Metallogenic system and metallogenic model of Triassic porphyry deposits in the East Kunlun orogenic belt
-
摘要:
研究目的 古特提斯构造演化在东昆仑造山带引发了重要的斑岩岩浆-成矿作用,形成了复杂多样的矿化类型和丰富的矿产资源,目前,尚未对斑岩成岩成矿时代、成矿特征开展系统的梳理和总结。为提高对东昆仑地区斑岩型矿床成矿系统及成矿模式的认识,
研究方法 在收集前人资料的基础上,进行了致矿斑岩、斑岩型矿床时空分布、成矿类型及成矿规律总结,以及古特提斯构造演化与斑岩成矿过程关系研究。
研究结果 东昆仑地区致矿斑岩及斑岩型矿床处于昆北岩浆弧和昆中岩浆弧,形成时代集中在236~218 Ma之间,主要形成了斑岩型铜矿、斑岩型钼矿、斑岩型铜钼矿、斑岩型铜金矿、斑岩型铜锡矿5种类型,已发现的矿体主要产于斑岩体顶部或边部不同方向的次级构造破碎带内,断裂构造是最主要的控矿因素。与斑岩成矿系统有关的矿化类型包括斑岩型、矽卡岩型、隐爆角砾岩型和浅成低温热液脉型,其中,浅成低温热液脉型银铅锌矿规模常达到大型—超大型。
结论 研究认为,同碰撞造山早期俯冲板片断离引起软流圈地幔上涌,诱发富集地幔的局部熔融和后碰撞伸展阶段岩石圈拆沉引起软流圈上涌,底侵的幔源岩浆将大量成矿物质带入地壳,使被流体交代发生富集作用的新生下地壳重熔,是诱发斑岩矿床成矿最主要的动力学背景。据此建立了与中—酸性斑岩岩浆侵入活动有关的斑岩型-矽卡岩型-隐爆角砾岩型-浅成低温热液脉型矿床深部成矿动力学模型和浅部成矿模式。
Abstract:Objective The PaleoTethys tectonic evolution triggered important porphyry magma−mineralization in the East Kunlun orogenic belt, resulting in strong magmatic activity, complex and diverse mineralization types and endowment mineral resources. At present, a systematic review and summary of the diagenetic and mineralization ages and mineralization characteristics of porphyry have not yet been carried out.In order to enhance our understanding of the mineralization system and mineralization model of porphyry−type deposits in the Eastern Kunlun area.
Methods On the basis of collecting previous data, this paper summarizes the spatial and temporal distribution, metallogenic types and metallogenic rules of ore−producing porphyry and porphyry type deposits, and studies the evolution of paleo−Tethys structure and porphyry mineralization process.
Results The ore−producing porphyry and porphyry deposits in East Kunlun area are located in the northern and central Quinqueinian magmatic arcs, and their ages are concentrated between 218 Ma and 236 Ma. Mainly formed porphyry Cu, porphyry Mo, porphyry Cu−Mo, porphyry Cu−Au, porphyry Cu−Sn deposit five types, the discovered ore bodies are mainly located in the top or side of the porphyry tectonic belt, the structure is the most important ore−controlling factor, the size of the porphyry−related low−temperature vein type Ag−Pb−Zn mineralization often reaches large−super large.
Conclusions It is considered that the most important dynamic background for the mineralization of porphyry deposits is the partial melting of mantle enrichment induced by asthenosphere mantle upgassing caused by subduction plate fragmentation in early cocollision orogeny and the partial melting of new crust and thickened lower crust induced by asthenosphere upgassing in post−collision extension stage. The metallogenic model of porphyry type, skarn type, cryptoexplosive breccia type and epithermal vein typedeposit was established.
-
Key words:
- porphyry deposit /
- metallogenic regularity /
- metallogenic system /
- metallogenic model /
- Triassic period /
- East Kunlun
-
-
图 1 构造单元划分图(a)和东昆仑斑岩矿床地质矿产图(b)(据潘彤等,2021修改)
Figure 1.
图 3 哈日扎斑岩型铜矿(据马忠元等,2023a修改)
Figure 3.
图 4 清水河东沟斑岩型钼矿(据马忠元等,2024d)
Figure 4.
图 5 埃坑德勒斯特斑岩型铜钼矿(据湛守智等,2013修改)
Figure 5.
图 6 乌兰乌珠尔-十字嵩斑岩型铜锡矿(据马忠元等,2024a修改)
Figure 6.
图 7 托克妥斑岩型铜-金矿(据郑建华和东寿山,2014修改)
Figure 7.
表 1 东昆仑斑岩型矿床特征
Table 1. Characteristics of porphyry deposits in East Kunlun
编号 位置 矿床规模 矿化类型 赋矿围岩 围岩蚀变 致矿斑岩/
含矿脉成矿年龄 参考文献 1 哈日扎 大型 斑岩Cu
热液脉型Ag、Pb、Zn、Au
矽卡岩型Fe、Cu凝灰岩、黑云斜长片麻岩、似斑状
二长花岗岩、花岗闪长岩深部有面型蚀变特征,上部绿帘石化、绿泥
石化,下部高岭石化、绢云母化,底部硅化、
绢云母化花岗斑岩 222.5±
1.0 Ma马忠元等, 2024a 2 那更康切尔沟 超大型 斑岩Cu
热液脉型Ag、Pb片麻岩、片岩、斜长花岗岩、花岗
闪长岩、似斑状二长花岗岩、
构造角砾岩无面型蚀变特征,具黄铁矿化、硅化、碳酸
盐化、绢云母化、高岭土化、绿泥石化、绿
帘石化、褐铁矿化、软锰矿化石英脉 217.6 Ma Fan et al., 2021 花岗斑岩 219.8±
1.1 Ma马忠元等, 2024a 3 哈陇休玛 中型 斑岩Mo
热液脉型Cu黑云斜长片麻岩、斜长花岗岩、
碎裂状花岗斑岩深部有面型蚀变特征,由斑岩体向外依次为
钾化带、硅化带、绢英岩化带和青磐岩化带花岗闪长斑岩 224.68±
0.88 Ma鲁海峰等, 2017 石英脉 223.5±
1.3 Ma4 肉早某日-各
玛龙中型 斑岩Cu
隐爆角砾岩型Cu
热液脉型Ag、Pb、Zn、Au二长花岗岩、似斑状花岗闪长岩、英云闪长岩、花岗闪长岩 深部有面型蚀变特征,由外部向中心依次具
高岭土化带、青磐岩化带、泥化带、黄铁绢
英岩化带、钾化带的蚀变分带特征花岗斑岩 225.5±
1.7 Ma雷延利等,2024 5 加当根 小型 斑岩Cu−Mo 流纹岩、英安岩、凝灰岩、
花岗闪长岩有面型蚀变特征,内带为钾化,中带为硅化
和绢云母化,外带为青磐岩化花岗闪长斑岩 225±
1.5 Ma2015 227.2±
1.9 Ma6 热水 小型 斑岩Mo 二长花岗斑岩、似斑状黑云母
二长花岗岩无面型蚀变特征,具钾长石化、硅化、绢云
母化及黄铁矿化石英脉 228.6±
7.9 Ma国显正等, 2016 二长花岗斑岩 230.9±
1.4 Ma7 多龙恰柔 小型 斑岩Mo 二长花岗岩、花岗闪长岩 无面型蚀变特征,矿体或矿化带中主要为钾
化-硅化蚀变,矿化带外部主要为绢英岩化-
绿泥石化石英脉 235.9±
1.4 Ma国显正, 2021 二长花岗斑岩 236.8±
1.8 Ma国显正, 2021 8 清水河东沟 小型 斑岩Mo 英云闪长岩、英云闪长斑岩、辉绿纷岩 无面型蚀变特征,具硅化、绿泥石化、绢云
母化、高岭土化二长花岗斑岩 226.9±
1.3 Ma本课题组
测试数据9 益克郭勒 小型 斑岩Cu−Mo 闪长岩、英云闪长岩 深部有面型蚀变特征,由外部向中心依次具
青磐岩化带、硅化+钾化带、黄铁矿化带、
钾化带的蚀变分带特征二长花岗斑岩 222.9±
1.3 Ma郑振华等, 2022 10 托克妥 小型 斑岩Cu−Au 隐爆角砾岩、花岗闪长岩 有面型蚀变特征,从矿体中心向外,依次为硅化带、钾化带、青磐岩化带和次生氧化富集带 二长花岗斑岩 232.49±
0.93 Ma夏锐等, 2014 花岗闪长斑岩 232.6±1.2 Ma 11 下得波利 小型 斑岩Cu−Mo 中细粒花岗岩、流纹岩 有面型蚀变特征,主要有硅化、钾长石化、绢云母化、高岭土化、石膏化等 花岗斑岩 244.2±
2.1 Ma刘建楠等, 2012 12 埃坑德勒斯特 小型 斑岩Cu−Mo 花岗斑岩 242±
1.2 Ma张雪亭, 2017 13 扎玛休玛 小型 斑岩Cu
热液脉型Cu、Pb、Zn凝灰岩、安山岩、二长花岗
岩、正长花岗岩无面型蚀变特征,具硅化、绿帘石化、云英岩化、高岭土化等 花岗闪长斑岩 229.5±
1.3 Ma林艳海等, 2021 14 长山 小型 斑岩Mo
矽卡岩型Fe、Pb、Zn似斑状二长花岗岩、碎屑岩、
凝灰岩无面型蚀变特征,具硅化、钾化、绿泥石化、绿帘石化、碳酸盐化、蛇纹石化 二长花岗斑岩 228±
1 Ma丰成友等, 2010 15 拉陵高里河沟脑 小型 斑岩Mo
矽卡岩型Fe、Cu正长花岗岩、二长花岗岩 无面型蚀变特征,具钾化、孔雀石化、青磐岩化 花岗闪长斑岩 231.1±
1.2 Ma刘建栋等, 2023 16 莫河下拉 小型 斑岩Cu
热液脉型Ag、Pb、Zn、Au花岗斑岩 无面型蚀变特征,硅化、绢英岩化、绢云母化和碳酸盐化 花岗斑岩 222±
1 Ma许庆林, 2014 17 家琪式 小型 斑岩Mo−Cu
热液脉型Ag、Pb、Zn花岗闪长岩、二长花岗岩 无面型蚀变特征,钾化、孔雀石化 花岗斑岩 18 克停哈尔 小型 斑岩Cu
隐爆角砾岩型Pb、Zn粒花岗闪长岩、闪长岩、蚀
变闪长玢岩、二长花岗岩地表有面型蚀变特征,硅化、褐铁矿化、高岭土化、绿泥石化 花岗闪长斑岩 218±
2 Ma顾焱, 2019 19 鸭子沟 小型 斑岩Cu-Mo 花岗闪长岩、大理岩 无面型蚀变特征,具透辉石、绿泥绿帘石矽卡岩化、石榴子石化 钾长花岗斑岩 224.7±
3.4 Ma何书跃等, 2009 224.0±
1.6 Ma李世金等, 2008 20 乌兰乌珠尔-十字嵩 大型 斑岩Cu−Sn
热液脉型Ag、Pb、Zn似斑状二长花岗岩、
二长花岗岩地表有面型蚀变特征,由北北东到南南西的总体分带为:硅化带→似千枚岩化带→钾化-黑云母化带→泥化带 花岗斑岩 212.3±
1.8 Ma本课题组测试数据 215.1±
4.5 Ma佘宏全等, 2007 21 卡而却卡 大型 斑岩Cu
矽卡岩型Cu、Mo、Zn
隐爆角砾岩型Pb、Zn
热液脉型Cu、Pb、Zn、Au花岗闪长岩、似斑状黑云母
二长花岗岩、滩间山群深部有面型蚀变特征,斑岩为中心向外呈长椭圆状分布,中部为钾硅化带,南侧为黄铁似千枚岩化带 花岗闪
长斑岩219. 2±
1.0 Ma李东生等, 2010 -
[1] Cookedr D R, Hollingsp D, Walsheji J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801−818. doi: 10.2113/gsecongeo.100.5.801
[2] Chen J J, Wei J H, Fu L B, et al. 2017. Multiple sources of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction[J]. Lithos, 292/293: 161−178. doi: 10.1016/j.lithos.2017.09.006
[3] Catherine M M, Dawn A K, Tony B, et al. 2024. Tracking the porphyry−epithermal mineralization transition using U−Pb carbonate dating[J]. Geology, 52(9): 723−728. doi: 10.1130/G52211.1
[4] Chen H W, Luo Z H, Mo X X, et al. 2005. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China, 32(3): 386−395(in Chinese with English abstract).
[5] Cai H J, Zhang J M, Zhang Q L. 2016. Age and geological implications of Shasongwula Rapakivi granite in East Kunlun Mountains[J]. Northwestern Geology, 49(4): 62−72(in Chinese with English abstract).
[6] Deng J, Wang Q F, Li G J. 2016. Superimposed orogeny and composite metallogenic system: Case study from the Sanjiang Tethyan belt[J]. Acta Petrologica Sinica, 32(8): 2225−2247(in Chinese with English abstract).
[7] Fan X Z, Sun F Y, Xu C H, et al. 2021. Genesis of Harizha Ag−Pb−Zn deposit in the eastern Kunlun Orogen, NW China: Evidence of fluid inclusions and C−H−O−S−Pb isotopes[J]. Resource Geology, 71(3): 177−201.
[8] Feng C Y, Li D S, Wu Z S, et al. 2010. Major Types, Time−Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 43(4): 10−17(in Chinese with English abstract).
[9] Feng K, Li R B, Pei X Z, et al. 2022. Zircon U−Pb chronology, geochemistry and geological significance of Late Triassic intermediate−acid volcanic rocks in Boluositai area, East Kunlun Orogenic Belt[J]. Earth Science, 47(4): 1194−1216(in Chinese with English abstract).
[10] Gao Y F, Santosh, Wei R H, et al. 2013. Origin of high Sr/Y magmas from the northern Taihang Mountains: Implications for Mesozoic porphyry copper mineralization in the North China Craton[J]. Journal of Asian Earth Sciences, 78: 143−159. doi: 10.1016/j.jseaes.2012.10.040
[11] Gu Y, Qian Y, Li Y J, et al. 2019. Geochronology, geochemistry and tectonic significance of Middle and Late Triassic granites in the Luotuofeng area, East Kunlun[J]. Mineral Exploration, (4): 724−736(in Chinese with English abstract).
[12] Guo X Z. 2021. The intermediate−acid magmatism and polymetallic mineralization in East Kunlun, Paleo−Tethys[D]. Doctoral Thesis of China University of Geosciences: 147−193(in Chinese with English abstract).
[13] Guo X Z, Jia Q Z, Zhen Y Y, et al. 2016. Re−Os isotopic dating of molybdenite from Reshui molybdenum polymetallic deposit in the East Kunlun and its geological significance[J]. Acta Geologica Sinca, 90(10): 2818−2829(in Chinese with English abstract).
[14] Gu R P, Bu A, Chen S Q. 2009. Geological characteristics and prognosis of prospects of Jinkeng Cu−Sn−Pb−Zn deposit, Jiexi County, Guangdong Province[J]. Resource Survey and Environment, 30(2): 109−114(in Chinese with English abstract).
[15] Hao N N. 2016. Magmatism and metallogeny in the East Kunlun Orogenic Belt[D]. Doctoral Thesis of China University of Geosciences(Beijing): 38−185(in Chinese with English abstract).
[16] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of “Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16(in Chinese with English abstract).
[17] He S Y, Li D S, Li L L, et al. 2009. Re-Os Age of molybdenite from the Yazigou Copper (Molybdenum) mineralized area in Eastern Kunlun of Qinghai Province, and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).
[18] Hou Z Q, Zhou Y, Wang R, et al. 2017. Recycling of metal−fertilized lower continental crust: origin of non−arc Au−rich porphyry deposits at cratonic edges[J]. Geology, 45(6): 563−566. doi: 10.1130/G38619.1
[19] Hu Y D. 2007. Geological characteristics and mineralizing perspective evaluation of Wulanwuzhuer copper deposit in the Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Master Thesis of Jilin University: 83−147(in Chinese with English abstract).
[20] Lei Y L. 2024. Preliminary exploration report of the Gemalong silver polymetallic deposit, Dulan County, Qinghai Province[R]. The Second Geological Exploration Institute of Nonferrous Metals of Qinghai Province:11-57 (in Chinese).
[21] Li B L, Zhi Y B, Zhang L, et al. 2015. U−Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu−(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J]. Ore Geology Reviews, 67: 1−10. doi: 10.1016/j.oregeorev.2014.11.008
[22] Li D S, Zhang Z Y, Su S S, et al. 2010. Geological characteristics and genesis of the Kaerqueka copper molybdenum deposit in Qinghai Province[J]. Northwestern Geology, 43(4): 239−244(in Chinese with English abstract).
[23] Li Z C, Pei X Z, Bons P D, et al. 2022. Petrogenesis and tectonic setting of the Early−Middle Triassic subduction−related granite in the eastern segment of East Kunlun: Evidences from petrology, geochemistry, and zircon U−Pb−Hf isotopes[J]. International Geology Review, 64(5/6): 698−721.
[24] Li W, Liu Y L, Li W J, et al. 2024. Ore−forming age and material sources of the North Santonggou manganese deposit in East Kunlun of Qinghai: Constrained by Re−Os isotopic chronology and geochemistry[J]. Acta Petrologica Sinica, 40(4): 1231−1248(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.04.11
[25] Li X K, Yuan Y B, Liu X F. 2013. LA−(MC)−ICP−MS U−Pb dating of zircon with quartz porphyry in Yejiwei porphyry copper−tin deposit in Dongpo mine, Hunan Province[C]//Geological Society of China Youth Working Committee. Proceedings of the First National Youth Geological Congress: 200−201(in Chinese with English abstract).
[26] Li S J, Sun F Y, Feng C Y, et al. 2008. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinhai Province[J]. Acta Geologica Sinca, (7): 949−955(in Chinese with English abstract).
[27] Lin Y H, Li J Q, Wang M, et al. 2021. LA−ICP−MS U−Pb zircon dating and geological significance of ore−bearing granodiorit porphyry in Zamaxiuma area, East Kunlun[J]. Mineralogy and Petrology, 41(3): 29−39(in Chinese with English abstract).
[28] Liu J D, Zhang K, Wang B Z, et al. 2023. U−Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains[J]. Geological Review, 69(4): 1525−1542(in Chinese with English abstract).
[29] Liu J N, Feng C Y, Qi F, et al. 2012. SIMS zircon U−Pb dating and fluid inclusion studies of Xiadeboli Cu−Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 28(2): 679−690(in Chinese with English abstract).
[30] Liu Z Q. 2011. Study on the geological characteristics and tectonic of Buqingshan melanges belt, the south margin of East Kunlun Mountains[D]. Doctoral Thesis of Changan University: 141−149(in Chinese with English abstract).
[31] Lu H F, Yang Y Q, He J, et al. 2017. Zircon U−Pb age dating for granodiorite porphyry and molybdrnote Re−Os isotope dating of Halongxiuma molybdenum(Tungstem) deposhin the east Kunlun area and its geological significance[J]. Mineralogy and Petrology, 37(2): 33−39(in Chinese with English abstract).
[32] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and crustal growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414(in Chinese with English abstract).
[33] Ma Z Y, Zhang A K, Li J, et al. 2023a. Porphyry−hydrothermal metallogenic characteristics and prospecting prospect of Harizha deposit in East Kunlun[J]. Xinjiang Geology, 41(4): 538−546(in Chinese with English abstract).
[34] Ma Z Y, Zhang A K, Li J, et al. 2023b. Study on the occurrence status of silver polymetallic minerals in the V−belt of Harizha deposit in East Kunlun[J]. Journal of Qinghai University, 41(6): 78−87(in Chinese with English abstract).
[35] Ma Z Y, Chai J X, Zhang A K, et al. 2024a. Geochronology, geochemistry and petrogenesis of the Harizha−Nagengkangqieer granites in the East Kunlun Orogen[J]. Earth Science, 49(5): 1778−1792 (in Chinese with English abstract).
[36] Ma Z Y, Li J, Zhao J P, et al. 2024b. Discussion on genesis of Wulanwuzhuer−Shizisong Ag−polymetallic deposit in east Kunlunshan area[J]. Contributions to Geology and Mineral resources Research, 39(2): 160−168(in Chinese with English abstract).
[37] Ma Z Y, Li J, Lu D J, et al. 2024c. Prospecting practice of porphyry−hydrothermal metallogenic system in East Kunlun: A case study of the Wulanwuzhuer−Shizisong deposit[J]. Geology and Exploration, 60(4): 700−711(in Chinese with English abstract).
[38] Ma Z Y, Zhang Y, Li J, et al. 2024d. Discussion on metallogenic model of Qingshuihedonggou Mo deposit in East Kunlun area[J]. Contributionsto Geology and Mineral Resources Research, 39(3): 293−300(in Chinese with English abstract).
[39] Pan T, Wang B Z, Zhang A K. 2019. Metallogenic series and prospecting prediction in north and south margin of Qaidam Basin[M]. Wuhan: China University of Geosciences Press: 11−174(in Chinese with English abstract).
[40] Pan T, Xue W W, Wang G R, et al. 2021. Geology mineral resources of Qinghai province[M]. Beijing: Geologi-cal Publishing House: 7−34(in Chinese with English abstract).
[41] Richards. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 6(11): 911−916. doi: 10.1038/ngeo1920
[42] She H Q, Zhang D Q, Jing X Y, et al. 2007. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai[J]. Geology in China, 34(2): 306−314.
[43] Shao F L, Niu Y L, Liu Y, et al. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J]. Lithos, 282: 33−44.
[44] Seedorff E, Dilles J H, Proffett J M. 2005. Porphyry detposits characetristics and origin of hypogene features[J]. Economic Geology, 100th Anniversary Volume: 251−298.
[45] The Editorial Board of the Geological Atlas of Qinghai Province. 2021. Mineral Geology of China · Qinghai Volume · Popular Edition[M]. Beijing: Geological Publishing House: 7−34.
[46] Wang H, Feng C Y, Li R X, et al. 2018. Geological characteristics, metallogenesis, and tectonic setting of porphyry–skarn Cu deposits in East Kunlun Orogen[J]. Geological Journal, 53: 58−76.
[47] Wang Y D, Li S H. 2023. Deep prospecting potential analysis of Yikeguole porphyry molybdenum deposit in Qinghai[J]. Minerals resources and geology, 37(4): 794−805(in Chinese with English abstract).
[48] Wang R, Zhu D C, Wang Q, et al. 2020. Porphyry mineralization in the Tethyan orogen[J]. Science China: Earth Sciences, 63(12): 2042−2067(in Chinese with English abstract). doi: 10.1007/s11430-019-9609-0
[49] Xiong F H, Ma C Q, Zhang J Y, et al. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I−type granitoids in the East Kunlun Orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 171(6): 847−863. doi: 10.1144/jgs2013-038
[50] Xia R, Deng J, Qing M, et al. 2017. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust−mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews, 90: 1099−1117.
[51] Xia R, Qing M, Wang C M, et al. 2014. The genesis of the ore−bearing porphyry of the Tuoketuo porphyry Cu−Au (Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U−Pb geochronological and geochemistry[J]. Journal of Jilin University: Earth Science Edition, 44(5): 1502−1524(in Chinese with English abstract).
[52] Xu Q L, Sun F Y, Li B L, et al. 2014. Geochronological dating, geochemical characteristics and tectonic setting of the granite−porphyry in the Mohexiala silver polymetallic deposit, eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 38(2): 421−433(in Chinese with English abstract).
[53] Xu Q L. 2014. Study on mineralization of porphyry deposits in the East Kunlun Orogenic Belt, Qinghai Province[D]. Doctoral Thesis of Jilin University: 88−152(in Chinese with English abstract).
[54] Yue Y G, Dong Y P, Sun S S, et al. 2022. Mafic−ultramafic rocks in the Buqingshan Complex of the East Kunlun Orogen, northern Tibetan Plateau: Remnants of the Paleo−Tethys Ocean[J]. International Geology Review, 64(22): 1−22.
[55] Yuan W M, Mo X X, Zhang A K, et al. 2017. Discovery of new porphyry belts in Eastern Kunlun Mountains[J]. Earth Science Frontiers, 24(6): 1−9(in Chinese with English abstract).
[56] Yin H F, Zhang K X. 1997. Characristics of the eastern Kunlun orogenic belt[J]. Earth Sience−Journal of China University of Geosciences, 22(4): 339−342(in Chinese with English abstract).
[57] Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002
[58] Zhang J Y, Yang Z B, Zhang H, et al. 2017a. Controls on the formation of Cu−rich magmas: Insights from the Late Triassic post−collisional Saishitang complex in the eastern Kunlun Orogen, western China[J]. Lithos, 278/281: 400−418. doi: 10.1016/j.lithos.2017.02.008
[59] Zhang H R, Hou Z Q, Yang Z M. 2010. Metallogenesis and geodynamics of Tethyan metallogenic domain: A review[J]. Mineral Deposits, 29(1): 113−133(in Chinese with English abstract).
[60] Zhang D M, Zhang A K, Qu G J, et al. 2020. Metallogenic and prospecting model of Kaerqueka iron−copper polymetallic deposit in western segment of Eastern Kunlun[J]. Northwestern Geology, 53(1): 91−106(in Chinese with English abstract).
[61] Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularities and exploration directions of strategic metallic minerals around the Qaidam Basin[J]. Earth Science Frontiers, 31(3): 260−283(in Chinese with English abstract).
[62] Zheng Z H, Zhang Q S, He L, et al. 2022. LA−ICP−MS zircon U−Pb dating of Yikeguole intrusive rocks in eastern segment of East Kunlun and its geological significance[J]. World Geology, 41(1): 56−71,84(in Chinese with English abstract).
[63] Zhang X T, Yao Y, Zheng J, et al. 2017. Diagenetic age of the granite porphyry in northern Aikengdelesite south of East Kunlun and geological implications[J]. Geology and Exploration, 53(4): 680−685(in Chinese with English abstract).
[64] Zhen J H, Dong S S. 2014. Detailed investigation report of Tuoketuo copper gold deposit in Dulan County, Qinghai Province[R]. Qinghai Tangrong Mining Co., Ltd.: 16−54(in Chinese with English abstract).
[65] Zhan S Z, Zhao H C, Li Z Q, et al. 2013. Copper polymetallic ore survey report of Xiadeboli−Aikengdelesite deposit in Dulan County, Qinghai Province[R]. The Fifth Geological Exploration Institute of Qinghai Province: 36−76(in Chinese with English abstract).
[66] Zhong S H, Feng C Y, Li D X, et al. 2017. SIMS chronology and geochemistry of diabase dykes from the Weibao polymetallic orefield, Xinjiang[J]. Acta Geologica Sinica, 91(4): 762−775(in Chinese with English abstract).
[67] 谌宏伟, 罗照华, 莫宣学, 等. 2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 32(3): 386−395. doi: 10.3969/j.issn.1000-3657.2005.03.006
[68] 才航加, 张金明, 张启龙. 2016. 东昆仑沙松乌拉环斑花岗岩的时代及地质意义[J]. 西北地质, 49(4): 62−72.
[69] 邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报, 32(8): 2225−2247.
[70] 丰成友, 李东生, 吴正寿, 等. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 43(4): 10−17. doi: 10.3969/j.issn.1009-6248.2010.04.002
[71] 封铿, 李瑞保, 裴先治, 等. 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U−Pb年代学、地球化学及地质意义[J]. 地球科学, 47(4): 1194−1216. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204004
[72] 国显正. 2021. 东昆仑东段古特提斯中酸性岩浆活动与多金属成矿作用[D]. 中国地质大学(武汉)博士学位论文: 147−193.
[73] 国显正, 贾群子, 郑有业, 等. 2016. 东昆仑热水钼多金属矿床辉钼矿Re−Os同位素年龄及地质意义[J]. 地质学报, 90(10): 2818−2829. doi: 10.3969/j.issn.0001-5717.2016.10.019
[74] 古润平, 卜安, 陈少青. 2009. 广东省揭西金坑铜锡铅锌矿区矿床地质特征与远景预测[J]. 资源调查与环境, 30(2): 109−114.
[75] 顾焱, 钱烨, 李予晋, 等. 2019. 东昆仑骆驼峰地区中晚三叠世花岗岩年代学、地球化学及构造意义[J]. 矿产勘查, (4): 724−736. doi: 10.3969/j.issn.1674-7801.2019.04.003
[76] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242.
[77] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16. doi: 10.12401/j.nwg.2023157
[78] 胡永达. 2007. 青海东昆仑乌兰乌珠尔铜矿地质特征及成矿远景评价[D]. 吉林大学硕士学位论文: 13−65.
[79] 郝娜娜. 2016. 东昆仑造山带岩浆活动与成矿作用[D]. 中国地质大学(北京)博士学位论文: 38−185.
[80] 雷延利. 2024. 青海省都兰县各玛龙银多金属矿普查报告[R]. 青海省有色第二地质勘查院:11−57.
[81] 李文, 刘永乐, 李文君, 等. 2024. 青海东昆仑三通沟北锰矿成矿时代与物质来源: 来自Re−Os同位素年代学与地球化学的约束[J]. 岩石学报, 40(4): 1231−1248. doi: 10.18654/1000-0569/2024.04.11
[82] 李东生, 张占玉, 苏生顺, 等. 2010. 青海卡尔却卡铜钼矿床地质特征及成因探讨[J]. 西北地质, 43(4): 239−244. doi: 10.3969/j.issn.1009-6248.2010.04.028
[83] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955. doi: 10.3321/j.issn:0001-5717.2008.07.013
[84] 李雪凯, 原垭斌, 刘晓菲. 2013. 湖南东坡矿田野鸡尾斑岩型铜锡矿床含矿石英斑岩锆石LA−(MC)−ICP−MS U−Pb测年[C]//中国地质学会青年工作委员会. 第一届全国青年地质大会论文集: 200−201.
[85] 林艳海, 李积清, 王明, 等. 2021. 东昆仑扎玛休玛地区含矿花岗闪长斑岩LA−ICP−MS锆石定年及地质意义[J]. 矿物岩石, 41(3): 29−39.
[86] 刘建栋, 张焜, 王秉璋, 等. 2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及Hf同位素特征[J]. 地质论评, 69(4): 1525−1542.
[87] 刘建楠, 丰成友, 亓锋, 等. 2012. 青海都兰县下得波利铜钼矿区锆石U−Pb测年及流体包裹体研究[J]. 岩石学报, 28(2): 679−690.
[88] 刘战庆. 2011. 东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究[D]. 长安大学博士学位论文: 41−99.
[89] 鲁海峰, 杨延乾, 何皎, 等. 2017. 东昆仑哈陇休玛钼(钨)矿床花岗闪长斑岩锆石U−Pb及辉钼矿Re−Os同位素定年及其地质意义[J]. 矿物岩石, 37(2): 33−39.
[90] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[91] 马忠元, 柴佳兴, 张爱奎, 等. 2024a. 东昆仑哈日扎-那更康切尔银矿区花岗岩年代学、地球化学及岩石成因[J]. 地球科学, 49(5): 1778−1792.
[92] 马忠元, 张爱奎, 李军, 等. 2023a. 东昆仑哈日扎矿床斑岩-热液成矿特征及找矿远景[J]. 新疆地质, 41(4): 538−546. doi: 10.3969/j.issn.1000-8845.2023.04.007
[93] 马忠元, 张爱奎, 李军, 等. 2023b. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87.
[94] 马忠元, 李军, 赵建鹏, 等. 2024b. 东昆仑乌兰乌珠尔-十字嵩银多金属矿床成因研究[J]. 地质找矿论丛, 39(2): 160−168. doi: 10.6053/j.issn.1001-1412.2024.02.003
[95] 马忠元, 李军, 逯登军, 等. 2024c. 东昆仑斑岩-热液成矿系统找矿实践——以乌兰乌珠尔-十字嵩矿床为例[J]. 地质与勘探, 60(4): 700−711.
[96] 马忠元, 张勇, 李军, 等. 2024d. 东昆仑清水河东沟钼矿床成矿模式探讨[J]. 地质找矿论丛, 39(3): 293−300. doi: 10.6053/j.issn.1001-1412.2024.03.001
[97] 潘彤, 薛万文, 王贵仁, 等. 2021. 青海矿产地质[M]. 北京: 地质出版社: 7−34.
[98] 潘彤, 王秉璋, 张爱奎. 2019. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社: 11−174.
[99] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, 34(2): 306−314.
[100] 王永德, 李生虎. 2023. 青海益克郭勒斑岩型钼矿深部找矿潜力分析[J]. 矿产与地质, 37(4): 794−805.
[101] 王瑞, 朱弟成, 王青, 等. 2020. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 50(12): 1919−1946.
[102] 夏锐, 卿敏, 王长明, 等. 2014. 青海东昆仑托克妥Cu−Au(Mo)矿床含矿斑岩成因: 锆石U−Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版), 44(5): 1502−1524.
[103] 许庆林, 孙丰月, 李碧乐, 等. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J]. 大地构造与成矿学, 38(2): 421−433.
[104] 许庆林. 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文: 88−152.
[105] 袁万明, 莫宣学, 张爱奎, 等. 2017. 青海省东昆仑斑岩带新发现[J]. 地学前缘, 24(6): 1−9.
[106] 殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点[J]. 地球科学—中国地质大学学报, 22(4): 339−342.
[107] 湛守智, 赵海超, 李志强, 等. 2013. 青海省都兰县下得波利−埃坑德勒斯特铜多金属矿普查报告[R]. 青海省第五地质矿产勘查院: 36−76.
[108] 张洪瑞, 侯增谦, 杨志明. 2010. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 29(1): 113−133. doi: 10.3969/j.issn.0258-7106.2010.01.011
[109] 张大明, 张爱奎, 屈光菊, 等. 2020. 东昆仑西段卡而却卡铁铜多金属矿床成矿模式及找矿模型[J]. 西北地质, 53(1): 91−106.
[110] 张爱奎, 袁万明, 刘光莲, 等. 2023. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, 31(3): 260−283.
[111] 张雪亭, 姚远, 郑杰, 等. 2017. 东昆仑南坡埃坑北花岗斑岩的成岩年龄及其地质意义[J]. 地质与勘探, 53(4): 680−685.
[112] 郑建华, 东寿山. 2014. 青海省都兰县托克妥铜金矿详查报告[R]. 青海唐荣矿业有限公司, 16−54.
[113] 郑振华, 张勤山, 何利, 等. 2022. 东昆仑东段益克郭勒侵入岩LA−ICP−MS锆石U−Pb定年及其地质意义[J]. 世界地质, 41(1): 56−71,84. doi: 10.3969/j.issn.1004-5589.2022.01.005
[114] 钟世华, 丰成友, 李大新, 等. 2017. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775. doi: 10.3969/j.issn.0001-5717.2017.04.005
-