-
摘要:
东北非地区主要包括埃及、苏丹、厄立特里亚和埃塞俄比亚。该地区金、银、铜、锌等矿产资源丰富, 主要矿床类型为VMS(火山成因块状硫化物)矿床。自发现Ariab、Bisha等大型VMS矿床以来, 各国矿业公司在东北非地区开展勘探和开发, 并新发现大量矿床, 铜、金等矿产资源量不断增加。通过对区域内各国VMS矿床的勘查、研究进展进行梳理和总结, 以期为本地区开展矿产勘查和投资开发的企业提供参考。区内VMS矿床围岩多为双峰式偏长英质火山岩, 与火山弧岩石组合有一定相关性, 主要控矿因素为剪切带、褶皱和具有一定特征的变质火山沉积岩系, 矿床形成集中于3个阶段, 时间跨度为890 ~ 695 Ma, 矿床形成于两类古构造环境, 即洋内汇聚板块边缘的岛弧环境和弧后盆地环境。许多矿床都经历了近地表氧化和表生富集作用, 金和铜在浅层相对富集。已发现的矿床主要位于东北非努比亚地盾偏中北部地区, 集中于Barka、Gabgaba、Eastern Desert地体, 找矿有利区位于Barka、Nakasib、Keraf、Nugrus缝合带附近。
Abstract:The Northeast Africa mainly includes Egypt, Sudan, Eritrea and Ethiopia, hosting rich mineral resources such as gold, silver, copper and zinc, and the main types of mineral deposits are VMS.Since the discovery of large VMS deposits such as Ariab and Bisha, mining companies from various countries have been conducting exploration and mining in this region, and the discovery of a large number of new deposits elevate the mineral resources of copper and gold.The summary of exploration and research progress of VMS deposits in those countries can provide references for enterprises that carry out mineral exploration and investment in this region.The host rocks of VMS deposits in this region are mainly bimodal felsic volcanic rocks, which indicate a certain correlation with the volcanic arc rock combination, and the main controlling factors for the deposits are shear zones, folds and characteristic metamorphosed volcanic-sedimentary series.The ages of these deposits are mainly concentrated in three stages ranging from 890 Ma to 695 Ma, and were formed in two types of paleotectonic environments, island arc on the margins of convergent plates and back-arc basin in the oceans.Most deposits experienced near-surface oxidation and supergene enrichment, with gold and copper relatively enriched near surface.The discovered VMS deposits are mainly distributed in the north-central part of the Arabian Nubian Shield, including Barka, Gabgaba, Eastern Desert terranes, and the prospects are near the Barka, Nakasib, Keraf, and Nugrus suture zones.
-
Key words:
- VMS deposits /
- Northeast Africa /
- Nubian shield /
- metallogeny /
- mineral exploration engineering
-
-
图 1 东北非地区主要地体与缝合带及VMS矿床分布图(据参考文献[10]修改)
Figure 1.
图 2 厄立特里亚Asmara矿床矿区地质简图(据参考文献[27]修改)
Figure 2.
图 4 东北非新元古代主要构造和成矿阶段示意图(据参考文献[35]修改)
Figure 4.
表 1 东北非主要VMS型矿床产量及金属资源量
Table 1. Metal output and mineral resources of major VMS deposits in Northeast Africa
矿床 控股方 矿石产量/(104t·a-1) 金属资源量 国家 金/ t 铜/ 104 t 锌/ 104 t Bisha 紫金矿业 240 38.06 66.00 317.00 厄立特里亚 Asmara 四川路桥 645 42.90 69.15 112.06 Harvest 紫金矿业 26 7.84 7.52 9.27 埃塞俄比亚 Adyabo 西藏华钰 71 8.49 2.98 - Ariab Ariab Mining 198 31.00 135.35 - 苏丹 Galat Sufar Orca Gold 570 126.04 - - Hamama Aton Resources 83 14.86 - - 埃及 Abu Marawat Aton Resources - 5.08 2.23 3.34 注:除Bisha、Ariab外,其他矿床为可研设计产量; 资源量数据据各公司官网及标普数据库 表 2 Bisha矿床典型矿石类型矿化特征[33]
Table 2. Mineralization characteristics of the typical ores in the Bisha mine
矿石类型 岩性 平均品位 厚度及矿化特征 氧化带 铁帽 6 g/t Au 0~10 m厚,深棕色,Fe、Au含量高的表层 半风化层 5~30 m厚,棕色,Fe、Au含量高的氧化物,无硫化物 酸性淋滤带 白色硅质粘土层 6 g/t Au 0~15 m厚,白色,不规则状,硅质淋滤带 黑色硅质含铅层 25 g/t Au 0.5~1.5 m厚,黑色,粉末状,富Au-Ag-Pb,少量黄铁矿 次生富集带 黄铁矿砂层 10 g/t Au 0.5~5 m厚,黄色,细粒黄铁矿砂(未固结),贫Cu富Ag 次生富集硫化物层 4.09% Cu 0.5~15 m厚,富Cu贫Au块状硫化物(黄铁矿为主)Cu含量随深度增加 原生锌矿带 原生硫化物 5%~7% Zn 富Zn硫化物 -
[1] Johnson P R, Zoheir B A, Ghebreab W, et al. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield[J]. South African Journal of Geology, 2017, 120(1): 63-76. doi: 10.25131/gssajg.120.1.63
[2] 彭自栋, 王长乐, 赵刚, 等. 前寒武纪VMS与BIF铁矿床共生组合研究进展[J]. 矿床地质, 2017, 36(4): 905-920. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704008.htm
[3] Piercey S J. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide(VMS)deposits[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(2): 119-136. doi: 10.1144/1467-7873/09-221
[4] 毛景文, 张作衡, 王义天, 等. 国外主要矿床类型、特点及找矿勘查[M]. 北京: 地质出版社, 2012.
[5] Barrie C T, Nielsen F W, Aussant C H. The Bisha volcanic-associated massive sulfide deposit, western Nakfa Terrane, Eritrea[J]. Economic Geology, 2007, 102(4): 717-738. doi: 10.2113/gsecongeo.102.4.717
[6] 蒋文程, 张有军, 谭宁, 等. 厄立特里亚阿斯马拉Asmara铜金多金属成矿带研究进展[J]. 矿产勘查, 2017, 8(4): 700-707. doi: 10.3969/j.issn.1674-7801.2017.04.023
[7] Be'eri-Shlevin Y, Katzir Y, Whitehouse M J, et al. Contribution of pre Pan-African crust to formation of the Arabian Nubian Shield: New secondary ionization mass spectrometry U-Pb and O studies of zircon[J]. Geology, 2009, 37: 899-902.
[8] Stern R J. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 319-351. doi: 10.1146/annurev.ea.22.050194.001535
[9] Hargrove U S, Stern R J, Kimura J I, et al. How juvenile is the Arabian-Nubian shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia[J]. Earth & Planetary Science Letters, 2006, 252(3/4): 308-326.
[10] Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003
[11] Stern R J, Ali K A, Abdelsalam M G, et al. U-Pb Zircon geochronology of the eastern part of the Southern Ethiopian Shield[J]. Precambrian Research, 2012, 206/207: 159-167. doi: 10.1016/j.precamres.2012.02.008
[12] Kröner A, Stern R J. AFRICA | Pan-African Orogeny[C]//Encyclopedia of Geology. Elsevier, 2005: 1-12.
[13] Abdelsalam M, Stern B. Sutures and shear zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23: 289-310. doi: 10.1016/S0899-5362(97)00003-1
[14] Drury S A, Berhe S M. Accretion tectonics in northern Eritrea revealed by remotely sensed imagery[J]. Geological Magazine, 1993, 130: 170-190.
[15] Zoheir B A, Johnson P R, Goldfarb R J, et al. Orogenic gold in the Egyptian Eastern Desert: Widespread gold mineralization in the late stages of Neoproterozoic orogeny[J]. Gondwana Research, 2019, 75: 184-217. doi: 10.1016/j.gr.2019.06.002
[16] Kusky T M, Abdelsalam M, Tucker R D, et al. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 2003, 123(2/4): 81-85.
[17] Andersson U B, Ghebreab W, Teklay M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 2006, 44: 45-65. doi: 10.1016/j.jafrearsci.2005.11.006
[18] Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002
[19] Teklay M. Neoproterozoic arc-back-arc system analog to modern arcback-arc systems: evidence from tholeiite-boninite association, serpentinite mudflows, and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield[J]. Precambrian Research, 2006, 145: 81-92. doi: 10.1016/j.precamres.2005.11.015
[20] Grenne T, Pedersen R B, Bjerkgård T, et al. Neoproterozoic evolution of Western Ethiopia: igneous geochemistry, isotope systematics and U-Pb ages[J]. Geological Magazine, 2003, 140: 373-395. doi: 10.1017/S001675680300801X
[21] Tsige L. Metamorphism and gold mineralization of the Kenticha-Katawicha area; Adola belt, southern Ethiopia[J]. Journal of African Earth Sciences, 2006, 45: 16-33. doi: 10.1016/j.jafrearsci.2006.01.002
[22] Botros N S. Ore Deposits in the Arabian-Nubian Shield[C]//Hamimi Z, Fowler A R, Liégeois J P, et al. The Geology of the Arabian-Nubian Shield. Springer International Publishing, 2021: 585-631.
[23] Woldemichael B W, Kimura J I, Dunkley D J, et al. SHRIMP U-Pb zircon geochronology and Sr-Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences, 2009, 99: 1773-1790.
[24] Johnson N. NI 43-101 Independent Technical Report Block 14 project, Republic of the Sudan[EB/OL]. (2014-05-11)[2021-09-01]. https://orcagold.com/projects/block-14-gold-project/technical-studies/.
[25] Ghebreab W, Greiling R O, Solomon S. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea[J]. Journal of African Earth Sciences, 2009, 55(5): 219-235. doi: 10.1016/j.jafrearsci.2009.05.001
[26] Barrie C T, Hannington M D. Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings: introduction[J]. Rev. Econ. Geol., 1999, 8: 1-11
[27] Neil S. Asmara Project Feasibility Study NI43-101 Technical Report[Z]. SENET(Pty)Limited, 2013: 1-150.
[28] 成曦晖, 徐九华, 王建雄, 等. 厄立特里亚阿斯马拉VMS矿床S、Pb同位素对成矿物质来源的约束[J]. 中国有色金属学报, 2017, 27(4): 795-810. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201704017.htm
[29] Sandy M A, Christopher M, David G T. NI43-101 Technical Report on a Mineral Resource Estimate at the Terakimti Prospect, Harvest Property[EB/OL]. (2014-02-14)[2021-09-01]. https://eastafricametals.com/harvest/#reports.
[30] East Africa Metals. THE Harvest Project[EB/OL]. (2015-10-18)[2021-09-01]. https://eastafricametals.com/harvest/.
[31] East Africa Metals. THE Adyabo Project[EB/OL]. (2016-05-31)[2021-09-01]. https://eastafricametals.com/adyabo/.
[32] 韩世礼. 埃塞俄比亚施瑞地区VMS型矿床成矿机制及成矿规律研究[D]. 中南大学博士学位论文, 2013.
[33] Gribble P, Melnyk J, Munro P. Bisha Mine, Eritrea, Africa. NI 43-101 Techncial Report[Z]. Nevsun Resources Ltd., 2013.
[34] Teklay M, Haile T, Kröner A, et al. A Back-arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea[J]. Gondwana Research, 2003, 6(4): 629-640. doi: 10.1016/S1342-937X(05)71012-1
[35] Bosc R, Tamlyn N, Kachrillo J J. The Hassai Mine project VMS resources update Red Sea State, Sudan. NI 43-101 Technical Report[Z]. La Mancha Resources Inc, 2012.
[36] Plyley B, Kachrillo J J, Bennett M, et al. Hassai South Cu-Au VMS deposit, Sudan, resource estimate, NI 43-101 Technical Report[Z]. La Mancha Resources Inc., 2009.
[37] Matt B. NI 43-101 independent technical report Hamama west deposit, Abu Marawat concession, Arab Republic of Egypt[EB/OL]. (2017-01-01)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.
[38] Javier Orduña. Gold and base metal deposits of the Abu Marawat Concession, Egypt[EB/OL]. (2018-03-04)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.
[39] Perelló J, Sillitoe R H, Brockway H, et al. Metallogenic inception of the Arabian-Nubian Shield: Daero Paulos porphyry copper prospect, Eritrea[J]. Gondwana Research, 2020, 88: 106-125. doi: 10.1016/j.gr.2020.06.021
[40] Faisal M, Yang X, Khalifa I H, et al. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 2020, 344: 105751. doi: 10.1016/j.precamres.2020.105751
[41] Barrie C T, Abdalla M A F, Hamer R D. Volcanogenic Massive Sulphide-Oxide Gold Deposits of the Nubian Shield in Northeast Africa[C]//Bouabdellah M Slack J F. Mineral Deposits of North Africa. Cham. : Springer International Publishing(Mineral Resource Reviews), 2016: 417-435.
[42] Ghebretensae G F, Yao H Z, Zhao J H, et al. Neoproterozoic magmatism in the southern Arabian-Nubian Shield: implications for petrogenesis and tectonic setting[J]. Arabian Journal of Geosciences, 2019, 44: 6525-6545.
[43] Ghebretensae G F, Yao H Z, Zhao K, et al. Petrogenesis and tectonic implications of the Neoproterozoic adakitic and A-type granitoids in the southern Arabian-Nubian shield[J]. Arabian Journal of Geosciences, 2019, 12(14): 428. doi: 10.1007/s12517-019-4575-x
[44] Avigad D, Stern R J, Beyth M, et al. Detrital zircon U-Pb geochronology of Cryogenian diamictites and lower Paleozoic sandstone in Ethiopia(Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield[J]. Precambrian Research, 2007, 154: 88-106. doi: 10.1016/j.precamres.2006.12.004
[45] Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002
[46] Stern R J, Avigad D, Miller N R, et al. Geological Society of Africa Presidential Review #10: Evidence for the Snowball Earth Hypothesis in the Arabian-Nubian Shield and the East African Orogen[J]. Journal of African Earth Sciences, 2006, 44: 1-20. doi: 10.1016/j.jafrearsci.2005.10.003
[47] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18: 1-75. doi: 10.1016/S0169-1368(01)00016-6
[48] Fritz H, Abdelsalam M, Ali K A, et al. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution[J]. Journal of African Earth Sciences, 2013, 86: 65-106. doi: 10.1016/j.jafrearsci.2013.06.004
[49] Tornos F, Peter J M, Allen R, et al. Controls on the siting and style of volcanogenic massive sulphide deposits[J]. Ore Geology Reviews, 2015, 68: 142-163. doi: 10.1016/j.oregeorev.2015.01.003
[50] 李文渊. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 2007, 4: 331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001
[51] 侯增谦, 韩发, 夏林圻, 等. 现代与古代海底热水成矿作用——以若干火山成因块状硫化物矿床为例[M]. 北京: 地质出版社, 2003: 1-11.
[52] Herrington R, Maslennikov V, Zaykov V, et al. Classification of VMS deposits: Lessons from the South Uralides[J]. Ore Geology Reviews, 2005, 27(1/4): 203-237.
[53] 王登红. 块状硫化物矿床的地球化学找矿标志[J]. 地质科技情报, 1994, (2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.017.htm
[54] Genna D, Gaboury D. Use of semi-volatile metals as a new vectoring tool for VMS exploration: Example from the Zn-rich McLeod deposit, Abitibi, Canada[J]. Journal of Geochemical Exploration, 2019, 207: 106358. doi: 10.1016/j.gexplo.2019.106358
[55] Feltrin L, Bertelli M. Using Clustered Heat Maps in Mineral Exploration to Visualize Volcanic-Hosted Massive Sulfide Alteration and Mineralization[J]. Natural Resources Research, 2020, 29(1): 311-344. doi: 10.1007/s11053-019-09586-2
[56] Hendrickson M D. Geologic interpretation of aeromagnetic and chemical data from the Oaks Belt, Wabigoon subprovince, Minnesota: implications for Au-rich VMS deposit exploration[J]. Canadian Journal of Earth Sciences, 2015, 53: 176-188.
[57] 甘凤伟, 王京彬, 朱思才, 等. 埃塞俄比亚北部VMS型铜多金属矿快速勘查方法[J]. 矿产勘查, 2018, 9(8): 1611-1621. doi: 10.3969/j.issn.1674-7801.2018.08.019
-