The emplacement depth of ore-hosting rock body and its constraints on mineralization in Duobaoshan porphyry copper deposit, Heilongjiang Province
-
摘要:
多宝山铜矿是中国北方著名的斑岩型矿床,许多学者对该矿床的成因、大地构造环境、成矿机制等进行了大量的研究,并取得较好的成果。但对矿床保存和后期改造尚缺研究,需要中低温热年代学研究控制矿床的剥蚀深度、阶段和时代,而含矿岩体的侵位深度是先决条件。为了准确确定多宝山铜矿含矿岩体的侵位深度,笔者选取赋矿花岗闪长斑岩体作为研究对象,并利用角闪石-斜长石地质温压计进行成矿深度分析。通过研究得出赋矿花岗闪长斑岩体成岩压力为1.69×108~1.78×108 Pa,温度范围在650~710℃之间,成岩深度为6.36~6.69 km,对于研究矿床剥蚀深度及速率、演化阶段、构造背景等都具有重要的意义。
-
关键词:
- 多宝山铜矿 /
- 花岗闪长斑岩 /
- 侵位深度 /
- 角闪石-斜长石温压计 /
- 矿产勘查工程
Abstract:Abstract: Duobaoshan copper deposit, a famous porphyry deposit in northern China, has been extensively studied on its origin, tectonic environment and metallogenic mechanism by many scholars, and significant advances have been achieved.In constrast, the preservation and later geological alteration of the deposit have been little researched.It is necessary to constrain the exhumation depth, metallogenic stage and age of the deposit using medium-low temperature thermochronology, in particular, the emplacement depth of ore-hosting rock body should be first known.In this study, in order to accurately determine the emplacement depth of the ore-hosting rock body in the Duobaoshan copper deposit, we have conducted study on the emplacement depth of the ore-hosting granodiorite porphyry body using hornblende-plagioclase geothermobarometer.The results show that the ore-hosting granodiorite porphyry body has the diagenetic pressure of 1.69×108~1.78×108 Pa, the diagenetic temperature of 650~710℃ and the emplacement depth of 6.36~6.69 km, this is of great significance for studying the depth and rate of exhumation, evolution stage, and tectonic environment of this deposit.
-
-
图 3 多宝山花岗岩体AR-SiO2岩石系列判别图(a)和A/CNK-A/NK分类图(b)(底图据参考文献[29])
Figure 3.
图 4 钙质角闪石Ti-Si图解(a)及成因判别图(b)(底图据参考文献[31])
Figure 4.
图 5 多宝山花岗岩体R1-R2构造环境判别图解(底图据参考文献[54])
Figure 5.
表 1 多宝山矿区花岗岩样品描述
Table 1. Description of granite samples in Duobaoshan mining area
样品编号 采样位置 经度/E 纬度/N 海拔/m 样品岩性 DB01 采矿场 125°46′50″ 50°14′37″ 505 花岗闪长斑岩 DB82 采矿场 125°47′02″ 50°14′36″ 475 花岗闪长斑岩 DB37 采矿场 125°46′51″ 50°14′54″ 490 花岗闪长斑岩 DB66 采矿场 125°47′08″ 50°14′49″ 475 花岗闪长斑岩 DB119 采矿场 125°47′20″ 50°14′28″ 512 花岗闪长斑岩 DB120 采矿场 125°47′26″ 50°14′53″ 532 花岗闪长斑岩 DB14 采矿场 125°47′07″ 50°14′38″ 445 花岗闪长岩 DB18 采矿场 125°46′16″ 50°14′56″ 505 更长花岗岩 DB25 采矿场 125°47′15″ 50°14′42″ 505 花岗闪长斑岩 DB56 采矿场 125°47′07″ 50°14′45″ 575 花岗闪长斑岩 DB58 采矿场 125°47′08″ 50°14′45″ 575 花岗闪长斑岩 DB99 采矿场 125°47′14″ 50°14′50″ 490 二长花岗岩 表 2 多宝山矿床花岗岩主量元素组成及地球化学参数
Table 2. Major element compositions and geochemical parameters of granites in Duobaoshan deposit
样品号 DB01 DB37 DB82 DB119 DB120 DB14 DB18 DB66 DB99 SiO2 62.53 61.95 62.76 64.53 61.85 67.26 64.52 63.68 65.80 Al2O3 16.38 17.50 16.57 16.57 16.69 16.18 16.59 17.47 17.62 Fe2O3 3.44 3.39 3.32 2.73 3.43 1.41 1.18 1.53 1.66 FeO 1.53 1.76 1.36 1.83 1.46 0.80 1.12 0.64 0.72 MgO 2.01 1.89 1.87 1.95 2.00 0.61 0.73 0.73 0.71 CaO 4.85 3.85 4.07 2.59 4.01 2.00 2.93 3.16 2.29 Na2O 3.62 4.25 4.20 3.79 4.13 5.09 5.09 5.20 5.73 K2O 2.61 2.65 2.88 3.07 3.08 2.75 2.93 3.16 2.72 MnO 0.125 0.094 0.094 0.046 0.099 0.065 0.081 0.057 0.084 P2O5 0.18 0.17 0.18 0.18 0.20 0.10 0.17 0.15 0.19 TiO2 0.39 0.44 0.39 0.37 0.41 0.27 0.29 0.31 0.32 烧失量 2.20 2.02 2.21 2.26 2.51 3.32 4.23 3.90 1.96 总计 99.87 99.97 99.91 99.91 99.87 99.85 99.86 99.98 99.81 TFe2O3 5.14 5.34 4.83 4.77 5.05 2.30 2.42 2.24 2.46 石英(Q) 17.95 15.37 15.59 22.03 14.22 22.51 17.03 14 16.48 钙长石(An) 21.28 18.34 18.27 11.96 18.43 9.61 14.03 15.29 10.37 钠长石(Ab) 31.43 36.78 36.47 32.89 35.97 44.63 45.04 45.85 49.57 正长石(Or) 15.79 16.01 17.47 18.6 18.7 16.82 18.09 19.46 16.47 刚玉(C) 0 1.09 0 2.8 0 1.49 0.14 0.11 1.57 透辉石(Di) 1.8 0 0.99 0 0.59 0 0 0 0 紫苏辉石(Hy) 7.79 8.12 7.25 7.88 7.92 2.74 3.15 2.89 2.93 钛铁矿(Il) 0.76 0.86 0.75 0.71 0.8 0.53 0.58 0.6 0.62 磁铁矿(Mt) 2.78 3.01 2.77 2.72 2.92 1.43 1.52 1.43 1.56 磷灰石(Ap) 0.43 0.41 0.43 0.42 0.47 0.24 0.42 0.36 0.44 总计 100 99.99 99.99 100.01 100.01 100 100 100 100.01 分异指数(DI) 65.17 68.16 69.53 73.52 68.89 83.96 80.16 79.31 82.52 密度 2.76 2.76 2.74 2.76 2.75 2.69 2.68 2.68 2.69 液相密度 2.49 2.49 2.48 2.46 2.48 2.41 2.43 2.43 2.42 干粘度 6.19 5.96 6.21 6.9 5.97 8.33 7.44 7.05 7.38 湿粘度 5.28 5.14 5.27 5.72 5.12 6.53 6.04 5.83 6.01 液相线温度 955 969 951 918 964 852 893 914 897 H2O含量 2.17 2.03 2.21 2.54 2.09 3.24 2.8 2.58 2.76 A(碱性长石) 29.18 33.15 35.3 38.62 36.82 45.22 43.46 45.14 46.89 P(斜长石) 39.32 37.98 36.91 24.83 36.28 25.84 33.7 35.46 29.52 A/CNK 0.931 1.038 0.95 1.161 0.958 1.079 0.983 0.986 1.066 SI 15.41 13.68 13.86 14.68 14.34 5.75 6.63 6.51 6.21 AR 1.83 1.96 2.05 2.12 2.07 2.52 2.39 2.36 2.48 σ43 1.93 2.45 2.48 2.14 2.66 2.47 2.87 3.26 3.08 σ25 1.04 1.3 1.34 1.2 1.42 1.48 1.66 1.84 1.77 R1 2185 1893 1929 2158 1848 2037 1817 1656 1679 R2 964 867 875 716 880 582 706 746 640 F1 0.63 0.64 0.63 0.68 0.63 0.68 0.65 0.65 0.66 F2 -1.27 -1.28 -1.26 -1.22 -1.24 -1.27 -1.26 -1.25 -1.3 F3 -2.54 -2.58 -2.57 -2.56 -2.57 -2.64 -2.65 -2.67 -2.68 A/MF 1.41 1.51 1.52 1.5 1.45 3.61 3.36 3.72 3.56 C/MF 0.76 0.6 0.68 0.43 0.63 0.81 1.08 1.22 0.84 注:主量元素含量单位为%,矿物含量单位为%,密度单位为g/cc,温度单位为℃,粘度单位为N·s/m2 表 3 角闪石矿物组成
Table 3. Mineral compositions of hornblende
样品 DB01-1 DB01-2 DB82-1 DB82-2 DB82-3 DB120-1 DB120-2 样品 DB01-1 DB01-2 DB82-1 DB82-2 DB82-3 DB120-1 DB120-2 SiO2 49.44 48.33 49.23 49.53 47.83 49.49 49.15 SiT* 7.1063 7.0644 7.0818 7.1063 7.0155 7.1399 7.1130 TiO2 0.86 1.06 0.91 0.82 1.26 0.84 0.96 AlT 0.8937 0.9356 0.9182 0.8937 0.9845 0.8601 0.8870 Al2O3 5.78 5.95 5.9 5.69 6.42 5.76 5.92 总计 7.9901 8.0000 7.9966 8.0000 8.0000 8.0000 8.0000 FeO 10.08 11.72 10.58 10.66 11.78 10.56 10.98 AlC 0.0854 0.0894 0.0821 0.0684 0.1253 0.1192 0.1227 MnO 0.73 0.79 0.62 0.69 0.75 0.79 0.62 FeC3+ 0.4797 0.4242 0.4522 0.4602 0.4053 0.4965 0.4567 MgO 18.07 16.32 17.73 17.95 15.83 17.51 16.98 TiC 0.0930 0.1166 0.0985 0.0885 0.1390 0.0912 0.1045 CaO 11.37 11.14 11.42 11.38 10.96 11.05 11.07 MgC 3.8720 3.5562 3.8022 3.8393 3.4614 3.7659 3.6633 Na2O 1.31 1.65 1.4 1.32 1.83 1.36 1.65 FeC2+ 0.4699 0.8136 0.5651 0.5436 0.8690 0.5272 0.6527 K2O 0.29 0.38 0.36 0.35 0.47 0.37 0.37 MnC 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 总计 97.93 97.34 98.15 98.39 97.13 97.73 97.7 总计 5.0000 5.0000 5.0001 5.0000 5.0000 5.0000 4.9999 Si 7.1063 7.0644 7.0818 7.1063 7.0155 7.1399 7.1130 FeB2+ 0.2621 0.1948 0.2556 0.2753 0.1707 0.2504 0.2195 AlⅣ 0.8937 0.9356 0.9182 0.8937 0.9845 0.8601 0.8870 MnB 0.0889 0.0978 0.0755 0.0839 0.0932 0.0965 0.0760 AlⅥ 0.0854 0.0894 0.0821 0.0684 0.1253 0.1192 0.1227 CaB 1.6490 1.7074 1.6689 1.6409 1.7224 1.6531 1.7045 Ti 0.0930 0.1166 0.0985 0.0885 0.1390 0.0912 0.1045 NaB 0.0000 0.0000 0.0000 0.0000 0.0136 0.0000 0.0000 Fe3+ 0.4797 0.4242 0.4522 0.4602 0.4053 0.4965 0.4567 总计 2.0000 2.0000 2.0000 2.0000 1.9999 2.0000 2.0000 Fe2+ 0.7320 1.0085 0.8207 0.8189 1.0397 0.7776 0.0760 CaA 0.1020 0.0373 0.0913 0.1085 0.0550 0.0120 Mn 0.0889 0.0978 0.0755 0.0839 0.0932 0.0965 0.0819 NaA 0.3651 0.4676 0.3905 0.3672 0.5068 0.3804 0.4630 Mg 3.8720 3.5562 3.8022 3.8393 3.4614 3.7659 3.6633 KA 0.0532 0.0709 0.0661 0.0641 0.0879 0.0681 0.0683 Ca 1.7510 1.7447 1.7602 1.7494 1.7224 1.7081 1.7165 总计 0.5203 0.5758 0.5479 0.5398 0.5947 0.5035 0.5433 Na 0.3651 0.4676 0.3905 0.3672 0.5204 0.3804 0.4630 K 0.0532 0.0709 0.0661 0.0641 0.0879 0.0681 0.0683 总计 15.5203 15.5759 15.548 8.4336 15.5946 15.5035 14.7529 注:下标表示离子在晶体中所占位置; 计算方法:以23个氧原子和16个阳离子为基准; 标准晶体化学式:A0-1B2C5T8O22(OH, F, Cl)2; 主量元素单位为%,FeC3+等阳离子通过电价差值法计算获得 表 4 与角闪石共生的斜长石矿物组成
Table 4. Mineral composition of plagioclase coexisting with hornblende
% 样品号 DB25-2 DB56-2 DB56-4 DB58-2 SiO2 60.470 60.680 59.74 60.92 Al2O3 24.070 23.960 24.51 23.45 CaO 5.890 6.100 6.57 5.88 Na2O 8.690 8.670 8.25 8.44 K2O 0.180 0.170 0.30 0.65 BaO 0.000 0.000 0.000 0.000 总计 99.300 99.580 99.370 99.340 Si 2.7125 2.7155 2.6844 2.7350 Al 1.2725 1.2637 1.2980 1.2408 Ca 0.2831 0.2925 0.3163 0.2828 Na 0.7558 0.7523 0.7187 0.7347 K 0.0103 0.0097 0.0172 0.0372 Ba 0.0000 0.0000 0.0000 0.0000 总计 5.0342 5.0336 5.0346 5.0305 An 26.98 27.74 30.06 26.82 Ab 72.04 71.34 68.31 69.65 Or 0.98 0.92 1.63 3.53 表 5 角闪石-斜长石温压计计算结果
Table 5. The calculation result of aluminum-in-hornblende geobarometry
岩体 点号 (Na+K)A TAl T*/℃ p(HZ86)/(108Pa) p(H87)/(108Pa) p(JR89)/(108Pa) p(S92)/(108Pa) Dep89/km Dep92/km Depave/km 多宝山铜矿花岗岩体 DB01-1 0.4183 0.979 656 1.004 0.762 0.681 1.65 2.573 6.232 6.645 DB01-2 0.5385 1.025 684.3 1.236 1.021 0.876 1.869 3.307 7.059 DB82-1 0.4566 1.001 662.6 1.115 0.886 0.774 1.755 2.924 6.627 7.047 DB82-2 0.4313 0.962 650.7 0.919 0.666 0.609 1.569 2.301 5.926 DB82-3 0.5947 1.11 711.1 1.663 1.5 1.235 2.274 4.665 8.587 6.519 DB120-1 0.4485 0.98 653.7 1.009 0.767 0.685 1.655 2.589 6.25 DB120-2 0.5313 1.01 669.8 1.16 0.936 0.812 1.798 3.068 6.789 公式 参数 DB01-1 DB01-2 DB01-1 DB01-1 DB01-1 DB01-1 DB01-1 Schmidt[38] T/℃ 642.9 700.4 661.7 585.5 注:式中的T/℃根据Holland等[35]提出的角闪石-斜长石温度计B计算 p/kb 1.61 1.84 1.71 1.54 2.23 1.61 1.76 H/km 6.08 6.95 6.46 5.82 8.42 6.08 6.65 Anderson等[32] T/℃ 642.9 700.3 661.8 585.5 p/kb 1.74 1.64 1.79 1.57 H/km 6.5715 6.1938 6.7603 5.9295 注:TAl = AlⅣ+AlⅥ,角闪石全铝含量; T*:当T < 970℃时,T/℃=1204×Ti+545(Ti是以23个氧计算的晶体化学式中的Ti阳离子系数)[46]; p(HZ86)—由Hammarstrom等[18]全铝压力计计算的压力; p(H87)为由Hollister等[42]全铝压力计计算的压力; p(JR89)—由Johnson等[43]全铝压力计计算的压力; p(S92)—由Schmidt[44]全铝压力计计算的压力; Dep89—由p(JR89)压力计算的成岩深度; Dep92—由p(S92)压力计算的成岩深度(取上地壳花岗岩平均密度2.7 g/cm3); Depave—平均深度 -
[1] 武广, 刘军, 钟伟, 等. 黑龙江省铜山斑岩型铜矿床流体包裹体研究[J]. 岩石学报, 2009, 25(11): 2995-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911030.htm
[2] 赵一鸣, 张德全. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M]. 北京: 地震出版社, 1997: 1-82.
[3] Li Y, Hou X Y, Yang B, et al. Indo-Chinese Magmatic Activity in the Duobaoshan District of Heilongjiang Province and its geological significance[J]. Acta Geologica Sinica (English Edition), 2017, 91(6): 2058-2077. doi: 10.1111/1755-6724.13450
[4] Zeng Q D, Liu J M, Chu S X, et al. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 2014, 79: 895-909. doi: 10.1016/j.jseaes.2013.02.007
[5] 赵元艺, 王江朋, 赵广江, 等. 黑龙江多宝山矿集区成矿规律与找矿方向[J]. 地球科学——吉林大学学报, 2011, 41(6): 1676-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106003.htm
[6] 赵忠海, 郑卫政, 曲晖, 等. 黑龙江多宝山地区铜金成矿作用与成矿规律[J]. 矿床地质, 2012, 31(3): 601-614. doi: 10.3969/j.issn.0258-7106.2012.03.017
[7] Liu J, Li Y, Zhou Z H, et al. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role[J]. Ore Geology Reviews, 2017, 86: 600-614. doi: 10.1016/j.oregeorev.2017.02.036
[8] Liu J, Wu G, Li Y, et al. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang[J]. Journal of Asian Earth Sciences, 2012, 49: 300-312. doi: 10.1016/j.jseaes.2011.10.014
[9] 魏浩, 徐九华, 曾庆栋, 等. 黑龙江省多宝山斑岩型铜(钼)矿床蚀变-矿化阶段及其流体演化[J]. 岩石学报, 2011, 27(5): 1361-1374.
[10] Zeng H, Zhao Y Y, Fu J J, et al. Features of Sulfide and Plumbum Isotopes of the Copper Deposits in Duobaoshan Deposit Cluster in Heilongjiang Province, China[J]. Acta Geologica Sinica (English Edition), 2014, 88(2): 643-644.
[11] Wu G, Chen Y H, Sun F Y, et al. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 2015, 97: 229-250. doi: 10.1016/j.jseaes.2014.07.031
[12] 杜琦, 陈明秀. 多宝山斑岩铜矿床成因模式[J]. 矿床地质, 1983, 2(2): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198302005.htm
[13] 赵元艺, 马志红, 冯本智. 黑龙江多宝山铜矿床地球化学找矿模型[J]. 桂林工学院学报, 1997, 17(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX701.009.htm
[14] Anderson J L. Status of thermobarometry in granitic batholiths[J]. Geological Society of America Special Papers, 1963, 15: 125-138.
[15] Anderson J L, Barth A P, Wooden J L, et al. Thermometers and thermobaremeters in gran itic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69: 121-142. doi: 10.2138/rmg.2008.69.4
[16] 张拴宏, 赵越, 刘健, 等. 华北地块北缘晚古生代—中生代花岗岩体侵位深度及其构造意义[J]. 岩石学报, 2007, 23(3): 625-638. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703012.htm
[17] Philipotts A R, Ague J J. Principles of Igneous and Metamorphic Petrology (2nd Edition)[M]. Cambridge: Cambridge University Press, 2009: 1-667.
[18] Hammarstrom J M, Zen E. Aluminum in hornblende, an empirical igneous geobarometer[J]. American Mineralogist, 1986, 71: 1297-1313.
[19] Liu Y J, Li W M, Feng Z Q, et al. A review of the Pa-leozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
[20] 王召林, 金浚, 佘宏全, 等. 大兴安岭北段斑岩型矿床的时空分布特征[J]. 地球科学进展, 2012, 27(S1): 285. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2012S1093.htm
[21] 任云生, 郝宇杰, 赵华雷, 等. 云蒙造山带东段古生代成矿作用与典型矿床[J], 矿床地质, 2014, 33: 125-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1065.htm
[22] 杜琦, 赵玉明, 卢秉刚, 等. 多宝山斑岩铜矿床[M]. 北京: 地质出版社, 1988: 1-334.
[23] 韩振新, 徐衍强, 郑庆道. 黑龙江省重要金属和非金属矿产的成矿系列及其演化[M]. 哈尔滨: 黑龙江人民出版社, 2004: 1-95.
[24] 葛文春, 吴福元, 周长勇, 等. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 2007, 52(20): 2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012
[25] Chen Y J, Chen H Y, Zaw K et al. Geodynamic settings and tectonic model of skarn gold deposits in China: an overview[J]. Ore Geology Reviews, 2007, 31(1/4): 139-169.
[26] Yavuz F. WinAmphcal: AWindows program for the IMA-04 amphibole classification[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(1): 1-2.
[27] Schumacher J C. The estimation of ferric iron in the electron microprobe analyses of amphiboles[J]. Canadian Mineralogist, 1997, 35: 219-246.
[28] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
[29] Wright J B. A simple alkalinity Ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-380. doi: 10.1017/S0016756800058222
[30] Leake B E, Woolley A R, Arpsce S, et al. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commisson on new minerals and mineral names[J]. The Canadian Mineralogist, 1997, 9: 623-651.
[31] 马昌前, 杨坤光, 唐仲华, 等. 花岗岩类岩浆动力学理论方法及鄂东花岗岩类例析[M]. 武汉: 中国地质出版社, 1994: 1-252.
[32] Stein C, Dietl C. Hornblende thermobarometry of granitoids from the central odenwald(Germany) and their implications for the geotectonic development of the Odenwald[J]. Mineral and Petrology, 2001, 72: 185-207. doi: 10.1007/s007100170033
[33] 马鸿文. 结晶岩热力学概论(第二版)[M]. 北京: 高等教育出版社, 2001: 1-297.
[34] Blundy J D, Holland T J B. Calcic amphibole equilibria and a new arnphibole-plagiocalse geothermometer[J]. Contribution to Mineralogy and Petrology, 1990, 104: 208-224. doi: 10.1007/BF00306444
[35] Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116: 433-447. doi: 10.1007/BF00310910
[36] Ernst W G. Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California[J]. American Mineralogist, 2002, 87: 478-490. doi: 10.2138/am-2002-0411
[37] Thomas W M, Ernst W G. The aluminum content of hornblende in calc-alkaline granitic rocks: A mineralogic barometer calibrated experimentally to 12 kbars[M]. Geochemical Society Special Publication, 1990, 2: 59-63.
[38] Anerson J L, Smith D R. The Effects of Temperature and ƒo2 on the Al-in-Homblende Barometer[J]. American Mineralogist, 1995, 80: 549-559. doi: 10.2138/am-1995-5-614
[39] Poli S, Schmidt M W. A comment on "Calcic amphibole equilibria and a new amphibule-plagioclase geothermometer" by Blundy JD and Holland TJB(Contrib Mineral Petrol. 1990, 104: 208-224)[J]. Contributions to Mineralogy and Petrology, 1992, 111: 3-282. doi: 10.1007/BF00296584
[40] 艾晓玲, 马昌前. 大别山同剥露刘家洼杂岩体角闪石/长石的矿物化学[J]. 矿物学报, 2000, 20(3): 213-219. doi: 10.3321/j.issn:1000-4734.2000.03.001
[41] Wones D R. Mafic silicates as indicators of intrusive variables in granitic magmas[J]. Mining Geology, 1981, 31: 191-212.
[42] Hollister L S, Grissom G C, Peters E K, et al. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons[J]. American Mineralogist, 1987, 72: 231-239.
[43] Johnson M C, Rutherford M J. Experimental calibration of the aluminum in hornblende geobaromrter with application to Long Valley caldera(California)[J]. Geology, 1989, 17: 837-841.
[44] Schmidt M W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al 2 in 2 hornblende batometer[J]. Contributions to Mineralogy and Petrology, 1992, 110: 304-310. doi: 10.1007/BF00310745
[45] Zhang S H, Zhao Y, Song B. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: Implications for the tectonic evolution of the northern margin of North China block[J]. Mineralogy and Petrology, 2006, 87: 123-141. doi: 10.1007/s00710-005-0116-2
[46] Otten M T. The origin of brown hornblende in the Artfjället gabbro and dolerites[J]. Contributions to Mineralogy and Petrology, 1984, 86(2): 189-199. doi: 10.1007/BF00381846
[47] Pan Z D, Hou H S, Zhou J B, et al. Crustal structure and Paleozoic metallogenic tectonic setting of the Duobaoshan ore district, NE China[J]. Ore Geology Reviews, 2021, 137: 1-12.
[48] 刘军, 周振华, 何哲峰, 等. 黑龙江省铜山铜矿床英云闪长岩锆石U-Pb年龄及地球化学特征[J]. 矿床地质, 2015, 12: 83-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201502006.htm
[49] Zhao C, Qin K Z, Song G X, et al. Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 2018, 165: 352-370. doi: 10.1016/j.jseaes.2018.07.002
[50] Zhao C, Qin K Z, Song G X, et al. The Triassic Duobaoshan appinite-granite suite, NE China: Implications for a water-fluxed lithospheric mantle and an extensional setting related to the subduction of the Mongol-Okhotsk Ocean[J]. Lithos, 2021, 394/395: 1-14.
[51] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, 50(12): 1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015
[52] Zhou J B, Wilde S A, Zhang X Z, et al. Detrital zircons from phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications[J]. Journal of Asian Earth Sciences, 2012, 47: 21-34. doi: 10.1016/j.jseaes.2011.05.004
[53] Wu F Y, Sun D Y, Li H M, et al. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 2002, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9
[54] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8
[55] Seedorff E, Dilles J H, Proffett J M, et al. Porphyry deposits characteristics and origin of hypogene features[J]. Economic Geology, 2005, 100: 251-298.
[56] 冷亚星. 黑龙江多宝山斑岩型铜(钼)矿床成岩成矿深度及变化保存研究[D]. 中国地质大学(北京)硕士学位论文, 2016: 67-70.
[57] 尹冰川, 冉清昌. 多宝山超大型铜矿床的成矿构造环境[J]. 矿物学报, 1997, 17(2): 220-224. doi: 10.3321/j.issn:1000-4734.1997.02.017
[58] Zhao C, Qin K Z, Song G X, et al. Early Palaeozoic high-Mg basalt-andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: Constraints on pet-rogenesis, mineralization, and tectonic setting[J]. Gondwana Research, 2019, 71: 91-116. doi: 10.1016/j.gr.2019.01.015
[59] 武广, 孙丰月, 赵财胜, 等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20): 2278-2288. doi: 10.3321/j.issn:0023-074X.2005.20.017
[60] 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm
[61] 任战利, 崔军平, 史政, 等. 中国东北地区晚古生代构造演化及后期改造[J]. 石油与天然气地质, 2010, 31(6): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006009.htm
-