利比里亚金矿成矿地质背景与资源潜力

陈冲, 陈开旭, 严永祥, 张继纯, 徐景银, 郑国权. 利比里亚金矿成矿地质背景与资源潜力[J]. 地质通报, 2022, 41(1): 72-84. doi: 10.12097/j.issn.1671-2552.2022.01.006
引用本文: 陈冲, 陈开旭, 严永祥, 张继纯, 徐景银, 郑国权. 利比里亚金矿成矿地质背景与资源潜力[J]. 地质通报, 2022, 41(1): 72-84. doi: 10.12097/j.issn.1671-2552.2022.01.006
CHEN Chong, CHEN Kaixu, YAN Yongxiang, ZHANG Jichun, XU Jingyin, ZHENG Guoquan. Geological background and resource potential of gold mineralization in Liberia[J]. Geological Bulletin of China, 2022, 41(1): 72-84. doi: 10.12097/j.issn.1671-2552.2022.01.006
Citation: CHEN Chong, CHEN Kaixu, YAN Yongxiang, ZHANG Jichun, XU Jingyin, ZHENG Guoquan. Geological background and resource potential of gold mineralization in Liberia[J]. Geological Bulletin of China, 2022, 41(1): 72-84. doi: 10.12097/j.issn.1671-2552.2022.01.006

利比里亚金矿成矿地质背景与资源潜力

  • 基金项目:
    商务部援外技术合作项目《援利比里亚矿产资源调查项目》(编号:IGGEF2015042)
详细信息
    作者简介: 陈冲(1987-),男,工程师,从事矿产普查与勘探、成矿规律与成矿预测研究。E-mail:cchen80s@163.com
    通讯作者: 陈开旭(1965-),男,研究员,从事矿床学、地球化学及区域成矿学等方面的科研及勘查工作。E-mail:178372237@qq.com
  • 中图分类号: P618.51

Geological background and resource potential of gold mineralization in Liberia

More Information
  • 西非地区比里姆(Birimian)岩系经历了伊本尼(Eburnean)造山运动, 成为全球金矿商业投资的主要含矿岩系之一, 该岩系在利比里亚覆盖约36%国土面积。通过对西非尤其是利比里亚地质背景分析, 初步建立了利比里亚区域地质构造格架, 梳理出比里姆岩系中33处重要意义的岩金矿点, 其分布与比里姆绿岩带、区域剪切构造带密切相关。综合全国266处金矿化点及密切相关的Au、Ag、Hg、Cu元素异常, 在利比里亚划定了比-克波、杜格贝、塞斯托斯、鲍特洛-祖亚-皮菲吉、邦-托托-宁巴、杜贝、朱亚松、托迪8个金成矿带, 显示出良好的成矿潜力, 并对不同开发程度下矿化前景区进一步找矿方面提出了初步建议。

  • 加载中
  • 图 1  西非前寒武纪主要地盾简图(据参考文献[26]修改)

    Figure 1. 

    图 2  利比里亚新地质单元划分

    Figure 2. 

    图 3  利比里亚矿产地质图(据参考文献[58]修改)

    Figure 3. 

    图 4  New Liberty金矿平面地质图(a)和矿体剖面图(b) (据参考文献[5]修改)

    Figure 4. 

    图 5  Dugbe金矿区Tuzon矿体7700 mN剖面

    Figure 5. 

    图 6  利比里亚成矿带划分

    Figure 6. 

    表 1  利比里亚金矿带主要特征

    Table 1.  Main features of the gold belts in Liberia

    序号 名称 地质背景 控矿因素 矿化蚀变 典型矿体/矿点
    1 比-克波成矿带 花岗-花岗闪长片麻岩、条带状铁建造、基性—超基性片岩带和热液退蚀变角闪岩 ①比山-克波山剪切绿岩带,走向北东44°~82°,倾向北西,倾角大于65°,与几内亚东南部西芒杜绿岩带相连
    ②剪切构造作用,发育脆-韧性条带状糜棱岩及同-后构造期花岗岩
    ③Au高背景区,发育Au-1异常(面积1128 km2,峰值220 ng/g,衬度8.33,与Ag、Cu等异常套合)和Au-2异常(面积452 km2,峰值2.19 ng/g,衬度3.36),大量金矿点,大致集中在比山、克波山及佐佐3个金矿富集区
    脉状石英-硫化物、浸染状硫化物及构造角砾状矿化硅化、绿泥石化、绢云母化、滑石化、金云母化、透闪石化等蚀变 大型新自由金矿,中型恩达布拉马金矿、韦朱金矿
    2 杜格贝成矿带 岩性较复杂,西南段为含石墨石榴子石黑云斜长片麻岩,局部石英黑云母片岩;北东段为含表壳岩的角闪黑云花岗-石英闪长片麻岩 ①北东向区域性杜格贝剪切带,经历了挤压、走滑、剪切等多期构造活动,形成了2期叠加褶皱、糜棱岩化带及同-晚期花岗闪长岩
    ②Au高背景区,发育Au-8异常中段(面积2529 km2,峰值2.66 ng/g,衬度3.12,与Ag、Hg、Cu等异常套合较好);杜格贝金矿富集区发育大量金矿点
    浸染状硫化物和脉状石英-硫化物矿化,广泛分布黄铁矿、毒砂及少量黄铜矿硅化、绢云母化、绿泥石化等蚀变 超大型杜格贝金矿(控制+推断资源量130.63 t)
    3 塞斯托斯成矿带 古元古代鲍莱-莫西域与太古宙凯内-马恩域碰撞造山形成的复杂混合过渡带 ①北东向区域性塞斯托斯剪切带,与科特迪瓦西南部图莱普勒-伊体剪切带相连
    ②北东向大量的绿岩带、广泛的多期褶皱、剪切断裂和花岗闪长岩
    ③西南段发育Au-7异常(面积602 km2,峰值1.28 ng/g,衬度2.73,与Ag异常套合)和卡巴山金矿区,该金矿区分布大量民采金矿点;北东段绿岩带西缘发育走滑糜棱岩化带,可见民采砂金点
    脉状石英-硫化物及浸染状硫化物矿化,发育毒砂、黄铁矿等硫化物 伊体金矿[69] Numon South、Kaba Mtn、Innis等矿点
    4 鲍特洛- 祖亚-皮菲吉成矿带 浅色含黑云角闪花岗-石英闪长片麻岩,北东角为含紫苏辉石-透辉石-角闪石暗色片麻岩,上覆大量的绿岩带 ①北东向鲍特洛-托佐罗-皮菲吉绿岩带
    ②以北东向剪切带和褶皱为主,其次为近南北向右行、北西向左行断裂等多期构造活动
    ③中南部发育Au-5异常(面积243 km2,峰值1.16 ng/g,衬度2.64)和鲍特洛-托佐罗金矿区;北东段发育Au-6异常(面积418 km2,峰值1.14 ng/g,衬度2.59)
    以石英脉型金矿化为主;硅化、绿泥石化、碳酸盐化等蚀变 中型科科亚金矿(资源量12.75 t);Kuobahn矿点
    5 邦-托托- 宁巴成矿带 条带状黑云花岗片麻岩和含角闪石花岗闪长-闪长片麻岩,上覆断续分布的绿岩带 ①邦-托托-宁巴绿岩带,走向北东,倾向西,倾角50°~70°
    ②北东向剪切和褶皱构造发育
    ③Au高背景区,其中北东角发育Au-3异常(面积263 km2,峰值1.22 ng/g,衬度2.77,与Cu异常套合);中北段发育托托山金矿富集区和Ag、Cu等异常
    石英-硫化物脉状和硫化物浸染状矿化赤铁矿化、碳酸盐化、绢云母化、绿泥石化等蚀变 Toto Range、North Wata等矿点
    6 杜贝成矿带 浅色片麻岩和石英闪长片麻岩,以及上覆相当数量变火山-沉积岩 ①区域性杜贝剪切带北东向(约50°),宽约300 m,横切区内北东东走向的片理、片麻理构造,为左行脆韧性剪切带
    ②发育大量变火山-沉积岩
    ③Au高背景区,发育Au-8异常南段(面积1473 km2,峰值2.30 ng/g,衬度2.75,与Ag、Hg、Cu等异常套合较好)和斯韦-图伊山金矿富集区
    脉状石英-硫化物及浸染状硫化物矿化,硫化物主要为黄铁矿和毒砂;硅化、绿泥石化、绢云母化、碳酸盐化等蚀变 Jolodah Village、Dougbo等矿点
    7 朱亚松成矿带 角闪黑云花岗岩-石英闪长片麻岩及绿岩带 ①北东向区域性朱亚松剪切带
    ②Au高背景区,北东段下部发育Au-8异常北段(面积1263 km2,峰值380.42 ng/g,衬度17.17,与Ag异常套合)和普图山金矿富集区;西南段发育Ag、Hg、Cu等异常且套合较好
    浸染状硫化物矿化 Putu CVI、Zia等矿点
    8 托迪成矿带 紫苏辉石-透辉石-角闪石花岗片麻岩、花岗-石英闪长片麻岩、吉欧-范特罗(Geo-Fantro)绿岩带及晚期基性侵入岩 ①北西向区域性托迪剪切带走向约320°,南西倾斜40°~60°,弱—中等糜棱岩构造及交叉剪切节理发育②Au高背景区,西北段含Au-4异常(面积414 km2,峰值2.65 ng/g,衬度3.24,与Ag、Hg、Cu等异常套合较好)和咖啡山金矿富集区;东南段发育民采砂金矿点 石英脉型、角砾状石英网脉型矿化;碳酸盐化、绿泥石化、硅化、赤铁矿化蚀变 Golodi、Ben-Ben、Mandingo Hill、Kle-Kle等矿点
    下载: 导出CSV
  • [1]

    张继纯, 严永祥, 王建雄, 等.西非矿产资源的地质背景及重要成矿分区[J].华南地质与矿产, 2019, 35(1):76-89. doi: 10.3969/j.issn.1007-3701.2019.01.008

    [2]

    Anderson K F E. Geometallurgical Evaluation of the Nkout (Cameroon) and Putu (Liberia) Iron Ore Deposits[D]. 德文郡埃克塞特市: University of Exeter, 2014.

    [3]

    Gunn A G, Dorbor J K, Mankelow J M, et al. A review of the mineral potential of Liberia[J]. Ore Geology Reviews, 2018, 101: 413-431. doi: 10.1016/j.oregeorev.2018.07.021

    [4]

    M. Robertson L P. West African Goldfileds[J]. Episodes, 2016, 2(39): 155-176.

    [5]

    Csaglobal. New Liberty Gold Mine Mineral Resources and Mineral Reserves Update, Liberia[EB/OL]. (2019)[2020-10-10] https://avesoro.com/technical-reports/

    [6]

    Hummingbird Resources. Hummingbird Resources Annual Report and Accounts[EB/OL]. (2019)[2020-10-12] https://www.hummingbirdresources.co.uk/.

    [7]

    Clauer N, Caby R, Jeannette D, et al. Geochronology of sedimentary and metasedimentary Precambrian rocks of the West African craton[J]. Precambrian Research, 1982, 18(1): 53-71.

    [8]

    高坪仙. 西非克拉通结晶基底构造分区概述[J]. 国外前寒武纪地质, 1992, (4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199204004.htm

    [9]

    Haggerty S E. Kimberlites in western Liberia: An overview of the geological setting in a plate tectonic framework[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B13): 10811-10826. doi: 10.1029/JB087iB13p10811

    [10]

    毛伦锦. 西非的金资源[J]. 国外铀金地质, 1989, (2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD198902000.htm

    [11]

    Foster R P, Piper D P. Archaean lode gold deposits in Africa: Crustal setting, metallogenesis and cratonization[J]. Ore Geology Reviews, 1993, 8(3): 303-347.

    [12]

    Boher M, Abouchami W, Michard A, et al. Crustal growth in West Africa at 2.1 Ga[J]. Journal of Geophysical Research Solid Earth, 1992, 97(B1): 345-369. doi: 10.1029/91JB01640

    [13]

    Denis T, Claude D, Alain C, et al. A 3.5 Ga granite-gneiss basement in Guinea: further evidence for early archean accretion within the West African Craton[J]. Precambrian Research, 2001, 108(3): 179-194.

    [14]

    Egal E, Thiéblemont D, Lahondère D, et al. Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain (Guinea, West African Craton)[J]. 2002, 117: 57-84.

    [15]

    Milési J, Ledru P, Feybesse J, et al. Early proterozoic ore deposits and tectonics of the Birimian orogenic belt, West Africa[J]. Precambrian Research, 1992, 58(1): 305-344.

    [16]

    Taylor W R, Tompkins L A, Haggerty S E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin[J]. Geochimica et Cosmochimica Acta, 1994, 58(19): 4017-4037. doi: 10.1016/0016-7037(94)90264-X

    [17]

    Jean-Louis F, Jean-Pierre M. The Archaean/Proterozoic contact zone in West Africa: a mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons?[J]. Precambrian Research, 1994, 69: 199-227. doi: 10.1016/0301-9268(94)90087-6

    [18]

    Kouamelan A N, Delor C, Peucat J J. Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Cote d'Ivoire (Man Rise - West African Craton)[J]. Precambrian Research, 1997, 86(3): 177-199.

    [19]

    Skinner E M W, Apter D B, Morelli C, et al. Kimberlites of the Man craton, West Africa[J]. Lithos, 2004, 76(1): 233-259.

    [20]

    Parra-Avila L A, Belousova E, Fiorentini M L, et al. Crustal evolution of the Paleoproterozoic Birimian terranes of the Baoulé-Mossi domain, southern West African Craton: U-Pb and Hf-isotope studies of detrital zircons[J]. Precambrian Research, 2016, 274: 25-60. doi: 10.1016/j.precamres.2015.09.005

    [21]

    Block S, Jessell M, Aillères L, et al. Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse[J]. Precambrian Research, 2016, 274: 82-109. doi: 10.1016/j.precamres.2015.10.014

    [22]

    Parra-Avila L A, Belousova E, Fiorentini M L, et al. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton[J]. Precambrian Research, 2018, 306: 174-188. doi: 10.1016/j.precamres.2017.12.044

    [23]

    Grenholm M. The Birimian event in the Baoulé Mossi domain (West African Craton)—regional and global context[D]. Lund University Master Thesis, 2014.

    [24]

    Manighetti I, Michard A, Saddiqi O. The West African Craton and its margins. Foreword[J]. Comptes Rendus Geoscience, 2018, 350(6): 233-235. doi: 10.1016/j.crte.2018.07.001

    [25]

    Grenholm M, Jessell M, Thébaud N. A geodynamic model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the southern West African Craton - Insights into an evolving accretionary-collisional orogenic system[J]. Earth Science Reviews, 2019, 192: 138-193. doi: 10.1016/j.earscirev.2019.02.006

    [26]

    Thiéblemont D. Geological Map of Africa—1: 10 million scale[Z]. French Geological Survey, 2016.

    [27]

    Rollinson H. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Precambrian Research, 2016, 281: 1-12. doi: 10.1016/j.precamres.2016.05.005

    [28]

    Rollinson H R. Zonation of supracrustal relics in the Archaean of Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Nature, 1978, 272(5652): 440-442. doi: 10.1038/272440a0

    [29]

    Hurley P M, Leo G W, Fairbairn R W W A. Liberian age province (about 2, 700 m. y. ) and adjacent provinces in Liberia and Sierra Leone[J]. Geological Society of America Bulletin, 1971, 12: 3483-3490.

    [30]

    Beckinsale R D, Gale N H, Pankhurst R J, et al. Discordant Rb-Sr and Pb-Pb whole rock isochron ages for the Archaean basement of Sierra Leone[J]. Precambrian Research, 1980, 13(1): 63-76. doi: 10.1016/0301-9268(80)90059-5

    [31]

    Beckinsale R D, Gale N H, Pankhurst R J, 等. 塞拉利昂太古宙基底中不一致的Rb-Sr和Pb-Pb全岩等时年龄的意义[J]. 国外前寒武纪地质, 1982, (1): 67-76.

    [32]

    Williams H R. The Archaean geology of Sierra Leone[J]. Precambrian Research, 1978, 6(3): 251-268.

    [33]

    Thiéblemont D, Goujou J C, Egal E, et al. Archean evolution of the Leo Rise and its Eburnean reworking[J]. Journal of African Earth Sciences, 2004, 39(3): 97-104.

    [34]

    Rollinson H R, Cliff R A. New Rb-Sr age determinations on the Archaean basement of Eastern Sierra Leone[J]. Precambrian Research, 1982, 17(1): 63-72. doi: 10.1016/0301-9268(82)90154-1

    [35]

    Rollinson H. Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation[J]. Nature, 1997, 389(6647): 173-176. doi: 10.1038/38266

    [36]

    Barth M G, Rudnick R L, Carlson R W, et al. Re-Os and U-Pb geochronological constraints on the eclogite-tonalite connection in the Archean Man Shield, West Africa[J]. Precambrian Research, 2002, 118(3): 267-283.

    [37]

    Rollinson H. The geochemical evolution of Archaean felsic gneisses in the West African Craton in Sierra Leone[J]. Journal of African Earth Sciences, 2018, 143: 28-39. doi: 10.1016/j.jafrearsci.2018.03.018

    [38]

    Kouamelan A N, Djro S C, Allialy M E, et al. The oldest rock of Ivory Coast[J]. Journal of African Earth Sciences, 2015, 103: 65-70. doi: 10.1016/j.jafrearsci.2014.12.004

    [39]

    Petersson A, Scherstén A, Kristinsdóttir B, et al. Birimian crustal growth in the West African Craton: U-Pb, O and Lu-Hf isotope constraints from detrital zircon in major rivers[J]. Chemical Geology, 2018, 479: 259-271. doi: 10.1016/j.chemgeo.2018.01.021

    [40]

    Patrick A S, Solomon A, Ben X S, et al. Geochemical and Sr-Nd isotopic records of Paleoproterozoic metavolcanics and mafic intrusive rocks from the West African Craton: Evidence for petrogenesis and tectonic setting[J]. Geological Journal, 2018, 3(2): 725-741.

    [41]

    Block S, Baratoux L, Zeh A, et al. Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana); New insights from U-Pb-Hf zircon data and geochemistry[J]. Precambrian Research, 2016, 287: 1-30. doi: 10.1016/j.precamres.2016.10.011

    [42]

    Parra-Avila L A, Kemp A I S, Fiorentini M L, et al. The geochronological evolution of the Paleoproterozoic Baoulé-Mossi domain of the Southern West African Craton[J]. Precambrian Research, 2017, 300: 1-27. doi: 10.1016/j.precamres.2017.07.036

    [43]

    Feybesse J, Billa M, Guerrot C, et al. The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling[J]. Precambrian Research, 2006, 149(3): 149-196.

    [44]

    Baratoux L, Metelka V, Naba S, et al. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (2.2-2.0 Ga), western Burkina Faso[J]. Precambrian Research, 2011, 191(1/2): 18-45.

    [45]

    Dabo M, Aïfa T, Gassama I, et al. Thrust to transpression and transtension tectonics during the Paleoproterozoic evolution of the Birimian Greenstone Belt of Mako, Kédougou-Kéniéba Inlier, Eastern Senegal[J]. Journal of African Earth Sciences, 2018, 148: 14-29. doi: 10.1016/j.jafrearsci.2018.05.010

    [46]

    Petersson A, Scherstén A, Kemp A I S, et al. Zircon U-Pb-Hf evidence for subduction related crustal growth and reworking of Archaean crust within the Palaeoproterozoic Birimian terrane, West African Craton, SE Ghana[J]. Precambrian Research, 2016, 275: 286-309. doi: 10.1016/j.precamres.2016.01.006

    [47]

    Billa M, Feybesse J, Bronner G, et al. Banded ferruginous quartzite formations of the Nimba and Simandou ranges: tectonically stacked units on an Archean plutonic basement (Kenema-Man craton), during the Eburnean orogeny[J]. Earth and Planetary Science, 1999, 329: 287-294.

    [48]

    Onstott T C, Dorbor J. 40Ar/39Ar and paleomagnetic results from Liberia and the Precambrian APW data base for the West African Shield[J]. Journal of African Earth Sciences, 1987, 6(4): 537-552.

    [49]

    Tapsoba B, Lo C, Jahn B, et al. Chemical and Sr-Nd isotopic compositions and zircon U-Pb ages of the Birimian granitoids from NE Burkina Faso, West African Craton: Implications on the geodynamic setting and crustal evolution[J]. Precambrian Research, 2013, 224: 364-396. doi: 10.1016/j.precamres.2012.09.013

    [50]

    Sakyi P A, Su B, Anum S, et al. New zircon U-Pb ages for erratic emplacement of 2213-2130 Ma Paleoproterozoic calc-alkaline I-type granitoid rocks in the Lawra Volcanic Belt of Northwestern Ghana, West Africa[J]. Precambrian Research, 2014: 149-168.

    [51]

    Gasquet D, Barbey P, Adou M, et al. Structure, Sr-Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala area (Cote d'Ivoire): evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa?[J]. Precambrian Research, 2003, 127: 329-354. doi: 10.1016/S0301-9268(03)00209-2

    [52]

    John T, Klemd R, Hirdes W, et al. The metamorphic evolution of the Paleoproterozoic (Birimian) volcanic Ashanti belt (Ghana, West Africa)[J]. Precambrian Research, 1999, 98(1): 11-30.

    [53]

    Debat P, Nikiéma S, Mercier A, et al. A new metamorphic constraint for the Eburnean orogeny from Paleoproterozoic formations of the Man shield (Aribinda and Tampelga countries, Burkina Faso)[J]. Precambrian Research, 2003, 123(1): 47-65. doi: 10.1016/S0301-9268(03)00046-9

    [54]

    Goldfarb R J, André-Mayer A, Jowitt S M, et al. West Africa: The World's Premier Paleoproterozoic Gold Province[J]. Economic Geology, 2017, 112(1): 123-143. doi: 10.2113/econgeo.112.1.123

    [55]

    Mcfarlane H B, Ailleres L, Betts P, et al. Episodic collisional orogenesis and lower crust exhumation during the Palaeoproterozoic Eburnean Orogeny: Evidence from the Sefwi Greenstone Belt, West African Craton[J]. Precambrian Research, 2019, 325: 88-110. doi: 10.1016/j.precamres.2019.02.012

    [56]

    Markwitz V, Hein K A A, Miller J. Compilation of West African mineral deposits: Spatial distribution and mineral endowment[J]. Precambrian Research, 2016, 274: 61-81. doi: 10.1016/j.precamres.2015.05.028

    [57]

    史宏江, 王翠彭, 赵意会. 加纳西南部阿曼弗如姆金矿床地质特征及成因分析[J]. 黄金, 2018, 39(8): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201808006.htm

    [58]

    Wahl R R. Geologic, Geophysical, and Mineral Localities Map of Liberia-A Digital Compilation[Z]. U.S. Geological Survey, 2007.

    [59]

    Eglinger A, Thébaud N, Zeh A, et al. New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system[J]. Precambrian Research, 2017, 292: 258-289. doi: 10.1016/j.precamres.2016.11.012

    [60]

    Lytwyn J, Burke K, Culver S. The nature and location of the suture zone in the Rokelide orogen, Sierra Leone: Geochemical evidence[J]. Journal of African Earth Sciences, 2006, 46(5): 439-454. doi: 10.1016/j.jafrearsci.2006.08.004

    [61]

    De Waele B, Lacorde M, Vergara F, et al. New insights on proterozoic tectonics and sedimentation along the peri-Gondwanan West African margin based on zircon U-Pb SHRIMP geochronology[J]. Precambrian Research, 2015, 259: 156-175. doi: 10.1016/j.precamres.2014.08.008

    [62]

    Dupuy C, Marsh J, Dostal J, et al. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence[J]. Earth and Planetary Science Letters, 1988, 87(1): 100-110.

    [63]

    Sebai A, Feraud G, Bertrand H, et al. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift[J]. Earth and Planetary Science Letters, 1991, 104(2): 455-472.

    [64]

    徐少龙, 雷新喜. 利比里亚大巴萨州扎恩砂金矿矿床成因及找矿标志[J]. 科学家, 2015(9): 64-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KEXJ201509037.htm

    [65]

    牛智辉, 徐东华. 西非利比里亚大巴萨州地区砂金矿特征及找矿方向探讨[J]. 地球, 2015, (z1): 33.

    [66]

    Hummingbird Resources. Hummingbird Resources Annual Report[EB/OL]. (2012)[2020-10-15] https://www.hummingbirdresources.co.uk/.

    [67]

    王海燕, 夏强. 西非利比里亚绿岩型金矿成因及特点[J]. 地球, 2013, (7): 149.

    [68]

    Langdon R G A J. Structural Controls on Gold Mineralisation along the Dugbe Shear Zone, Eastern Liberia[C]. 36 Annual Winter Meeting of the Mineral Deposits Studies Group. Leicester, 2013.

    [69]

    Béziat D, Siebenaller L, Salvi S, et al. A weathered skarn-type mineralization in Ivory Coast: The Ity gold deposit[J]. Ore Geology Reviews, 2016, 78: 724-730. doi: 10.1016/j.oregeorev.2015.07.011

    [70]

    Whiteaker R J. Exploration Activities on the Mineral Concessions of Liberty International Mineral Corp[EB/OL]. (2007)[2020-10-20] https://www.libertymineral.com/projects/liberia/project_gblita/.

    [71]

    Geoff E. Delivering on Liberia's Potential. [EB/OL]. (2012)[2020-10-10] https://www.amlibgroup.com/2012.

    [72]

    Gerard Buisson, Marc Leblanc, 周少平. 阿拉伯、马里、摩洛哥上元古界蛇绿岩建造地幔橄榄岩中的金[J]. 黄金科技动态, 1989, (6): 10-13.

    [73]

    孙建虎. 几内亚金矿地质特征及成矿条件分析[J]. 企业导报, 2012, (6): 273-274. https://www.cnki.com.cn/Article/CJFDTOTAL-QYDB201206196.htm

    陈开旭, 孟庆敏, 王超, 等. 援利比里亚矿产资源调查技术合作项目2019年度报告. 中国地质调查局武汉地质调查中心, 2019.

    Auramin. The technical Introduction of Zolowo Gold Project. 2019.

    Limited T M. Replacement Prospectus. 2017.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  3768
  • PDF下载数:  223
  • 施引文献:  0
出版历程
收稿日期:  2021-01-05
修回日期:  2021-11-02
刊出日期:  2022-01-15

目录