Mineralogy and Petrology, 113: 755−763. doi: 10.1007/s00710-019-00682-y
[150] Zhong S H. 2018. Genesis of the Weibao Cu−Pb−Zn deposit in Xinjiang, China[D]. Doctoral Thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).
[151] Zhou J, Feng C, Li D, et al. 2016. Geological, geochemical, and geochronological characteristics of Caledonian W–Sn mineralization in the Baiganhu orefield, southeastern Xinjiang, China[J]. Ore Geology Reviews, 75: 125−149. doi: 10.1016/j.oregeorev.2015.12.009
[152] Zhu J J, Hu R, Bi X W, et al. Porphyry Cu fertility of eastern Paleo−Tethyan arc magmas: Evidence from zircon and apatite compositions[J]. Lithos, 2022, 424: 106775.
[153] Zhu R X, Zhao P, Zhao L. 2022. Evolution and Dynamical Processes of the New Tethys Ocean[J]. Scientia Sinica (Terrae), 52(1): 1−25 (in Chinese with English abstract). doi: 10.1360/SSTe-2021-0147
[154] 白宜娜, 孙丰月, 钱烨, 等. 2016. 青海东昆仑尕林格铁多金属矿床辉石闪长岩U−Pb年代学及地球化学特征[J]. 世界地质, 35(1): 17−27. doi: 10.3969/j.issn.1004-5589.2016.01.003
[155] 陈博, 张占玉, 耿建珍, 等. 2012. 青海西部祁漫塔格山卡尔却卡铜多金属矿床似斑状黑云二长花岗岩LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 31(2/3): 463−468.
[156] 陈静, 胡继春, 逯永卓, 等. 2018. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 26(4): 465−472. doi: 10.11872/j.issn.1005-2518.2018.04.465
[157] 陈隽璐, 黎敦朋, 李新林, 等. 2024. 东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征[J]. 陕西地质, (2): 35−46.
[158] 丁林. 2024. 特提斯地球动力系统研究新进展 [J]. 中国科学: 地球科学, 54(3): 892−896.
[159] 杜立华, 黄宇, 高雄, 等. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束[J]. 地质通报, 44(4):633-648.
[160] 丰成友, 李东生, 屈文俊, 等. 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223−227. doi: 10.3969/j.issn.0254-5357.2009.03.006
[161] 丰成友, 李东生, 吴正寿, 等. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 43(4): 10−17.
[162] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.
[163] 丰成友, 王雪萍, 舒晓峰, 等. 2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 41(6): 1806−1817.
[164] 傅恒, 韩建辉, 孙煜新, 等. 2024. 特提斯造山带[J]. 沉积与特提斯地质, 44(1): 100−33.
[165] 高永宝, 李侃, 钱兵, 等. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re−Os和金云母Ar−Ar同位素定年约束[J]. 大地构造与成矿学, 42(1): 96−107.
[166] 高永宝, 李文渊, 李侃, 等. 2012. 东昆仑祁漫塔格白干湖-戛勒赛矿带成岩成矿时代及钨锡成矿作用[J]. 西北地质, 45(4): 229−241.
[167] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.
[168] 高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文.
[169] 耿健. 2023. 青海牛苦头矿区两期岩浆岩与成矿研究[D]. 中国地质大学(北京)硕士学位论文.
[170] 顾焱, 钱烨, 李予晋, 等. 2019. 东昆仑骆驼峰地区中晚三叠世花岗岩年代学、地球化学及构造意义[J]. 矿产勘查, 10(4): 724−736.
[171] 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.
[172] 郭通珍, 刘荣, 陈发彬, 等. 2011. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA−MC−ICPMS锆石U−Pb定年及地质意义[J]. 地质通报, 30(8): 1203−1211.
[173] 韩海臣, 王国良, 丁玉进, 等. 2018. 东昆仑巴音呼都森晚三叠世中酸性侵入岩锆石LA−ICP−MSU−Pb定年及地质意义[J]. 西北地质, 51(1): 144−158.
[174] 郝娜娜, 袁万明, 张爱奎, 等. 2014. 东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境[J]. 地质论评, 60(1): 201−215.
[175] 何书跃, 白国龙, 刘智刚, 等. 2025. 青海省成矿规律初探[J]. 地质通报, 44(4): 649-678.
[176] 何书跃, 李东生, 白国龙, 等. 2018. 青海祁漫塔格群力矿床矽卡岩中白云母40Ar/39Ar年龄报道[J]. 中国地质, 45(1): 201−202.
[177] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242. doi: 10.3969/j.issn.1001-1552.2009.02.007
[178] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16.
[179] 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, (2): 332−351.
[180] 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30−58.
[181] 黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J]. 地学前缘, 32(1): 388−400.
[182] 孔会磊, 李金超, 黄军, 等. 2015. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U−Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 42(3): 521−532.
[183] 孔会磊, 李金超, 栗亚芝, 等. 2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA−MC−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质科技情报, 35(1): 8−16.
[184] 寇贵存, 冯金炜, 罗保荣, 等. 2017. 青海阿木尼克山地区牦牛山组火山岩地球化学特征、锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(2/3): 275−284.
[185] 李洪茂, 时友东, 刘忠, 等. 2006. 东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J]. 地质通报, (2/3): 277−281.
[186] 李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017.
[187] 李积清, 陈静, 史青瑞, 等. 2016. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U−Pb年龄及Sr−Nd同位素制约[J]. 矿物岩石, 36(3): 87−95.
[188] 李加多, 王新雨, 祝新友, 等. 2019. 青海祁漫塔格海西期成矿初探——以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 10(8): 1775−1783.
[189] 李侃, 高永宝, 钱兵, 等. 2015. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 42(3): 630−645.
[190] 李三忠, 赵淑娟, 李玺瑶, 等. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 32(9): 2609−2627.
[191] 李三忠, 赵淑娟, 余珊, 等. 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 32(9): 2628−2644.
[192] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955.
[193] 李文渊. 2024. 古特提斯构造演化及其成矿作用[J]. 地质学报, 98(11): 3255−3273.
[194] 李忠海, 崔峰源, 杨舒婷, 等. 2023. 特提斯演化的关键动力学过程与驱动力[J]. 中国科学: 地球科学, 53(12): 2701−2722.
[195] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩-矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56.
[196] 刘建楠, 2018. 青海野马泉铁锌矿床多期次构造岩浆热年代学成矿意义[D]. 中国地质科学院博士学位论文
[197] 陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46−54. doi: 10.3969/j.issn.1009-3850.2005.04.008
[198] 刘云华, 莫宣学, 张雪亭, 等. 2006. 东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J]. 华南地质与矿产, 3: 31−36.
[199] 吕鹏瑞, 姚文光, 张辉善, 等. 2020. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 94(8): 2291−2310. doi: 10.3969/j.issn.0001-5717.2020.08.009
[200] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
[201] 乔保星, 潘彤, 陈静. 2016. 东昆仑野马泉铁多金属矿床花岗闪长岩年代学、地球化学特征及其地质意义[J]. 青海大学学报(自然科学版), 34(1): 63−73.
[202] 瞿泓滢, 丰成友, 裴荣富, 等. 2015. 青海祁漫塔格虎头崖多金属矿区岩体热年代学研究[J]. 地质学报, 89(3): 498−509.
[203] 瞿泓滢, 刘建楠, 裴荣富, 等. 2018. 青海祁漫塔格成矿带与虎头崖铜铅锌多金属矿床有关的二长花岗岩体热年代学研究[J]. 中国地质, 45(3): 511−527.
[204] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, (2): 306−314. doi: 10.3969/j.issn.1000-3657.2007.02.013
[205] 时超, 李荣社, 何世平, 等. 2017. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U−Pb年龄证据[J]. 地质通报, 36(6): 977−986.
[206] 宋泰忠, 赵海霞, 张维宽, 等. 2010. 祁漫塔格地区十字沟蛇绿岩地质特征[J]. 西北地质, 43(4): 124−133.
[207] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169.
[208] 谈生祥, 郭通珍, 董进生, 等. 2011. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 29(1): 36−43.
[209] 唐菊兴, 多吉, 刘鸿飞, 等. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393−410. doi: 10.3975/cagsb.2012.04.02
[210] 唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 35(3): 617−624. doi: 10.18654/1000-0569/2019.03.01
[211] 田承盛, 丰成友, 李军红, 等. 2013. 青海它温查汉铁多金属矿床40Ar−39Ar年代学研究及意义[J]. 矿床地质, 32(1): 169−176. doi: 10.3969/j.issn.0258-7106.2013.01.012
[212] 汪洋. 2017. 青海祁漫塔格虎头崖铜铁多金属矿床地质特征及矿化富集规律研究[D]. 吉林大学硕士学位论文.
[213] 王秉璋, 潘彤, 任海东, 等. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U−Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘, 28(1): 318−333.
[214] 王富春, 陈静, 谢志勇, 等. 2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re−Os同位素定年[J]. 中国地质, 40(4): 1209−1217.
[215] 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.
[216] 王瑞, 朱弟成, 王青, 等. 2020. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 50(12): 1919−1946.
[217] 王松, 丰成友, 李世金, 等. 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U−Pb测年及其地质意义[J]. 中国地质, 36(1): 74−84. doi: 10.3969/j.issn.1000-3657.2009.01.005
[218] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81. doi: 10.12401/j.nwg.2023191
[219] 王新雨, 王书来, 刘明, 等. 2024. 青海省祁漫塔格牛苦头铅锌矿床年代学与矿物微量元素特征研究[J/OL]. 地学前缘: 1−27. https://doi.org/10.13745/j.esf.sf.2024.11.27.
[220] 王增振, 韩宝福, 丰成友, 等. 2014. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 33(4): 597−616. doi: 10.3969/j.issn.1000-6524.2014.04.001
[221] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01
[222] 吴祥珂, 孟繁聪, 许虹, 等. 2011. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd−Hf同位素组成[J]. 岩石学报, 27(11): 3380−3394.
[223] 吴宗昌. 2017. 东昆仑造山带拉陵灶火中游博武斑岩钼矿成因与找矿潜力[D]. 中国地质大学(北京)硕士学位论文.
[224] 奚仁刚, 校培喜, 伍跃中, 等. 2010. 东昆仑肯德可克铁矿区二长花岗岩组成、年龄及地质意义[J]. 西北地质, 43(4): 195−202. doi: 10.3969/j.issn.1009-6248.2010.04.023
[225] 肖晔, 丰成友, 刘建楠, 等. 2013. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 32(1): 177−186. doi: 10.3969/j.issn.0258-7106.2013.01.013
[226] 辛仁臣. 2024. 全球特提斯构造域及其时空分布[J/OL]. 沉积与特提斯地质, 1−20. https://doi.org/10.19826/j.cnki.1009-3850.2024.10002.
[227] 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文.
[228] 薛宁, 安勇胜, 李五福, 等. 2009. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 27(2): 18−22.
[229] 严玉峰, 杨雪松, 陈发彬, 等. 2012. 东昆仑-拉陵灶火中游含钼花岗岩的特征[J]. 中国科技信息, (18): 37−39.
[230] 杨金中, 沈远超, 李光明, 等. 1999. 新疆东昆仑鸭子泉蛇绿岩的基本特征及其大地构造意义[J]. 现代地质, (3): 309−314.
[231] 杨涛, 李智明, 张乐, 等. 2017. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 23(3): 452−464.
[232] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011
[233] 姚磊. 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 中国地质大学(北京)博士学位论文.
[234] 于淼. 2017. 青海祁漫塔格尕林格矽卡岩铁多金属矿成矿机理研究[D]. 中国地质大学(北京)博士学位论文.
[235] 于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521.
[236] 于淼, 丰成友, 何书跃, 等. 2017. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 91(4): 703−723. doi: 10.3969/j.issn.0001-5717.2017.04.001
[237] 袁万明, 莫宣学, 张爱奎, 等. 2017. 青海省东昆仑斑岩带新发现[J]. 地学前缘, 24(6): 1−9.
[238] 张爱奎, 刘光莲, 丰成友, 等. 2013. 青海虎头崖多金属矿床地球化学特征及成矿-控矿因素研究[J]. 矿床地质, 32(1): 94−108. doi: 10.3969/j.issn.0258-7106.2013.01.006
[239] 张安顺, 谢桂青, 刘文元, 等. 2023. 特提斯成矿域西部塞尔维亚Timok矿集区首例中硫化型浅成低温金矿床的厘定: 以Zlatno Brdo金矿床为例[J]. 大地构造与成矿学, 47(5): 1110−1123.
[240] 张斌武. 2022. 青海祁漫塔格虎头崖铁铜铅锌多金属矿床磷灰石特征及其地质意义[D]. 中南大学硕士学位论文.
[241] 张春宇, 赵越, 刘金, 等. 2019. 柴达木盆地北缘牦牛山组物源分析及其构造意义[J]. 地质学报, 93(3): 712−723. doi: 10.3969/j.issn.0001-5717.2019.03.015
[242] 张雷. 2013. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 中国地质大学(北京)博士学位论文.
[243] 张晓飞, 李智明, 贾群子, 等. 2016. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 46(3): 749−765.
[244] 张耀玲, 倪晋宇, 沈燕绪, 等. 2018. 柴北缘牦牛山组火山岩锆石U−Pb年龄及其地质意义[J]. 现代地质, 32(2): 329−334.
[245] 张勇, 张大明, 刘国燕, 等. 2017. 东昆仑卡而却卡铜多金属矿床似斑状二长花岗岩锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(Z1): 270−274. doi: 10.3969/j.issn.1671-2552.2017.02.010
[246] 赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J]. 矿床地质, 25(S1): 427−430.
[247] 赵淑芳, 吴正寿, 张爱奎, 等. 2014. 青海祁漫塔格长山钼矿地质特征、矿床成因及找矿前景[J]. 西北地质, 47(1): 179−187. doi: 10.3969/j.issn.1009-6248.2014.01.016
[248] 赵子烨. 2019. 青海牛苦头矿床矽卡岩矿物学及成矿作用研究[D]. 中国地质大学(北京)硕士学位论文.
[249] 郑震, 陈衍景, 邓小华, 等. 2016. 东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J]. 中国地质, 43(4): 1341−1352. doi: 10.12029/gc20160419
[250] 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.
[251] 朱日祥, 赵盼, 赵亮. 2022. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 52(1): 1−25.
-