-
摘要:
西非地区比里姆(Birimian)岩系经历了伊本尼(Eburnean)造山运动, 成为全球金矿商业投资的主要含矿岩系之一, 该岩系在利比里亚覆盖约36%国土面积。通过对西非尤其是利比里亚地质背景分析, 初步建立了利比里亚区域地质构造格架, 梳理出比里姆岩系中33处重要意义的岩金矿点, 其分布与比里姆绿岩带、区域剪切构造带密切相关。综合全国266处金矿化点及密切相关的Au、Ag、Hg、Cu元素异常, 在利比里亚划定了比-克波、杜格贝、塞斯托斯、鲍特洛-祖亚-皮菲吉、邦-托托-宁巴、杜贝、朱亚松、托迪8个金成矿带, 显示出良好的成矿潜力, 并对不同开发程度下矿化前景区进一步找矿方面提出了初步建议。
Abstract:In the West African, the Birimian series covering about 36% of Liberia underwent the complex Eburnean orogenic movement, and belongs to one of the main Au-bearing rocks on which the global gold diggers invest.Based on the analysis of the geological background in the West Africa and especially Liberia, a new division of geological units in Liberia was established, and 33 important gold occurrences in the Birimian series were sorted out.The distribution of these gold occurrences is closely related to the metamorphosed volcano-sedimentary rocks (greenstone) of Birimian series and regional shear zone.Based on the comprehensive analysis of the 266 gold mineralized occurrences and geochemical anomalies of Au, Ag, Hg and Cu, eight favorable gold metallogenic belts were delineated in Liberia, namely Bea-Kpo, Dugbe, Cestos, Bautle-Zua-Pifgi, Bong-Toto-Nimba, Dube, Juazhon and Todi.These gold metallogenic belts show a good potential for gold mineralization, and some suggestions were put forward for the prospecting of some gold prospects.
-
-
图 1 西非前寒武纪主要地盾简图(据参考文献[26]修改)
Figure 1.
图 3 利比里亚矿产地质图(据参考文献[58]修改)
Figure 3.
图 4 New Liberty金矿平面地质图(a)和矿体剖面图(b) (据参考文献[5]修改)
Figure 4.
表 1 利比里亚金矿带主要特征
Table 1. Main features of the gold belts in Liberia
序号 名称 地质背景 控矿因素 矿化蚀变 典型矿体/矿点 1 比-克波成矿带 花岗-花岗闪长片麻岩、条带状铁建造、基性—超基性片岩带和热液退蚀变角闪岩 ①比山-克波山剪切绿岩带,走向北东44°~82°,倾向北西,倾角大于65°,与几内亚东南部西芒杜绿岩带相连
②剪切构造作用,发育脆-韧性条带状糜棱岩及同-后构造期花岗岩
③Au高背景区,发育Au-1异常(面积1128 km2,峰值220 ng/g,衬度8.33,与Ag、Cu等异常套合)和Au-2异常(面积452 km2,峰值2.19 ng/g,衬度3.36),大量金矿点,大致集中在比山、克波山及佐佐3个金矿富集区脉状石英-硫化物、浸染状硫化物及构造角砾状矿化硅化、绿泥石化、绢云母化、滑石化、金云母化、透闪石化等蚀变 大型新自由金矿,中型恩达布拉马金矿、韦朱金矿 2 杜格贝成矿带 岩性较复杂,西南段为含石墨石榴子石黑云斜长片麻岩,局部石英黑云母片岩;北东段为含表壳岩的角闪黑云花岗-石英闪长片麻岩 ①北东向区域性杜格贝剪切带,经历了挤压、走滑、剪切等多期构造活动,形成了2期叠加褶皱、糜棱岩化带及同-晚期花岗闪长岩
②Au高背景区,发育Au-8异常中段(面积2529 km2,峰值2.66 ng/g,衬度3.12,与Ag、Hg、Cu等异常套合较好);杜格贝金矿富集区发育大量金矿点浸染状硫化物和脉状石英-硫化物矿化,广泛分布黄铁矿、毒砂及少量黄铜矿硅化、绢云母化、绿泥石化等蚀变 超大型杜格贝金矿(控制+推断资源量130.63 t) 3 塞斯托斯成矿带 古元古代鲍莱-莫西域与太古宙凯内-马恩域碰撞造山形成的复杂混合过渡带 ①北东向区域性塞斯托斯剪切带,与科特迪瓦西南部图莱普勒-伊体剪切带相连
②北东向大量的绿岩带、广泛的多期褶皱、剪切断裂和花岗闪长岩
③西南段发育Au-7异常(面积602 km2,峰值1.28 ng/g,衬度2.73,与Ag异常套合)和卡巴山金矿区,该金矿区分布大量民采金矿点;北东段绿岩带西缘发育走滑糜棱岩化带,可见民采砂金点脉状石英-硫化物及浸染状硫化物矿化,发育毒砂、黄铁矿等硫化物 伊体金矿[69] Numon South、Kaba Mtn、Innis等矿点 4 鲍特洛- 祖亚-皮菲吉成矿带 浅色含黑云角闪花岗-石英闪长片麻岩,北东角为含紫苏辉石-透辉石-角闪石暗色片麻岩,上覆大量的绿岩带 ①北东向鲍特洛-托佐罗-皮菲吉绿岩带
②以北东向剪切带和褶皱为主,其次为近南北向右行、北西向左行断裂等多期构造活动
③中南部发育Au-5异常(面积243 km2,峰值1.16 ng/g,衬度2.64)和鲍特洛-托佐罗金矿区;北东段发育Au-6异常(面积418 km2,峰值1.14 ng/g,衬度2.59)以石英脉型金矿化为主;硅化、绿泥石化、碳酸盐化等蚀变 中型科科亚金矿(资源量12.75 t);Kuobahn矿点 5 邦-托托- 宁巴成矿带 条带状黑云花岗片麻岩和含角闪石花岗闪长-闪长片麻岩,上覆断续分布的绿岩带 ①邦-托托-宁巴绿岩带,走向北东,倾向西,倾角50°~70°
②北东向剪切和褶皱构造发育
③Au高背景区,其中北东角发育Au-3异常(面积263 km2,峰值1.22 ng/g,衬度2.77,与Cu异常套合);中北段发育托托山金矿富集区和Ag、Cu等异常石英-硫化物脉状和硫化物浸染状矿化赤铁矿化、碳酸盐化、绢云母化、绿泥石化等蚀变 Toto Range、North Wata等矿点 6 杜贝成矿带 浅色片麻岩和石英闪长片麻岩,以及上覆相当数量变火山-沉积岩 ①区域性杜贝剪切带北东向(约50°),宽约300 m,横切区内北东东走向的片理、片麻理构造,为左行脆韧性剪切带
②发育大量变火山-沉积岩
③Au高背景区,发育Au-8异常南段(面积1473 km2,峰值2.30 ng/g,衬度2.75,与Ag、Hg、Cu等异常套合较好)和斯韦-图伊山金矿富集区脉状石英-硫化物及浸染状硫化物矿化,硫化物主要为黄铁矿和毒砂;硅化、绿泥石化、绢云母化、碳酸盐化等蚀变 Jolodah Village、Dougbo等矿点 7 朱亚松成矿带 角闪黑云花岗岩-石英闪长片麻岩及绿岩带 ①北东向区域性朱亚松剪切带
②Au高背景区,北东段下部发育Au-8异常北段(面积1263 km2,峰值380.42 ng/g,衬度17.17,与Ag异常套合)和普图山金矿富集区;西南段发育Ag、Hg、Cu等异常且套合较好浸染状硫化物矿化 Putu CVI、Zia等矿点 8 托迪成矿带 紫苏辉石-透辉石-角闪石花岗片麻岩、花岗-石英闪长片麻岩、吉欧-范特罗(Geo-Fantro)绿岩带及晚期基性侵入岩 ①北西向区域性托迪剪切带走向约320°,南西倾斜40°~60°,弱—中等糜棱岩构造及交叉剪切节理发育②Au高背景区,西北段含Au-4异常(面积414 km2,峰值2.65 ng/g,衬度3.24,与Ag、Hg、Cu等异常套合较好)和咖啡山金矿富集区;东南段发育民采砂金矿点 石英脉型、角砾状石英网脉型矿化;碳酸盐化、绿泥石化、硅化、赤铁矿化蚀变 Golodi、Ben-Ben、Mandingo Hill、Kle-Kle等矿点 -
[1] 张继纯, 严永祥, 王建雄, 等.西非矿产资源的地质背景及重要成矿分区[J].华南地质与矿产, 2019, 35(1):76-89. doi: 10.3969/j.issn.1007-3701.2019.01.008
[2] Anderson K F E. Geometallurgical Evaluation of the Nkout (Cameroon) and Putu (Liberia) Iron Ore Deposits[D]. 德文郡埃克塞特市: University of Exeter, 2014.
[3] Gunn A G, Dorbor J K, Mankelow J M, et al. A review of the mineral potential of Liberia[J]. Ore Geology Reviews, 2018, 101: 413-431. doi: 10.1016/j.oregeorev.2018.07.021
[4] M. Robertson L P. West African Goldfileds[J]. Episodes, 2016, 2(39): 155-176.
[5] Csaglobal. New Liberty Gold Mine Mineral Resources and Mineral Reserves Update, Liberia[EB/OL]. (2019)[2020-10-10] https://avesoro.com/technical-reports/
[6] Hummingbird Resources. Hummingbird Resources Annual Report and Accounts[EB/OL]. (2019)[2020-10-12] https://www.hummingbirdresources.co.uk/.
[7] Clauer N, Caby R, Jeannette D, et al. Geochronology of sedimentary and metasedimentary Precambrian rocks of the West African craton[J]. Precambrian Research, 1982, 18(1): 53-71.
[8] 高坪仙. 西非克拉通结晶基底构造分区概述[J]. 国外前寒武纪地质, 1992, (4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199204004.htm
[9] Haggerty S E. Kimberlites in western Liberia: An overview of the geological setting in a plate tectonic framework[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B13): 10811-10826. doi: 10.1029/JB087iB13p10811
[10] 毛伦锦. 西非的金资源[J]. 国外铀金地质, 1989, (2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD198902000.htm
[11] Foster R P, Piper D P. Archaean lode gold deposits in Africa: Crustal setting, metallogenesis and cratonization[J]. Ore Geology Reviews, 1993, 8(3): 303-347.
[12] Boher M, Abouchami W, Michard A, et al. Crustal growth in West Africa at 2.1 Ga[J]. Journal of Geophysical Research Solid Earth, 1992, 97(B1): 345-369. doi: 10.1029/91JB01640
[13] Denis T, Claude D, Alain C, et al. A 3.5 Ga granite-gneiss basement in Guinea: further evidence for early archean accretion within the West African Craton[J]. Precambrian Research, 2001, 108(3): 179-194.
[14] Egal E, Thiéblemont D, Lahondère D, et al. Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain (Guinea, West African Craton)[J]. 2002, 117: 57-84.
[15] Milési J, Ledru P, Feybesse J, et al. Early proterozoic ore deposits and tectonics of the Birimian orogenic belt, West Africa[J]. Precambrian Research, 1992, 58(1): 305-344.
[16] Taylor W R, Tompkins L A, Haggerty S E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin[J]. Geochimica et Cosmochimica Acta, 1994, 58(19): 4017-4037. doi: 10.1016/0016-7037(94)90264-X
[17] Jean-Louis F, Jean-Pierre M. The Archaean/Proterozoic contact zone in West Africa: a mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons?[J]. Precambrian Research, 1994, 69: 199-227. doi: 10.1016/0301-9268(94)90087-6
[18] Kouamelan A N, Delor C, Peucat J J. Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Cote d'Ivoire (Man Rise - West African Craton)[J]. Precambrian Research, 1997, 86(3): 177-199.
[19] Skinner E M W, Apter D B, Morelli C, et al. Kimberlites of the Man craton, West Africa[J]. Lithos, 2004, 76(1): 233-259.
[20] Parra-Avila L A, Belousova E, Fiorentini M L, et al. Crustal evolution of the Paleoproterozoic Birimian terranes of the Baoulé-Mossi domain, southern West African Craton: U-Pb and Hf-isotope studies of detrital zircons[J]. Precambrian Research, 2016, 274: 25-60. doi: 10.1016/j.precamres.2015.09.005
[21] Block S, Jessell M, Aillères L, et al. Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse[J]. Precambrian Research, 2016, 274: 82-109. doi: 10.1016/j.precamres.2015.10.014
[22] Parra-Avila L A, Belousova E, Fiorentini M L, et al. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton[J]. Precambrian Research, 2018, 306: 174-188. doi: 10.1016/j.precamres.2017.12.044
[23] Grenholm M. The Birimian event in the Baoulé Mossi domain (West African Craton)—regional and global context[D]. Lund University Master Thesis, 2014.
[24] Manighetti I, Michard A, Saddiqi O. The West African Craton and its margins. Foreword[J]. Comptes Rendus Geoscience, 2018, 350(6): 233-235. doi: 10.1016/j.crte.2018.07.001
[25] Grenholm M, Jessell M, Thébaud N. A geodynamic model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the southern West African Craton - Insights into an evolving accretionary-collisional orogenic system[J]. Earth Science Reviews, 2019, 192: 138-193. doi: 10.1016/j.earscirev.2019.02.006
[26] Thiéblemont D. Geological Map of Africa—1: 10 million scale[Z]. French Geological Survey, 2016.
[27] Rollinson H. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Precambrian Research, 2016, 281: 1-12. doi: 10.1016/j.precamres.2016.05.005
[28] Rollinson H R. Zonation of supracrustal relics in the Archaean of Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Nature, 1978, 272(5652): 440-442. doi: 10.1038/272440a0
[29] Hurley P M, Leo G W, Fairbairn R W W A. Liberian age province (about 2, 700 m. y. ) and adjacent provinces in Liberia and Sierra Leone[J]. Geological Society of America Bulletin, 1971, 12: 3483-3490.
[30] Beckinsale R D, Gale N H, Pankhurst R J, et al. Discordant Rb-Sr and Pb-Pb whole rock isochron ages for the Archaean basement of Sierra Leone[J]. Precambrian Research, 1980, 13(1): 63-76. doi: 10.1016/0301-9268(80)90059-5
[31] Beckinsale R D, Gale N H, Pankhurst R J, 等. 塞拉利昂太古宙基底中不一致的Rb-Sr和Pb-Pb全岩等时年龄的意义[J]. 国外前寒武纪地质, 1982, (1): 67-76.
[32] Williams H R. The Archaean geology of Sierra Leone[J]. Precambrian Research, 1978, 6(3): 251-268.
[33] Thiéblemont D, Goujou J C, Egal E, et al. Archean evolution of the Leo Rise and its Eburnean reworking[J]. Journal of African Earth Sciences, 2004, 39(3): 97-104.
[34] Rollinson H R, Cliff R A. New Rb-Sr age determinations on the Archaean basement of Eastern Sierra Leone[J]. Precambrian Research, 1982, 17(1): 63-72. doi: 10.1016/0301-9268(82)90154-1
[35] Rollinson H. Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation[J]. Nature, 1997, 389(6647): 173-176. doi: 10.1038/38266
[36] Barth M G, Rudnick R L, Carlson R W, et al. Re-Os and U-Pb geochronological constraints on the eclogite-tonalite connection in the Archean Man Shield, West Africa[J]. Precambrian Research, 2002, 118(3): 267-283.
[37] Rollinson H. The geochemical evolution of Archaean felsic gneisses in the West African Craton in Sierra Leone[J]. Journal of African Earth Sciences, 2018, 143: 28-39. doi: 10.1016/j.jafrearsci.2018.03.018
[38] Kouamelan A N, Djro S C, Allialy M E, et al. The oldest rock of Ivory Coast[J]. Journal of African Earth Sciences, 2015, 103: 65-70. doi: 10.1016/j.jafrearsci.2014.12.004
[39] Petersson A, Scherstén A, Kristinsdóttir B, et al. Birimian crustal growth in the West African Craton: U-Pb, O and Lu-Hf isotope constraints from detrital zircon in major rivers[J]. Chemical Geology, 2018, 479: 259-271. doi: 10.1016/j.chemgeo.2018.01.021
[40] Patrick A S, Solomon A, Ben X S, et al. Geochemical and Sr-Nd isotopic records of Paleoproterozoic metavolcanics and mafic intrusive rocks from the West African Craton: Evidence for petrogenesis and tectonic setting[J]. Geological Journal, 2018, 3(2): 725-741.
[41] Block S, Baratoux L, Zeh A, et al. Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana); New insights from U-Pb-Hf zircon data and geochemistry[J]. Precambrian Research, 2016, 287: 1-30. doi: 10.1016/j.precamres.2016.10.011
[42] Parra-Avila L A, Kemp A I S, Fiorentini M L, et al. The geochronological evolution of the Paleoproterozoic Baoulé-Mossi domain of the Southern West African Craton[J]. Precambrian Research, 2017, 300: 1-27. doi: 10.1016/j.precamres.2017.07.036
[43] Feybesse J, Billa M, Guerrot C, et al. The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling[J]. Precambrian Research, 2006, 149(3): 149-196.
[44] Baratoux L, Metelka V, Naba S, et al. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (2.2-2.0 Ga), western Burkina Faso[J]. Precambrian Research, 2011, 191(1/2): 18-45.
[45] Dabo M, Aïfa T, Gassama I, et al. Thrust to transpression and transtension tectonics during the Paleoproterozoic evolution of the Birimian Greenstone Belt of Mako, Kédougou-Kéniéba Inlier, Eastern Senegal[J]. Journal of African Earth Sciences, 2018, 148: 14-29. doi: 10.1016/j.jafrearsci.2018.05.010
[46] Petersson A, Scherstén A, Kemp A I S, et al. Zircon U-Pb-Hf evidence for subduction related crustal growth and reworking of Archaean crust within the Palaeoproterozoic Birimian terrane, West African Craton, SE Ghana[J]. Precambrian Research, 2016, 275: 286-309. doi: 10.1016/j.precamres.2016.01.006
[47] Billa M, Feybesse J, Bronner G, et al. Banded ferruginous quartzite formations of the Nimba and Simandou ranges: tectonically stacked units on an Archean plutonic basement (Kenema-Man craton), during the Eburnean orogeny[J]. Earth and Planetary Science, 1999, 329: 287-294.
[48] Onstott T C, Dorbor J. 40Ar/39Ar and paleomagnetic results from Liberia and the Precambrian APW data base for the West African Shield[J]. Journal of African Earth Sciences, 1987, 6(4): 537-552.
[49] Tapsoba B, Lo C, Jahn B, et al. Chemical and Sr-Nd isotopic compositions and zircon U-Pb ages of the Birimian granitoids from NE Burkina Faso, West African Craton: Implications on the geodynamic setting and crustal evolution[J]. Precambrian Research, 2013, 224: 364-396. doi: 10.1016/j.precamres.2012.09.013
[50] Sakyi P A, Su B, Anum S, et al. New zircon U-Pb ages for erratic emplacement of 2213-2130 Ma Paleoproterozoic calc-alkaline I-type granitoid rocks in the Lawra Volcanic Belt of Northwestern Ghana, West Africa[J]. Precambrian Research, 2014: 149-168.
[51] Gasquet D, Barbey P, Adou M, et al. Structure, Sr-Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala area (Cote d'Ivoire): evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa?[J]. Precambrian Research, 2003, 127: 329-354. doi: 10.1016/S0301-9268(03)00209-2
[52] John T, Klemd R, Hirdes W, et al. The metamorphic evolution of the Paleoproterozoic (Birimian) volcanic Ashanti belt (Ghana, West Africa)[J]. Precambrian Research, 1999, 98(1): 11-30.
[53] Debat P, Nikiéma S, Mercier A, et al. A new metamorphic constraint for the Eburnean orogeny from Paleoproterozoic formations of the Man shield (Aribinda and Tampelga countries, Burkina Faso)[J]. Precambrian Research, 2003, 123(1): 47-65. doi: 10.1016/S0301-9268(03)00046-9
[54] Goldfarb R J, André-Mayer A, Jowitt S M, et al. West Africa: The World's Premier Paleoproterozoic Gold Province[J]. Economic Geology, 2017, 112(1): 123-143. doi: 10.2113/econgeo.112.1.123
[55] Mcfarlane H B, Ailleres L, Betts P, et al. Episodic collisional orogenesis and lower crust exhumation during the Palaeoproterozoic Eburnean Orogeny: Evidence from the Sefwi Greenstone Belt, West African Craton[J]. Precambrian Research, 2019, 325: 88-110. doi: 10.1016/j.precamres.2019.02.012
[56] Markwitz V, Hein K A A, Miller J. Compilation of West African mineral deposits: Spatial distribution and mineral endowment[J]. Precambrian Research, 2016, 274: 61-81. doi: 10.1016/j.precamres.2015.05.028
[57] 史宏江, 王翠彭, 赵意会. 加纳西南部阿曼弗如姆金矿床地质特征及成因分析[J]. 黄金, 2018, 39(8): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201808006.htm
[58] Wahl R R. Geologic, Geophysical, and Mineral Localities Map of Liberia-A Digital Compilation[Z]. U.S. Geological Survey, 2007.
[59] Eglinger A, Thébaud N, Zeh A, et al. New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system[J]. Precambrian Research, 2017, 292: 258-289. doi: 10.1016/j.precamres.2016.11.012
[60] Lytwyn J, Burke K, Culver S. The nature and location of the suture zone in the Rokelide orogen, Sierra Leone: Geochemical evidence[J]. Journal of African Earth Sciences, 2006, 46(5): 439-454. doi: 10.1016/j.jafrearsci.2006.08.004
[61] De Waele B, Lacorde M, Vergara F, et al. New insights on proterozoic tectonics and sedimentation along the peri-Gondwanan West African margin based on zircon U-Pb SHRIMP geochronology[J]. Precambrian Research, 2015, 259: 156-175. doi: 10.1016/j.precamres.2014.08.008
[62] Dupuy C, Marsh J, Dostal J, et al. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence[J]. Earth and Planetary Science Letters, 1988, 87(1): 100-110.
[63] Sebai A, Feraud G, Bertrand H, et al. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift[J]. Earth and Planetary Science Letters, 1991, 104(2): 455-472.
[64] 徐少龙, 雷新喜. 利比里亚大巴萨州扎恩砂金矿矿床成因及找矿标志[J]. 科学家, 2015(9): 64-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KEXJ201509037.htm
[65] 牛智辉, 徐东华. 西非利比里亚大巴萨州地区砂金矿特征及找矿方向探讨[J]. 地球, 2015, (z1): 33.
[66] Hummingbird Resources. Hummingbird Resources Annual Report[EB/OL]. (2012)[2020-10-15] https://www.hummingbirdresources.co.uk/.
[67] 王海燕, 夏强. 西非利比里亚绿岩型金矿成因及特点[J]. 地球, 2013, (7): 149.
[68] Langdon R G A J. Structural Controls on Gold Mineralisation along the Dugbe Shear Zone, Eastern Liberia[C]. 36 Annual Winter Meeting of the Mineral Deposits Studies Group. Leicester, 2013.
[69] Béziat D, Siebenaller L, Salvi S, et al. A weathered skarn-type mineralization in Ivory Coast: The Ity gold deposit[J]. Ore Geology Reviews, 2016, 78: 724-730. doi: 10.1016/j.oregeorev.2015.07.011
[70] Whiteaker R J. Exploration Activities on the Mineral Concessions of Liberty International Mineral Corp[EB/OL]. (2007)[2020-10-20] https://www.libertymineral.com/projects/liberia/project_gblita/.
[71] Geoff E. Delivering on Liberia's Potential. [EB/OL]. (2012)[2020-10-10] https://www.amlibgroup.com/2012.
[72] Gerard Buisson, Marc Leblanc, 周少平. 阿拉伯、马里、摩洛哥上元古界蛇绿岩建造地幔橄榄岩中的金[J]. 黄金科技动态, 1989, (6): 10-13.
[73] 孙建虎. 几内亚金矿地质特征及成矿条件分析[J]. 企业导报, 2012, (6): 273-274. https://www.cnki.com.cn/Article/CJFDTOTAL-QYDB201206196.htm
① 陈开旭, 孟庆敏, 王超, 等. 援利比里亚矿产资源调查技术合作项目2019年度报告. 中国地质调查局武汉地质调查中心, 2019.
② Auramin. The technical Introduction of Zolowo Gold Project. 2019.
③ Limited T M. Replacement Prospectus. 2017.
-