Metallogenic regularity and resource potential of manganese deposits in southern Africa
-
摘要:
锰作为一种重要的金属矿产,广泛应用于各种工业领域。世界锰矿资源总量丰富,但分布极不均衡,主要分布在南非、乌克兰、巴西、澳大利亚等国。中国锰矿资源具有总量大、平均品位低、开采难度大等特点,为满足国内需求,中国每年需从海外进口大量锰矿。南部非洲地区锰矿资源丰富,主要有海相沉积受变质型、海相沉积型、热液型及表生型锰矿4种成矿类型。其中,海相沉积受变质型和海相沉积型最重要,依据含矿岩系特征又进一步将其划分为BIF岩系型锰矿、黑色页岩系型锰矿及硅-泥-灰岩系型锰矿。南部非洲原生锰矿成矿时代主要集中在2.2~2.0 Ga,与Eburnean造山运动时代耦合;空间上主要分布在古陆块边缘,成矿背景以弧后盆地及边缘盆地为主。南部非洲地区锰矿成矿地质条件优越,且总体找矿勘查程度较低,资源潜力巨大。
Abstract:As an important metal, manganese is widely used in various industrial fields.The total amount of manganese resources in the world is abundant, but its distribution is extremely uneven, mainly distributed in South Africa, Ukraine, Brazil, Australia and other countries.Manganese resources in China are characterized by large tonnage, low tenor, and difficulty in mining.In order to meet domestic demand, China needs to import a large amount of manganese ore from overseas every year.Southern Africa is rich in manganese resources, mainly consisting of four metallogenic types, namely marine sedimentary metamorphic type, marine sedimentary type, hydrothermal type and supergene type.Among them, the marine sedimentary metamorphic type and marine sedimentary type are the most important, and they are further divided into BIF rocks-hosted Mn deposit, black shale-hosted Mn deposit and silicon-mud-limestone-hosted Mn deposits based on the ore-bearing rocks.The metallogenic epoch of primary manganese deposits is mainly concentrated in 2.2~2.0 Ga, which is coupled with Eburnean orogeny.Spatially, it is mainly distributed on the edge of ancient landmass, and the metallogenic background is mainly back-arc basin and marginal basin.The current southern Africa is a typical case with favorable metallogenic geological conditions, overall low level of prospecting and exploration, and huge potential of manganese resources.
-
-
图 3 Kalahari锰矿岩性柱状图(据参考文献[32]修改)
Figure 3.
图 4 Kalahari锰矿成矿模式图(据参考文献[20]修改)
Figure 4.
图 5 纳米比亚Otjosondu锰矿成因模式图(据参考文献[22]修改)
Figure 5.
图 6 Kisenge地区锰矿成因模式图(据参考文献[24]修改)
Figure 6.
图 7 南非Tolwe锰矿成矿环境及成因模式图(据参考文献[27]修改)
Figure 7.
图 9 古元古代(2.2~2.0 Ga)南部非洲重要锰矿构造背景(据参考文献[65]修改)
Figure 9.
表 1 南部非洲原生锰矿类型及典型矿床特征
Table 1. Primary manganese ore types and typical ore deposits in southern Africa
矿床类型 典型矿床 国家 含矿建造 原生矿床成矿时代 次生矿床成矿时代 矿石矿物 构造背景 资源量/品位 参考文献 海相沉积受变质型 BIF岩系型 Kalahari 南非 BIF、碳酸盐岩 2.2 Ga 42 Ma、25 Ma、10.5 Ma 黑锰矿、方铁锰矿、褐锰矿、软锰矿及硬锰矿 弧后盆地 120 Mt(30%~45%) [3, 19] Rooinekke 2.4 Ga - 褐铁矿、锰铁矿、菱锰矿、软锰矿及硬锰矿 陆缘盆地 1.5 Mt(27%~35%) [4, 20] Postmasburg 2.5~2.6 Ga 2.0 Ga 褐锰矿、软锰矿、硬锰矿及钾锰矿 弧后盆地 10~30 Mt(32%~59%) [5-6, 21] Otjosondu 纳米比亚 BIF、碳酸盐岩 0.74 Ga - 褐锰矿、锰铁矿及硬锰矿 陆缘盆地 20~50 Mt(33%~47%) [22] 海相沉积型 黑色页岩系型 Francevillian 加蓬 炭质页岩、碳酸盐岩等 2.0~2.3 Ga - 钾锰矿、硬锰矿及软锰矿 弧后盆地 20~48 Mt(40%~48%) [7, 23] Moanda 2.2~2.16 Ga 44.5~49 Ma 菱锰矿、硬锰矿、钾锰矿及软锰矿 弧后盆地 20 Mt(30%~55%) [7, 23] Kisenge 刚果(金) 2.2~2.1 Ga 25 Ma、10 Ma、3.6 Ma、2.6 Ma 菱锰矿、钾锰矿及软锰矿 断陷盆地 20 Mt(40%~55%) [8, 24] 硅-泥-灰岩系型 Tolwe 南非 硅质岩、泥岩及碳酸盐岩 1.96~1.8 Ga - 褐锰矿、软锰矿及钾锰矿 台地三角洲 10~15 Mt(30%~41%) [25-27] 热液型 Mkuxi 赞比亚 石英岩、云母片岩等 >1.8 Ga - 硬锰矿、软锰矿及黑锰矿 陆缘盆地 资源量不详(45%~65%) [28] Mansa >1.6 Ga - 硬锰矿、软锰矿及黑锰矿 陆缘盆地 资源量不详(40%~55%) [29-30] -
[1] 严旺生, 高海亮. 世界锰矿资源及锰矿业发展[J]. 中国锰业, 2009, 3: 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM200903002.htm
[2] 丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3) : 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm
[3] Beukes N J, Burger A M, Gutzmer J. Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels mine, Kalahari manganese Field[J]. South African journal of geology, 1995, 98: 430-451.
[4] Beukes N J, Gutzmer J. Origin and paleoenvironmental significance of major iron formations at the Archaean-Paleo-proterozoic boundary[J]. Reviews in Economic Geology, 2008, 15: 5-47.
[5] Kuleshov V N. Manganese deposits: Communication 2 Major epochs and phases of manganese accumulation in the Earth's history[J]. Lithology and Mineral Resources, 2011, 46(6) : 546. doi: 10.1134/S0024490211060095
[6] Kuleshov V N, Zhegallo E A, Shkol'nik E L. Evolution of manganese ore genesis in the Earth's geological history and the role of the biosphere[J]. Doklady Earth Sciences, 2011, 441(2) : 1611-1615. doi: 10.1134/S1028334X1112004X
[7] Weber F. Genesis and supergene evolution of the Precambrian sedimentary manganese deposit at Moanda(Gabon)[J]. Genesis of Precambrian Iron and Manganese Deposits, 1973, 9: 307-322.
[8] De Putter T, Ruffet G, Yans J, et al. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region[J]. Ore Geology Reviews, 2015, 71: 350-362. doi: 10.1016/j.oregeorev.2015.06.015
[9] 雷晓力, 胡永达, 杜轶伦, 等. 锰矿资源现状及开发利用思考[J]. 中国矿业, 2015, 24(S1) : 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2015S1005.htm
[10] 孙宏伟, 王杰, 任军平, 等. 全球锰资源现状及对我国可持续发展建议[J]. 矿产保护与利用, 2020, 40(6) : 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202006025.htm
[11] USGS. Mineral Commodity Summaries[EB/OL]. (2021-01-31) [2021-09-10]. https://minerals.usga.gov/minerals/pubs/commodity/manganese/mcs-2020-manganese.
[12] 王云山, 李佐虎, 李浩然. 中国海底锰结核处理技术研究概况[J]. 中国锰业, 2006, 24(1) : 17-20. doi: 10.3969/j.issn.1002-4336.2006.01.005
[13] 付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12) : 2192-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412004.htm
[14] 刘陟娜, 张新元, 许虹, 等. 境外锰矿资源分布现状与中资企业勘查开发建议[J]. 中国矿业, 2015, 24(8) : 8-15. doi: 10.3969/j.issn.1004-4051.2015.08.002
[15] SNL: Commodity Profile-Price Chart[EB/OL]. (2020-09-30)[2021-06-10]. https://platform.Marketintelligence.spglobal.com/web/client?auth=inherit#industry/ top Producing Companies.
[16] Corather L A. Manganese(advance release). U.S. Geological Survey 2012 Minerals Yearbook[M]. U.S. Department of the Interior, 2014: 1-47.
[17] 叶连俊, 范德廉, 杨培基. 中国锰矿床[M]. 北京: 地质出版社, 1994: 80-552.
[18] 姚培慧, 林镇泰, 杜春林, 等. 中国锰矿志[M]. 北京: 冶金工业出版社, 1995.
[19] Kunzman M, Gutzmer J, Beukes N J, et al. Depositional environment and lithostratigraphy of the Paleoproterozoic Mooidraai Formation, Kalahari manganese field, South Africa[J]. South African Journal of Geology, 2014, 117: 173-192. doi: 10.2113/gssajg.117.2.173
[20] Cairncross B, Beukes N J. The Kalahari manganese field[M]. Assore: Johannesburg, 2013: 1-384.
[21] Gutzmer J, Beukes N J. Karst-hosted fresh water Palaeoproterozoic manganese deposits, Postmasburg, South Africa[J]. Economic Geology, 1996, 91: 1435-1454. doi: 10.2113/gsecongeo.91.8.1435
[22] Bühn B, Stansistreet I G, Okrusch M. Lata Proterozic outer shelf manganese and iron deposits at Otjosondu(Namibia) related to the Damaran oceanic opening[J]. Economic Geology, 1992, 87: 1393-1411. doi: 10.2113/gsecongeo.87.5.1393
[23] Weber F. Evolution of lateritic manganese deposits[M]. Springer, Berlin Heidelberg, 1997: 97-124.
[24] De Putter T, Liégeois J P, Dewaele S, et al. Paleoproterozoic manganese and base metals deposits at Kisenge- Kamata(Katanga, DR Congo)[J]. Ore Geology Reviews, 2018, 96: 181-200. doi: 10.1016/j.oregeorev.2018.04.015
[25] Cheney E S, Barton J M, Brandl G. Extent and age of the Soutpansberg sequences of southern Africa[J]. South African Journal of Geology, 1990, 93(4) : 664-675.
[26] Schaefer M, Gutzmer J, Beukes N J. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation[J]. Geology, 2001, 29(3) : 835-838.
[27] Gutzmer J, Schaefer M, Beukes N J. Red beb-hosted oncolitic manganese ore of the Paleoproterozoic Soutpansberg Group, Bronkhorstfontein, south Africa[J]. Economic Geology, 2002, 97: 1023-1039.
[28] 孙宏伟, 王杰, 任军平, 等. 非洲中部加丹加—赞比亚地区锰矿床研究现状及找矿方向[J]. 矿产勘查, 2021, 12(2) : 390-400. doi: 10.3969/j.issn.1674-7801.2021.02.026
[29] Bekker A, Karhu J A, Eriksson K A, et al. A chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming craton: tectonic forcing or biogeochemical change?[J]. Precambrian Research, 2003, 120(3/4) : 279-325.
[30] 赵璞. 赞比亚曼萨地区锰矿地质特征及找矿潜力分析[J]. 矿业工程, 2015, 4: 15-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201504004.htm
[31] Gutzmer J, Du Plooy A P, Beukes N J. Timing of supergene enrichment of low-grade sedimentary manganese ores in the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 2012, 47: 136-153. doi: 10.1016/j.oregeorev.2012.04.003
[32] Vafeasa N A, Blignauta L C, Viljoena K S. Arsenic-bearing manganese ore of the Mukulu enrichment in the Kalahari manganese field, South Africa: A new discrimination scheme for Kalahari manganese ore[J]. Ore Geology Reviews, 2019, 115: 103-146.
[33] Gutzmer J, Beukes N J. Effects of mass transfer, compaction and secondary porosity on hydrothermal upgrading of Paleoproterzoic sedimentary manganese ore in the Kalahari manganese field, South Africa[J]. Mineralium Deposita, 1997, 32: 250-256. doi: 10.1007/s001260050090
[34] Gutzmer J, Beukes N J. Mineral paragenesis of the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 1996, 11: 405-428. doi: 10.1016/S0169-1368(96)00011-X
[35] Gutzmer J, Beukes N J. Fault-controlled metasomatic alteration of Earl proterozoic sedimentary manganese ores in the Kalahari manganese field, South Africa[J]. Economic Geology, 1995, 90: 823-844. doi: 10.2113/gsecongeo.90.4.823
[36] Beukes N J, Smit C A. New evidence for thrust faulting in Griqualand west, South Africa: Implication for stratigraphy and the age of red beds[J]. Transactions of the Geological Society of South Africa, 1987, 90: 378-394.
[37] 常洪伦, 孔繁辉, 宋晓东, 等. 南非Postmasburg地区锰矿床地质特征及成因分析[J]. 地质论评, 2014, 60(3) : 580-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201403011.htm
[38] 李上森. 卡拉哈里锰矿田的火山-喷气成因[J]. 国外前寒武纪地质, 1996, 1: 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199601008.htm
[39] 常洪伦, 李建峰, 王江龙, 等. 南非Postmasburg锰矿田堆积型锰矿体地质特征及找矿方向[J]. 现代矿业, 2016, 5: 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201605032.htm
[40] 廖凤初, 周有希. 南非LOMOTENG锰矿矿床地质特征及找矿方向探讨[J]. 国土资源导刊, 2013, 1: 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GTDK201310021.htm
[41] Hoffman P F, Schrag D P. Snowball Earth[J]. Scientific American, 2000, 282: 68-75. doi: 10.1038/scientificamerican0100-68
[42] 廖芝华, 张祖飞. 纳米比亚奥乔宗蒂约巴地区铁锰矿地质特征[J]. 四川地质学报, 2017, 37(2) : 214-217. doi: 10.3969/j.issn.1006-0995.2017.02.009
[43] Marchandise H. Le gisement et les minerais de manganèse de Kisenge(Congo belge)[J]. Bull. Soc. Belge Géol., 1958, 67: 187-211.
[44] Doyen L. The manganese ore deposit of Kisenge-Kamata(Western Katanga)[M]. Springer, Berlin Heidelberg, 1973: 93-100.
[45] Delhal J, Liégeois J P. Le socle granito-gneissique du Shaba occidental(Zaïre) : Pétrographie et géochronologie[J]. Annales de la Société géologique de Belgique, 1982, 91(1) : 25-26.
[46] Delhal J, Deutsch S, Denoiseux B. A Sm/Nd isotopic study of heterogeneous granulites from the Archean Kasai-Lomami gabbro-norite and charnockite complex(Zaire, Africa)[J]. Chemical Geology, 1986, 57(1/2) : 235-245.
[47] Ledent D, Lay C, Delhal J. Premières données sur l'âge absolu des formations anciennes du 'socle' du Kasai(Congo méridional)[J]. Bull. Soc. Belge Géol., 1962, 71(2) : 223-237.
[48] 左立波, 任军平, 王杰, 等. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 2020, 43(1) : 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004
[49] 任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 2019, 42(3) : 161-165. doi: 10.3969/j.issn.1672-4135.2019.03.001
[50] 孙宏伟, 王杰, 任军平, 等. 班韦乌卢地块中部变质表壳岩碎屑锆石U-Pb年代学、Hf同位素研究及其构造意义[J]. 地质学报, 2021, 95(4) : 1245-1259. doi: 10.3969/j.issn.0001-5717.2021.04.020
[51] 孙宏伟, 王杰, 任军平, 等. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 2021, 67(1) : 265-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101027.htm
[52] 孙宏伟, 王杰, 任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6) : 1660-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006005.htm
[53] Sun H W, Ren J P, Wang J, et al. Age and geochemistry of the granitoid from the Lunte area, Northeastern Zambia: Implications for magmatism of the Columbia supercontinent[J]. China Geology, 2021, doi: 10.31035/cg2021048.
[54] 任军平, 左立波, 许康康, 等. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论评2016, 62(4) : 979-996. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201604016.htm
[55] 古阿雷, 王杰, 任军平, 等. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 2020, 43(1) : 63-80. doi: 10.3969/j.issn.1672-4135.2020.01.007
[56] 孙宏伟, 王杰, 任军平, 等. 赞比亚东北部姆波洛科索盆地沉积地层特征[J]. 地质论评, 2019, 65(1) : 232-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901024.htm
[57] 阴江宁, 肖克炎. 中国锰矿资源潜力分析及成矿预测[J]. 中国地质, 2014, 41(5) : 1424-1437. doi: 10.3969/j.issn.1000-3657.2014.05.002
[58] Kuleshov V. Isotope Geochemistry: The origin and formation of manganese rocks and ores[M]. London: British Library Cataloguing, 2016.
[59] 凃光炽. 我国南方几个特殊的热水沉积矿床[C]//中国矿床学——纪念谢家荣诞辰90周年文集. 北京: 学术书刊出版社, 1989: 189-198.
[60] Frost K S, Master S, Viljoen R P, et al. The great mineral fields of Africa introduction[J]. Episodes Journal of International Geoscience, 2016, 39(2) : 285-318.
[61] Bandopadhay P C. Proterzoic microfossils from manganese orebody, India[J]. Nature, 1989, 339: 376-378. doi: 10.1038/339376a0
[62] Oswald J. The biogeochemical origin of the Groote Eylant manganese ore pisoliths and ooloths, northern Australia[J]. Ore Geology Reviews, 1990, 5: 469-490. doi: 10.1016/0169-1368(90)90048-R
[63] Zhao G, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9
[64] Meert J G. What is in a name? the Columbia(Paleopangaea/Nuna) supercontinent[J]. Gonwana Research, 2012, 21: 987-993. doi: 10.1016/j.gr.2011.12.002
[65] Reddy S M, Evans D A D. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere[J]. Geological Society of London, Special Publication, 2009, 323: 1-26. doi: 10.1144/SP323.1
-