内蒙古中部朱日和地区中奥陶世洋壳俯冲作用: 来自奥长花岗岩年龄及地球化学的制约

周路路, 舒广强, 王继春, 刘俊刚, 李冬均, 赵鑫, 陈璋, 刘志伟, 汤刚, 王双桃, 黎勤国. 内蒙古中部朱日和地区中奥陶世洋壳俯冲作用: 来自奥长花岗岩年龄及地球化学的制约[J]. 地质通报, 2022, 41(4): 545-558. doi: 10.12097/j.issn.1671-2552.2022.04.003
引用本文: 周路路, 舒广强, 王继春, 刘俊刚, 李冬均, 赵鑫, 陈璋, 刘志伟, 汤刚, 王双桃, 黎勤国. 内蒙古中部朱日和地区中奥陶世洋壳俯冲作用: 来自奥长花岗岩年龄及地球化学的制约[J]. 地质通报, 2022, 41(4): 545-558. doi: 10.12097/j.issn.1671-2552.2022.04.003
ZHOU Lulu, SHU Guangqiang, WANG Jichun, LIU Jungang, LI Dongjun, ZHAO Xin, CHEN Zhang, LIU Zhiwei, TANG Gang, WANG Shuangtao, LI Qinguo. Oceanic crust subduction in the Zhurihe area, central Inner Mongolia during Middle Ordovician: Constrains from age and geochemistry of trondhjemites[J]. Geological Bulletin of China, 2022, 41(4): 545-558. doi: 10.12097/j.issn.1671-2552.2022.04.003
Citation: ZHOU Lulu, SHU Guangqiang, WANG Jichun, LIU Jungang, LI Dongjun, ZHAO Xin, CHEN Zhang, LIU Zhiwei, TANG Gang, WANG Shuangtao, LI Qinguo. Oceanic crust subduction in the Zhurihe area, central Inner Mongolia during Middle Ordovician: Constrains from age and geochemistry of trondhjemites[J]. Geological Bulletin of China, 2022, 41(4): 545-558. doi: 10.12097/j.issn.1671-2552.2022.04.003

内蒙古中部朱日和地区中奥陶世洋壳俯冲作用: 来自奥长花岗岩年龄及地球化学的制约

  • 基金项目:
    中国地质调查局项目《内蒙古锡林郭勒盟朱日和等三幅1:5万地质矿产综合调查》(编号: 12120115030401)
详细信息
    作者简介: 周路路(1988-), 男, 硕士, 工程师, 从事区域地质调查与研究、油气勘探开发工作。E-mail: lulu6681420@163.com
    通讯作者: 舒广强(1988-), 男, 硕士, 工程师, 从事区域地质调查与研究工作。E-mail: 499852877@qq.com
  • 中图分类号: P534.42;P588.12

Oceanic crust subduction in the Zhurihe area, central Inner Mongolia during Middle Ordovician: Constrains from age and geochemistry of trondhjemites

More Information
  • 系统研究了内蒙古中部朱日和地区最新发现的奥长花岗岩锆石U-Pb同位素年龄、Hf同位素组成及岩石地球化学特征, 对该区中奥陶世洋壳俯冲作用给出制约。结果显示, 奥长花岗岩形成于中奥陶世(472±3 Ma和466±5 Ma), 富Si、富Al、富Na、贫K, 高Sr、低Y和Yb, 具正Eu异常、正Sr异常, 轻、重稀土元素分馏强烈, 富集大离子亲石元素, 亏损高场强元素, 表现为典型的俯冲洋壳型埃达克岩地球化学特征。奥长花岗岩的锆石εHf(t)值为+8.8~+15.1, 一阶段模式年龄(TDM1)为475~728 Ma, 二阶段模式年龄(TDM2)为476~885 Ma。最新区域地质调查资料显示, 朱日和地区存在一个早古生代洋壳俯冲带, 表明至少在中奥陶世, 朱日和日地区开始出现古亚洲洋向华北板块的洋壳俯冲作用, 而具有典型埃达克岩特征的奥长花岗岩所代表的岩浆侵位结晶活动正是对该洋壳俯冲事件的响应。

  • 加载中
  • 图 1  研究区地质图

    Figure 1. 

    图 2  奥长花岗岩野外照片、岩心照片及镜下显微照片(-2.5×(+)同视域正交偏光)

    Figure 2. 

    图 3  奥长花岗岩锆石阴极发光(CL)图像

    Figure 3. 

    图 4  奥长花岗岩锆石U-Pb年龄谐和图

    Figure 4. 

    图 5  奥长花岗岩锆石Hf同位素演化图[33]

    Figure 5. 

    图 6  奥长花岗岩TAS(a)和An-Ab-Or图解(b)

    Figure 6. 

    图 7  奥长花岗岩A/CNK-A/NK[40](a)和TFeO/MgO-TFeO图解[41](b)

    Figure 7. 

    图 8  奥长花岗岩稀土元素配分曲线(a)和微量元素蜘蛛图解(b)

    Figure 8. 

    图 9  奥长花岗岩YbN-(La/Yb)N(a)和Y-Sr/Y图解(b)[47]

    Figure 9. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 10  奥长花岗岩构造环境判别图[60]

    Figure 10. 

    图 11  早古生代构造演化示意图

    Figure 11. 

    表 1  奥长花岗岩锆石U-Th-Pb同位素数据

    Table 1.  Zircon U-Th-Pb isotope data from trondhjemites

    测点号 元素含量/10-6 Th/U 同位素比值 锆石U-Pb表面年龄/Ma 谐和度
    /%
    Pb Th U 206Pb/ 238U 207Pb/ 235U 207Pb/206Pb 206Pb/ 238U 207Pb/235U 207Pb/ 206Pb
    样品ZRH1
    1 9 47 108 0.44 0.0785 0.0008 0.6549 0.0163 0.0603 0.0012 487.1 1.4 512 3 616 2 95
    2 7 24 88 0.28 0.0750 0.0003 0.5855 0.0154 0.0566 0.0015 466.2 1.1 468 3 476 3 99
    3 15 88 194 0.45 0.0751 0.0003 0.5821 0.0070 0.0562 0.0006 467.0 1.1 466 2 461 2 99
    4 22 208 256 0.81 0.0765 0.0005 0.5830 0.0067 0.0553 0.0005 475.1 1.1 466 2 425 2 98
    5 9 58 121 0.48 0.0721 0.0002 0.5458 0.0108 0.0549 0.0011 448.8 1.0 442 2 406 2 98
    6 15 106 179 0.59 0.0760 0.0005 0.6655 0.0104 0.0632 0.0008 472.0 1.2 518 2 713 2 90
    7 44 114 145 0.79 0.2596 0.0014 3.3427 0.0279 0.0931 0.0004 1488 1.1 1491 1 1491 1 99
    8 11 83 134 0.62 0.0759 0.0005 0.5737 0.0109 0.0550 0.0010 471.3 1.1 460 2 413 2 97
    9 24 238 272 0.87 0.0754 0.0003 0.6138 0.0066 0.0590 0.0005 468.8 1.1 486 2 566 2 96
    10 4 3 58 0.05 0.0758 0.0004 0.5339 0.0214 0.0515 0.0020 470.7 1.1 434 4 261 4 91
    11 128 146 329 0.44 0.3577 0.0018 5.8678 0.0327 0.1190 0.0003 1971 1.1 1956 1 1941 1 99
    12 12 27 153 0.18 0.0766 0.0004 0.6225 0.0107 0.0588 0.0009 475.7 1.1 491 2 558 2 96
    13 11 68 132 0.52 0.0763 0.0004 0.5603 0.0098 0.0532 0.0009 473.7 1.1 452 2 339 2 95
    14 18 64 239 0.27 0.0768 0.0005 0.6087 0.0071 0.0575 0.0005 476.8 1.1 483 2 509 2 98
    15 18 39 232 0.17 0.0761 0.0004 0.6714 0.0073 0.0641 0.0006 472.7 1.1 522 2 743 2 90
    样品ZRH2
    1 14 40 196 0.20 0.0739 0.0003 0.5759 0.0073 0.0565 0.0007 459.7 1.0 462 2 472 23 99
    2 22 93 294 0.32 0.0738 0.0003 0.5762 0.0057 0.0566 0.0005 458.8 1.1 462 2 476 19 99
    3 20 30 277 0.11 0.0777 0.0005 0.5744 0.0064 0.0536 0.0005 482.6 1.1 461 2 354 22 95
    4 38 123 523 0.24 0.0744 0.0003 0.5793 0.0039 0.0565 0.0003 462.9 1.0 464 1 472 13 99
    5 4 4 63 0.06 0.0757 0.0004 0.6489 0.0228 0.0622 0.0021 470.2 1.1 508 4 680 74 92
    6 22 31 307 0.10 0.0741 0.0004 0.5837 0.0055 0.0571 0.0004 460.9 1.1 467 2 498 21 98
    7 9 90 107 0.84 0.0758 0.0004 0.6222 0.0131 0.0593 0.0012 471.0 1.1 491 2 589 17 95
    8 8 91 88 1.03 0.0748 0.0004 0.5678 0.0162 0.0551 0.0015 465.1 1.1 457 3 417 61 98
    9 49 151 655 0.23 0.0767 0.0005 0.5951 0.0051 0.0562 0.0003 476.2 1.1 474 2 461 11 99
    10 3 4 46 0.09 0.0749 0.0005 0.5216 0.0344 0.0501 0.0032 465.6 1.1 426 7 211 144 91
    11 22 54 303 0.18 0.0738 0.0004 0.5529 0.0060 0.0543 0.0005 459.2 1.1 447 2 383 22 97
    12 5 4 69 0.06 0.0750 0.0005 0.6296 0.0226 0.0610 0.0022 466.3 1.1 496 4 640 78 93
    13 9 15 121 0.12 0.0735 0.0003 0.5986 0.0111 0.0592 0.0011 457.1 1.0 476 2 576 6 95
    14 21 49 303 0.16 0.0732 0.0002 0.5956 0.0057 0.0589 0.0005 455.5 1.0 474 2 565 19 95
    15 11 11 155 0.07 0.0780 0.0006 0.6353 0.0104 0.0590 0.0008 484.4 1.2 499 2 565 -- 96
    16 23 58 305 0.19 0.0776 0.0003 0.6369 0.0048 0.0596 0.0004 481.8 1.0 500 1 591 17 96
    17 67 313 857 0.37 0.0772 0.0005 0.5933 0.0041 0.0558 0.0002 479.2 1.1 473 1 443 7 98
    18 38 83 537 0.15 0.0733 0.0003 0.5622 0.0040 0.0556 0.0003 456.0 1.0 453 1 439 8 99
    19 28 50 392 0.13 0.0736 0.0004 0.5813 0.0049 0.0573 0.0004 457.8 1.1 465 2 502 15 98
    下载: 导出CSV

    表 2  奥长花岗岩(样品ZRH1)锆石Hf同位素测试数据

    Table 2.  Zircon Hf isotope test data from trondhjemites (Sample ZRH1)

    测点号 t
    /Ma
    176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1
    /Ma
    TDM2
    /Ma
    fLu/Hf
    测值 测值 测值
    1 466.2 0.007931 0.000233 0.000387 0.000007 0.282911 0.000028 4.9 15.1 476 482 -0.99
    2 475.1 0.030210 0.000342 0.001327 0.000008 0.282914 0.000026 5.0 15.1 484 489 -0.96
    3 472.0 0.033540 0.000266 0.001453 0.000015 0.282915 0.000027 5.1 15.0 483 490 -0.96
    4 471.3 0.008224 0.000158 0.000924 0.000009 0.282913 0.000025 5.0 15.1 479 484 -0.97
    5 468.8 0.016087 0.000313 0.000657 0.000014 0.282733 0.000024 -1.4 8.8 728 885 -0.98
    6 470.7 0.004658 0.000163 0.000240 0.000007 0.282812 0.000019 1.4 11.7 612 700 -0.99
    7 475.7 0.029868 0.000366 0.001224 0.000010 0.282814 0.000026 1.5 11.6 625 711 -0.96
    8 473.7 0.025055 0.000568 0.001188 0.000020 0.282918 0.000028 5.2 15.3 475 476 -0.96
    9 478.8 0.032463 0.000364 0.001235 0.000008 0.282913 0.000025 5.0 15.2 483 486 -0.96
    10 472.7 0.032672 0.000283 0.001364 0.000012 0.282915 0.000024 5.1 15.1 482 488 -0.96
    注:εHf(0)、εHf(t)TDM1TDM2值计算公式据参考文献[33],公式如下:εHf(0=10000[(176Hf/177Hf)s/(176Hf/177Hf)CHUR, 0-1];εHf(t=10000{[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};TDM1=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};TDM2=TDM1-(TDM1-t)×(fcc-fs)/(fcc-fDM);fLu/Hf=(176Lu/177Hf)s/(176Lu/177Hf)CHUR-1;其中:λ=1.867×10-11/a[34];(176Lu/177Hf)s和(176Hf/177Hf)s为样品测量值;(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, 0=0.282772[35];(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325[36];(176Lu/177Hf)平均地壳=0.015[37]fcc=[(176Lu/177Hf)平均地壳/(176Lu/177Hf)CHUR]-1;fs=fLu/HffDM=(176Lu/177Hf)DM/(176Lu/177Hf)CHUR-1;t为锆石结晶年龄
    下载: 导出CSV

    表 3  奥长花岗岩主量、微量和稀土元素含量及相关参数

    Table 3.  Contents of major, trace and rare earth elements and related parameters from trondhjemites

    样号 ZRH1 ZRH2 ZRH3 ZRH4 MT1-4 样号 ZRH1 ZRH2 ZRH3 ZRH4 MT1-4
    SiO2 73.76 73.71 74.75 71.62 74.93 Ti 899.25 551.54 473.605 839.30 239.80
    TiO2 0.15 0.09 0.08 0.14 0.04 La 4.18 11.6 4.67 4.16 0.87
    Al2O3 15.66 15.10 15.01 16.16 14.77 Ce 7.86 17.8 7.73 6.10 2.07
    Fe2O3 0.86 0.48 0.12 0.29 0.86 Pr 0.75 1.73 0.72 0.57 0.21
    FeO 0.36 0.26 0.38 0.80 0.60 Nd 2.55 5.49 2.37 1.85 0.86
    TFeO 1.26 0.77 0.54 1.17 Sm 0.51 0.70 0.33 0.31 0.19
    MnO 0.02 0.01 0.01 0.02 0.04 Eu 0.28 0.34 0.18 0.23 0.19
    MgO 0.57 0.34 0.27 0.61 2.58 Gd 0.45 0.65 0.33 0.28 0.17
    CaO 2.62 2.85 2.34 2.81 2.58 Tb 0.06 0.06 0.03 0.03 0.03
    Na2O 4.83 5.78 4.76 5.67 5.29 Dy 0.34 0.30 0.16 0.19 0.14
    K2O 0.60 0.37 0.38 0.50 0.38 Ho 0.08 0.06 0.04 0.04 0.03
    P2O5 0.03 0.02 0.01 0.02 0.01 Er 0.24 0.17 0.10 0.13 0.10
    总计 99.47 99.01 98.88 98.64 99.8 Tm 0.04 0.03 0.02 0.02 0.02
    烧失量 1.49 1.96 1.06 2.29 0.63 Yb 0.35 0.22 0.16 0.18 0.16
    Mg# 55 50 36 37 Lu 0.07 0.05 0.03 0.04 0.04
    A/CNK 1.10 0.93 1.02 1.01 Y 2.36 1.50 1.04 1.37 0.92
    A/NK 1.71 1.42 1.55 1.54 Sr/Y 213 198 450 427
    AR 1.85 2.04 1.96 2.05 ∑REE 17.76 39.2 16.87 14.14
    Rb 14.3 9.4 5.8 8.6 8.2 LREE 16.13 37.66 16.00 13.22
    Sr 503 297 468 585 566 HREE 1.63 1.54 0.87 0.92
    Ba 290 388 148 206 761 LR/HR 9.89 24.52 18.37 14.39
    Nb 2.68 1.24 1.19 1.32 0.41 δEu 1.75 1.52 1.66 2.34
    Ta 0.16 0.09 0.12 0.08 δCe 0.99 0.85 0.91 0.83
    Zr 80.10 52.60 28.80 61.10 35.90 LaN 13.48 37.42 15.06 13.42
    Hf 2.21 1.76 1.24 1.68 YbN 1.67 1.05 0.77 0.86
    Th 1.10 3.03 1.46 1.53 La/Yb 11.94 52.73 29.19 23.11
    K 4980.80 3071.48 3154.49 4150.70 3155.50 (La/Yb)N 8.07 35.64 19.56 15.6
    注:样号MT1-4为图林凯奥长花岗岩数据[38];A/CNK=Al2O3/(CaO+Na2O+K2O),A/NK=Al2O3/(Na2O+K2O)(摩尔比);Mg#=100Mg2+/(Mg2++Fe2+)(%);TFeO=Fe2O3+1.1FeO(%);主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    王玉净, 樊志勇. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J]. 古生物学报, 1997, 36(1): 58-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX701.004.htm

    [2]

    李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩及其对西伯利亚与中朝古板块碰撞时限的约束的确定[J]. 岩石学报, 2007, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm

    [3]

    李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm

    [4]

    Li J Y. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2005, 26(3): 207-224.

    [5]

    Jian P, Liu D Y, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2007, 101(3): 233-259.

    [6]

    Xiao W J, Windley B, Huang B C, et al. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metalogeny of Central Asia[J]. International Journal of Earth Science, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    [7]

    高征西, 王继春, 周路路, 等. 内蒙古温都尔庙地区早二叠世岛弧型花岗闪长岩的发现: 对古亚洲洋闭合的时限约束[J]. 地球科学, 2019, 44(10): 3178-3192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910002.htm

    [8]

    李春昱, 王荃, 张之孟, 等. 中国板块构造的轮廓[J]. 中国地质科学院院报, 1980, 2(1): 11-29, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198000001.htm

    [9]

    曹从周, 杨芳林, 田昌烈. 内蒙古锡盟贺根山地区蛇绿岩的特征及地质意义[C]//中国北方板块构造文集. 北京: 地质出版社, 1985.

    [10]

    Tang K D. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean craton[J]. Tectonics, 1990, 9(2): 249-260.

    [11]

    邵济安. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版社, 1991: 11-91.

    [12]

    Hsü K J, Wang Q C, Li L, et al. Geological evolution of the Neimonides: a working hypothesis[J]. Eclogae Geol. Helv., 1991, 84: 1-35.

    [13]

    Sengör A M, Natalin B A, Burtman V S. Evolution of the Altaidtectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 209-307.

    [14]

    徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学, 1997, 27(3): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm

    [15]

    吴福元, 曹林. 东北亚地区的若干重要基础地质问题[J]. 世界地质, 1999, 18(2): 4-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ902.001.htm

    [16]

    Chen B, Jahn B M, Wilde S. Two constrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328: 157-182.

    [17]

    Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of north China[J]. Earth and Planetary Sceince Letters, 2002, 202(1): 89-104.

    [18]

    唐克东, 王莹, 何国琦, 等. 中国东北及邻区大陆边缘构造[J]. 地质学报, 1995, 69: 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm

    [19]

    潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm

    [20]

    柳长峰. 内蒙古四子王旗地区古生代—早中生代岩浆岩带及其构造意义[D]. 中国地质大学(北京)博士学位论文, 2010.

    [21]

    Xu B, Chen B. The opposite subduction and collision between the Siberian and Sino-Korean plates during the Early-Middle Paleozoic[J]. Report No. 4 of the IGCP Project 283: Geodynamic Evolution of Paleoasian Ocean. Novosibirsk, Russia, 1993: 148-150.

    [22]

    刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm

    [23]

    Xu B, Charvet J, Chen Y. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23: 1342-1364.

    [24]

    徐备, 徐严, 栗进, 等. 内蒙古西部温都尔庙群的时代及其在中亚造山带中的位置[J]. 地学前缘, 2016, 23(6): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606016.htm

    [25]

    Xiao W J, Windley B F, Hao J. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069: 1-21.

    [26]

    Jian P, Liu D Y, Krner A, et al. Evolution of a Permian intraoceanic arc-trench system in the solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190.

    [27]

    李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm

    [28]

    潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm

    [29]

    李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm

    [30]

    Liu Y S, Hu Z C, Zong K Q. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, (15): 1535-1546.

    [31]

    Ludwig K R. Isoplot/Exversion 2.3: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication No. 1, 2000: 1-54.

    [32]

    Anderson T, Griffin W L, Pearson N J. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence[J]. Petrol., 2002, 43: 1725-1747.

    [33]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    [34]

    Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematic of Precambrian maficintrusions[J]. Earth Planet. Sci. Lett., 2004, 219: 311-324.

    [35]

    Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    [36]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

    [37]

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithosphere, 2002, 61(3): 237-269. https://www.sciencedirect.com/science/article/pii/S0024493702000828

    [38]

    刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, 2003, 77(3): 317-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303004.htm

    [39]

    Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171(3): 223-232.

    [40]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5): 635-643. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/101/5/635/182281/Tectonic-discrimination-of-granitoids

    [41]

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. AJS, 1974, 274: 132-355. https://www.ajsonline.org/content/274/4/321

    [42]

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies [C]//Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier, 1984: 63-114.

    [43]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.

    [44]

    Defant M J, Drummond M S. Derivartion of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 1990, 347: 662-665. https://www.nature.com/articles/347662a0

    [45]

    Kelemen P B, Hangh K, Greenem A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on Geochemistry, 2003, 3: 593-659.

    [46]

    童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm

    [47]

    Defant M J, Kepezhinskas P. Adakites: A review of slab melting and the case for a slab-melt component in arcs[C]//Symposium on adakite-like rocks and their geodynamic significance (abstract). Beijing, China, 2001: 4-6.

    [48]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931.

    [49]

    Defant M J, Kepezhinskas P. Reply to comment by Conrey R. Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs[C]//Earth and Space Science News, Transaetions, 2002, 83: 256-257.

    [50]

    张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(2/3): 959-965. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409170&flag=1

    [51]

    张旗, 王焰, 刘红涛, 等. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》[J]. 地学前缘, 2003, 10(4): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304010.htm

    [52]

    高旭, 周振华, 车合伟, 等. 内蒙古白乃庙铜-金-钼矿床侵入岩和围岩成因: 岩石地球化学和Hf同位素的证据[J]. 矿床地质, 2018, 37(2): 420-440. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201802012.htm

    [53]

    聂凤军, 裴荣富, 吴良士. 内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究[J]. 地球学报, 1995, (1): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.004.htm

    [54]

    洪大卫, 王式洸, 谢锡林, 等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 7(2): 441-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200002016.htm

    [55]

    邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm

    [56]

    王焰, 张旗, 钱青. 埃达克岩(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, (2): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm

    [57]

    朱永峰, 孙世华, 毛骞, 等. 内蒙古锡林格勒杂岩的地球化学研究: 从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录[J]. 高校地质学报, 2004, 10(3): 343-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403004.htm

    [58]

    石玉若, 刘敦一, 张旗, 等. 内蒙古苏左旗地区闪长花岗岩类SHRIMP年代学[J]. 地质学报, 2004, 78(6): 789-799. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200406009.htm

    [59]

    简平, 刘敦一, 张旗, 等. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J]. 地学前缘, 2003, 10(4): 439-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304018.htm

    [60]

    Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrol., 1984, 25: 956-983.

    [61]

    Yan Z Y, Tang K D, Bai J W, et al. High pressure metamorphic rocks and their tectonic environment in northeastern China[J]. Elsevierjournal, 1989, 3(1/4): 303-313.

    [62]

    唐克东. 中朝板块北侧褶皱带构造演化及成矿规律[M]. 北京: 北京大学出版社, 1992: 1-277.

    [63]

    苏美霞, 赵文涛, 张慧聪, 等. 华北板块与西伯利亚板块缝合带之地球物理特征[J]. 物探与化探, 2014, 38(5): 949-955. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201405015.htm

    内蒙古自治区地质调查院. 内蒙古自治区区域地质志. 2018.

    内蒙古自治区地质调查院. 内蒙古锡林郭勒盟朱日和等三幅1: 5万地质矿产综合调查报告. 2018.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  2213
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2020-03-30
修回日期:  2022-02-17
刊出日期:  2022-04-15

目录