Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: A case study of karst areas in Guizhou, China
-
摘要:
通过对贵州岩溶区19条风化剖面Cd分布特征的研究, 初步揭示了贫Cd碳酸盐岩发育的土壤中Cd的富集机制及Cd含量的约束因素。①贫Cd基岩发育的土壤同样可以导致Cd的明显富集, 甚至超常富集, 且含量峰值通常位于土壤层底部(T1)。②Cd在基岩中通常优先赋存在酸不溶相, 另一方面, 由于基岩酸不溶物含量一般极低, 酸溶相的Cd占全岩Cd的比例仍处于绝对优势。在富Cd的基岩酸不溶物基础上, 叠加了来自酸溶相中Cd的贡献, 是岩溶区土壤Cd普遍富集的原因。③土壤中Cd的含量与其在基岩或基岩酸不溶物中的含量均不相关。T1中Cd的含量受制于Cd在基岩酸不溶物中的含量、基岩酸溶相Cd占全岩中Cd的质量百分数、T1中Cd的亏损率的共同约束。有利于Cd在T1中超常富集的最佳条件是: Cd在基岩酸不溶物中含量高、基岩酸溶相Cd占全岩中Cd的比例大、T1中Cd的亏损率小。另外, 对于由基岩酸不溶物残余累积形成的土壤层, T1为其发育起点, Cd在T1中含量高, 通常在土壤层中也高, 反映出一般风化剖面的发育特征。研究结果可以深化对岩溶环境Cd地球化学行为的认识, 为区域上基于地质成因开展Cd污染风险评价及建立其清洁水平提供参考。
Abstract:Based on the study on the distribution characteristics of Cd for 19 weathering profiles in the karst areas of Guizhou, China, this work preliminarily revealed the enrichment mechanisms of Cd and the restrictive factors of Cd contents in soils developed on Cd-poor carbonate rocks.The main conclusions are as follows: ① Soils derived from Cd-poor bedrocks can also contain obvious enrichment or even supernormal enrichment phenomenon of Cd, and the summit content of Cd is usually located at the bottom of the soil layer(i.e., T1).② Cd generally preferentially occurs in acid-insoluble phase in bedrocks, and on the other hand, owing to very low mass percentage of acid-insoluble residues in bedrocks, the proportion of Cd of acid-soluble phase in the bulk rocks still has an abnormal advantage.Thus, on the basis of Cd-rich acid-insoluble phase in bedrocks, combined with the contribution of Cd from acid-soluble phase in bedrocks, it creates a fact that Cd is universally rich in soils in the karst areas.③ The content of Cd in soils is not directly related to its content in bedrocks or acid-insoluble residues of bedrocks, and it is constrained by the content of Cd in acid-insoluble residues of bedrocks, the mass percentage of Cd of acid-soluble phase in the bulk rock and the loss rate of Cd in T1 together.The optimum conditions conducive to the extraordinary enrichment of Cd in T1 contain three aspects as high level of Cd in acid-insoluble residues of bedrocks, large proportion of Cd of acid-soluble phase in the bulk rock and low loss rate of Cd in T1.In addition, for the soil layer formed by the accumulation of acid insoluble residues in bedrocks, T1 is the starting point for its development and evolution.The higher the content of Cd is in T1, the higher it is usually in the soil layer, reflecting the development characteristics of general weathering profile.This study might deepen the understanding of geochemical behavior of Cd in karst environment, and provide reference for regional Cd pollution risk assessment based on geological genesis and establishing its cleaning level.
-
Key words:
- cadmium-poor carbonate rock /
- soil /
- cadmium /
- supernormal enrichment /
- karst area /
- Guizhou Province
-
-
表 1 贵州岩溶区19条采样剖面基本情况
Table 1. The basic characteristics for the 19 weathering profiles in the karst area of Guizhou
剖面编号 基岩岩性 所属地层 岩粉层 土壤层厚度/cm 土壤质地 1 白云岩 下奥陶统桐梓组 + 400 粘土 2 白云岩 中上寒武统娄山关群 + 240 粘土 3 白云质灰岩 下三叠统永宁镇组 + 340 粘土 4 白云岩 中寒武统高台组 + 220 粘土 5 灰岩 寒武系 + 330 壤质粘土 6 白云岩 中上寒武统娄山关群 + 540 粘土 7 灰岩 下三叠统夜郎组 + 385 粘土 8 灰岩 下二叠统 + 240 粉砂质粘土 9 灰岩 上石炭统 + 110 粘土 10 灰岩 下三叠统大冶组 - 120 粘土 11 白云岩 中三叠统法郎组 + 130 粘土 12 白云岩 下三叠统安顺组 + 50 粉砂质粘土 13 白云岩 下三叠统安顺组 + 120 粘土 14 白云岩 下三叠统安顺组 + 395 粘土 15 灰岩 下三叠统大冶组 + 515 粘土 16 灰岩 下三叠统大冶组 - 30 粉砂质粘土 17 灰岩 下三叠统大冶组 - 95 粘土 18 白云岩 下三叠统安顺组 - 30 粉砂质粘土 19 灰岩 下石炭统簸箕湾组 - 50 粘土 注:剖面编号同图 1;“+”表示岩粉层发育,“-”表示岩粉层缺失 表 2 贵州岩溶区19条风化剖面Cd、Zr含量及相关参数
Table 2. The contents of Cd and Zr and some indices for the 19 weathering profiles in the karst areas of Guizhou
剖面编号 Cd/10-6 AI
/%Cd*
/%Zr/10-6 Y Yt Yf T1 Tave(n) Tmax Tmin Y Yt Yf T1 1 0.006 0.193 0.102 0.888 0.285(12) 0.888 0.129 0.95 30.56 0.703 46.20 5.62 161 2 0.051 0.630 0.091 2.55 0.538(17) 2.55 0.19 0.54 6.67 0.581 114 1.14 118 3 0.009 0.227 0.068 0.213 0.151(12) 0.213 0.068 0.81 20.43 1.16 136 51 168 4 0.068 0.039 0.069 0.419 0.296(10) 0.419 0.163 2.46 1.41 7.10 232 53.90 152 5 0.167 0.072 2.60 22.80 2.88(12) 22.8 0.242 1.06 0.46 1.15 64.60 11.90 203 6 0.102 - 0.179 4.70 1.17(26) 4.7 0.347 4.00 - 1.77 - 3.52 95.44 7 0.138 2.93 2.51 21.29 4.08(13) 21.29 0.903 0.27 5.73 0.621 398 3.81 441 8 0.20 1.97 1.34 4.49 0.955(9) 4.49 0.147 0.64 6.30 1.20 112 5.87 139 9 0.168 0.453 0.782 18.89 4.97(8) 18.89 2.39 0.51 1.38 0.765 220 5.91 244 10 0.125 0.030 - 0.409 0.488(6) 0.692 0.409 2.79 0.67 17.20 233 - 253 11 0.095 0.036 0.091 0.582 0.413(11) 0.659 0.297 10.82 4.10 14.30 121 16.50 188 12 0.137 - 0.044 0.722 0.551(4) 0.722 0.41 0.25 - 0.578 - 3.32 139 13 0.077 0.267 0.103 1.83 0.544(11) 1.83 0.331 0.86 2.98 2.95 448 10 287 14 0.264 2.66 0.054 1.46 0.402(23) 1.46 0.192 0.25 2.52 4.88 159 1.11 195 15 0.071 - 0.526 4.35 1.57(17) 4.35 0.429 4.55 - 10.03 - 20.46 214 16 0.063 0.075 - 0.308 0.213(6) 0.308 0.08 3.17 3.77 5.80 121 - 243 17 0.025 0.087 - 0.168 0.219(10) 0.273 0.151 1.80 6.26 3.08 162 - 234 18 0.179 0.219 - 0.661 0.738(6) 0.794 0.661 1.59 1.95 7.73 255 - 177 19 0.160 0.474 - 3.46 3.60(5) 4.51 3.22 1.73 5.13 2.74 139 - 283 注:剖面编号同图 1;对于各样品Cd的含量,Y、Yt、Yf、T1分别代表基岩、基岩酸不溶物、岩粉层、紧挨岩-土界面的土壤层底部样品,Tave表示土壤层样品Cd含量平均值,括号内n指土壤层样品数,Tmax、Tmin分别表示土壤层样品中Cd含量的最大值、最小值,其中,Yt中无数据源于样品量不足而未测试,Yf中无数据源于该风化剖面缺失岩粉层;AI指基岩酸不溶物含量;Cd*表示基岩酸不溶物中Cd占全岩中Cd的质量百分数,其值(%)=(酸不溶物含量×基岩酸不溶物中Cd的含量)/基岩中Cd的含量,相应地,基岩酸溶相中Cd占全岩中Cd的质量百分数(%)= 100-Cd* 表 3 贵州岩溶区19条土壤剖面Cd质量迁移系数(τCd)
Table 3. Mass transfer coefficients(τCd)of Cd for the 19 weathering profiles in the karst areas of Guizhou
剖面编号 Y Yt Yf T1 Tave Tmin Tmax 1 0 -0.51 1.13 -0.35 -0.78 -0.93 -0.35 2 0 -0.94 -0.09 -0.75 -0.95 -0.99 -0.75 3 0 -0.78 -0.83 -0.84 -0.89 -0.96 -0.83 4 0 -0.98 -0.87 -0.71 -0.8 -0.95 -0.71 5 0 -0.99 0.5 -0.23 -0.9 -0.99 -0.23 6 0 - -0.12 -0.15 -0.88 -0.99 -0.15 7 0 -0.97 1.96 -0.78 -0.96 -0.99 -0.78 8 0 -0.89 0.37 -0.81 -0.96 -0.99 -0.81 9 0 -0.99 -0.4 -0.65 -0.91 -0.96 -0.65 10 0 -0.98 - -0.78 -0.73 -0.78 -0.61 11 0 -0.96 -0.17 -0.53 -0.7 -0.78 -0.51 12 0 - -0.94 -0.98 -0.98 -0.99 -0.98 13 0 -0.98 -0.61 -0.76 -0.92 -0.95 -0.76 14 0 -0.69 -0.1 -0.86 -0.96 -0.99 -0.86 15 0 - 2.63 1.87 -0.05 -0.76 1.87 16 0 -0.94 - -0.88 -0.93 -0.98 -0.88 17 0 -0.93 - -0.91 -0.91 -0.95 -0.87 18 0 -0.96 - -0.84 -0.83 -0.84 -0.82 19 0 -0.94 - -0.79 -0.79 -0.82 -0.74 注:剖面编号同图 1;Tave、Tmin、Tmax分别表示各剖面土壤层样品中Cd的质量迁移系数平均值、最小值、最大值,计算上述3个参数所依据的原始数据(即各剖面土壤层全部样品的Zr、Cd含量)见表 2 -
[1] 牟保磊. 元素地球化学[M]. 北京: 北京大学出版社, 1999: 181-183.
[2] Alloway B J. Cadmium[C]//Heavy metals in soils(2nd edition). London: Blackie Academic and Professional, 1995: 122-147.
[3] Gong H, Rose A W, Suhr N H. The geochemistry of cadmium in some sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1977, 41: 1687-1692. doi: 10.1016/0016-7037(77)90200-9
[4] Bowen H J M. Environmental chemistry of the elements[M]. London: Academic Press, 1979: 59.
[5] Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry(The Crust vol. 3)Oxford: Elsevier Science, 2003: 1-64.
[6] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-148.
[7] Vig K, Megharaj M, Sethunathan N. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review[J]. Advances in Environmental Research, 2004, 8: 121-135.
[8] Pan J, Plant J A, Voulvoulis N, et al. Cadmium levels in Europe: implications for human health[J]. Environmental Geochemistry and Health, 2010, 32: 1-12. doi: 10.1007/s10653-009-9273-2
[9] Reimann C, Fabian K, Flem B. Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals[J]. Science of the Total Environment, 2019, 651: 1344-1355. doi: 10.1016/j.scitotenv.2018.09.272
[10] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90: 2524-2530.
[11] Zhu J, Hong K, Shen X, et al. A new method for evaluating the bioaccessibility of different foodborne forms of cadmium[J]. Toxicology Letters, 2020, 319: 31-39. doi: 10.1016/j.toxlet.2019.11.002
[12] Liang J, Feng C, Zeng G, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225: 681-690. doi: 10.1016/j.envpol.2017.03.057
[13] World Health Organization(WHO). Exposure to Cadmium: A Major Public Health Concern[C]//World Health Organization, Geneva, 2010: 3-6.
[14] Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils with trace metals[J]. Nature, 1988, 333: 134-139. doi: 10.1038/333134a0
[15] Baveye P, McBride M B, Bouldin D, et al. Mass balance and distribution of sludge-borne trace elements in a silt loam soil following long-term applications of sewage sludge[J]. Science of the Total Environment, 1999, 227: 13-28. doi: 10.1016/S0048-9697(98)00396-9
[16] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90: 2524-2530.
[17] Garrett R G, Porter A R D, Hunt P A, et al. The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites[J]. Applied Geochemistry, 2008, 23: 822-834. doi: 10.1016/j.apgeochem.2007.08.008
[18] Liu Y, Xiao T, Zhu Z, et al. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale[J]. Science of the Total Environment, 2021, 760: 143426. doi: 10.1016/j.scitotenv.2020.143426
[19] Ketris, M P, Yudovich Ya E. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78: 135-148. doi: 10.1016/j.coal.2009.01.002
[20] Nathan Y, Benalioulhaj N, Prevot L, et al. The geochemistry of cadmium in the phosphate-rich and organic-rich sediments of the Oulad-Abdoun and Timahdit basins(Morocco)[J]. Journal of African Earth Sciences, 1996, 22: 17-27. doi: 10.1016/0899-5362(95)00124-7
[21] Quezada Hinojosa R P, Matera V, Adatte T, et al. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura[J]. Geoderma, 2009, 150: 287-301. doi: 10.1016/j.geoderma.2009.02.013
[22] Baize D, Sterckeman T. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements[J]. Science of the Total Environment, 2001, 264: 127-139. doi: 10.1016/S0048-9697(00)00615-X
[23] Rambeau C. Cadmium Anomalies in Jurassic Carbonates(Bajocian, Oxfordian)in Western and Southern Europe[D]. University of Neuchâtel, Switzerland, 2006: 1-236.
[24] Quezada Hinojosa R, Föllmi K B, Gillet F, et al. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains[J]. Catena, 2015, 124: 85-96. doi: 10.1016/j.catena.2014.09.007
[25] Prudente D. Distribution des teneurs naturelles en cadmium dans les sols de la forêt communale des Fourgs(Doubs, France)[D]. Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1999: 1-100.
[26] Liu Y Z, Xiao T F, Ning Z P, et al. High cadmium concentrations in soil in the Three Gorges region: Geogenic source and potential bioavailability[J]. Applied Geochemistry, 2013, 37: 149-156. doi: 10.1016/j.apgeochem.2013.07.022
[27] 田恒川, 徐国志. 镉地球化学行为与我国西南地区镉污染[J]. 现代矿业, 2014, (11): 134-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201411048.htm
[28] 何腾兵, 董玲玲, 李广枝, 等. 喀斯特山区不同母质(岩)发育的土壤主要重金属含量差异性研究[J]. 农业环境科学学报, 2007, 27(1): 188-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200801036.htm
[29] Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. doi: 10.1016/j.scitotenv.2015.01.025
[30] Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49: 750-759.
[31] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068
[32] Zhang S, Song J. Geochemical cadmium anomaly and bioaccumulation of cadmium and lead by rapeseed(Brassica napus L. )from noncalcareous soils in the Guizhou Plateau[J]. Science of the Total Environment, 2018, 644: 624-634. doi: 10.1016/j.scitotenv.2018.06.230
[33] 何邵麟, 龙超林, 刘应忠, 等. 贵州地表土壤及沉积物中镉的地球化学与环境问题[J]. 贵州地质, 2004, (4): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200404007.htm
[34] Wen Y, Li W, Yang Z, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245: 125620. doi: 10.1016/j.chemosphere.2019.125620
[35] Xia X Q, Ji J F, Yang Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254: 126799. doi: 10.1016/j.chemosphere.2020.126799
[36] Zhu L, Qi L. Chemical forms of heavy metals in carbonate-derived laterite and enrichment of its iron oxide minerals[J]. Chinese Journal of Geochemistry, 1997, 16: 263-270. doi: 10.1007/BF02870910
[37] Jacquat O, Voegelin A, Juillot F, et al. Changes in Zn speciation during soil formation from Zn-rich limestones[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5554-5571. doi: 10.1016/j.gca.2009.05.069
[38] Ni S, Ju Y, Hou Q, et al. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process[J]. Progress in Natural Science, 2009, 19: 1133-1139. doi: 10.1016/j.pnsc.2009.01.008
[39] Rambeau C M C, Baize D, Saby N, et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France[J]. Environmental Earth Sciences, 2010, 61: 1573-1585. doi: 10.1007/s12665-010-0471-0
[40] 李瑞玲, 王世杰, 周德全, 等. 贵州岩溶区土地石漠化与岩性的空间相关性研究[J]. 地理学报, 2003, 58(2): 314-320.
[41] Wang S, Ji H, Ouyang Z, et al. Preliminary study on weathering and pedogenesis of carbonate rock[J]. Science in China(Ser. D), 1999, 42(6): 572-581. doi: 10.1007/BF02877784
[42] Ji H, Wang S, Ouyang Z, et al. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau I. The formation of the Pingba profile[J]. Chemical Geology, 2004, 203: 1-27. doi: 10.1016/j.chemgeo.2003.08.012
[43] Feng J L, Zhu L P, Cui Z J. Quartz features constrain the origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau, China[J]. Journal of Asian Earth Sciences, 2009, 36: 156-167. doi: 10.1016/j.jseaes.2009.05.003
[44] Liu W J, Liu C Q, Zhao Z Q, et al. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials[J]. Journal of Asian Earth Sciences, 2013, 67/68: 138-152. doi: 10.1016/j.jseaes.2013.02.017
[45] Wei X, Ji H, Li D, et al. Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China[J]. Journal of Geochemical Exploration, 2013, 133: 68-87. doi: 10.1016/j.gexplo.2013.07.010
[46] Gong Q, Zhang G, Zhang J, et al. Behavior of REE fractionation during weathering of dolomite regolith profile in southwest China[J]. Acta Geologica Sinica, 2010, 84(6): 1439-1447. doi: 10.1111/j.1755-6724.2010.00339.x
[47] 冯志刚, 马强, 李石朋, 等. 碳酸盐岩风化壳岩-土界面风化作用机制——对岩粉层淋溶模拟的初步研究[J]. 地质学报, 2013, 87(1): 119-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201301012.htm
[48] 孙承兴, 王世杰, 刘秀明, 等. 碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程——以贵州花溪灰岩风化壳剖面为例[J]. 矿物学报, 2002, 22(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200202004.htm
[49] Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metosomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 1987, 51: 567-587. doi: 10.1016/0016-7037(87)90070-6
[50] 冯志刚, 刘炫志, 韩世礼, 等. 碳酸盐岩风化过程中高场强元素的地球化学行为研究: 来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶, 2018, 37(3): 315-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201803001.htm
[51] 生态环境部, 国家市场监督管理总局. 《中国环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)[S]. 北京: 中国环境科学出版社, 2018: 1-4.
[52] Vingiani S, Di Iorio E, Colombo C, et al. Integrated study of red mediterranean soils from southern Italy[J]. Catena, 2018, 168: 129-140. doi: 10.1016/j.catena.2018.01.002
[53] Pinto M M S C, Silva M M V G, da Silva E A F, et al. Transfer processes of potentially toxic elements(PTE)from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago(Cape Verde)[J]. Journal of Geochemical Exploration, 2017, 183: 140-151. doi: 10.1016/j.gexplo.2017.06.004
[54] Duan Y, Yang Z, Yu T, et al. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi[J]. Environmental Pollution, 2020, 260: 113905. doi: 10.1016/j.envpol.2019.113905
[55] Bradshaw P M D, Thomson I, Smee B W, et al. The application of different analytical extractions and soil profile sampling in exploration geochemistry[J]. Journal of Geochemical Exploration, 1974, 3: 209-225. doi: 10.1016/0375-6742(74)90023-5
① 环境保护部, 国土资源部. 《全国土壤污染状况调查公报》, 2014. https://wenku.baidu.com/view/71b0794b90c69ec3d5bb7559.html.
② 中国地质调查局. 《中国耕地地球化学调查报告(2015)》, 2015. https://max.book118.com/html/2018/0812/7140124163001142.shtm.
-