Age, petrogenesis and tectonic setting of bimodal volcanic rocks from Yeba Formation in Maizhoukunggar, southern Tibet
-
摘要:
青藏高原南部早中生代岩浆岩的研究对反演区域构造演化具有重要意义,其中早侏罗世叶巴组火山岩被认为是新特提斯洋俯冲的早期岩浆记录,目前对于其形成的构造环境仍存在争议。选取西藏南部墨竹工卡县地区新发现的叶巴组火山岩为研究对象,对其进行了锆石U-Pb同位素、全岩地球化学成分测试。火山岩主要岩性为玄武岩(181.0±5.0 Ma,n=1)和流纹岩(181.4±4.4 Ma,MSWD=0.017, n=18),具有双峰式火山岩特征。玄武岩具有较高的TiO2、P2O5和Nb含量,(La/Nb)PM<2,具有富铌玄武岩的特征,Mg#值为54.9~57.3,Ti/V>50,富集轻稀土元素,亏损重稀土元素。流纹岩具有较高的SiO2、Na2O含量,Mg#值为49.1~50.4,Th/Ce值为0.1~0.15,Th/La值为0.22~0.31,Nb/Ta值为14.06~14.32,Sr/Y值较低(4.15~4.82),富集轻稀土和大离子亲石元素,亏损高场强元素。研究结果揭示,玄武岩岩浆源区为板片熔体交代的地幔楔,并在后期演化过程中混入部分地壳物质。流纹岩为幔源岩浆与大陆地壳混染成因。玄武岩具有板内玄武岩及岛弧岩浆岩特征,流纹岩具有岛弧岩浆岩特征,结合区域地质背景推测,墨竹工卡叶巴组火山岩形成于新特提斯洋北向俯冲的弧后盆地环境,区域上叶巴组火山岩的形成时代及构造环境存在差异,可能代表了俯冲不同阶段的产物。
Abstract:The study of the Early Mesozoic magmatic rocks in the southern Tibetan Plateau is of great significance to the inversion of regional tectonic evolution.The volcanic rocks of the Yeba Formation in Early Jurassic are considered to be the early records of the subduction of the Neo-Tethys ocean.At present, there are still controversies about the tectonic setting of their formation.We selected the volcanic rocks of Yeba Formation in Maizhoukunggar county, southern Tibet, as the research objects.We present new zircon U-Pb isotopes and whole rock geochemical composition testing, discuss the implications for evolution of this region.The main lithology includes basalts(181.0±5.0 Ma, n=1)and rhyolites(181.4±4.4 Ma, MSWD=0.017, n=18), and they have bimodal volcanic characteristics.The basalts have high TiO2(1.62%~1.78%), P2O5(0.49%~0.51%)and Nb(10.18%~10.61%)concentrations, (La/Nb)PM < 2, which are similar to the ENB.The Mg#s are between 54.9~57.3, enrichment of LREE and depletion of HREE.Rhyolites have highly SiO2 (79.25%~80.22%), Na2O(3.94%~4.26%)contents, Mg # values are 49.1~50.4, Th/Ce ratios are 0.1~0.15, Th/La ratios are 0.22~0.31, Nb/Ta ratios are 14.06~14.32, Sr /Y ratios are 4.15~4.82, and enrichment of LREE and LILE and depletion of HFSE.It is considered that the magma source area of basalts is mantle wedge metasomatized by slab-derived melt and mixed with crustal materials during the later evolution.Rhyolites are of mantle derived magma mixed with continental crust.Basalts have the characteristics of intraplate basalts and island arc magmatic rocks, while rhyolites show the characteristics of island arc magmatic rocks. Combined with the regional geological background, it is inferred that the volcanic rocks of the Yeba Formation in Maizhoukunggar were formed in the back-arc basin of the northward subduction of the Neo-Tethys ocean, and there are differences in the formation age and tectonic settings of the volcanic rocks of the Yeba Formation in the region, It may represent different products in different stages of subduction.
-
Key words:
- Tibet Plateau /
- Yeba Formation /
- bimodal volcanic rocks /
- back-arc basin /
- Maizhoukunggar /
-
-
图 4 叶巴组火山岩原始地幔标准化微量元素蛛网图(a、c)和球粒陨石标准化稀土元素配分模式图(b、d)(标准化值据参考文献[39])
Figure 4.
图 5 叶巴组流纹岩部分熔融图解(据参考文献[42]修改)
Figure 5.
表 1 叶巴组玄武岩(S18T45)及流纹岩(S18T46)LA-ICP-MS锆石U-Th-Pb同位素数据
Table 1. LA-ICP-MS zircon U-Th-Pb isotopic data of basalt(S18T45)and rhyolite(S18T46)from Yeba Formation
测点号 含量/10-6 Th/U 同位素比值 年龄值/Ma Th U Pb* 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 玄武岩S18T45 2 142 184 15.4 0.77 0.779 0.024 0.070 0.0018 585 14 439 11 3 434 810 66.0 0.53 0.716 0.020 0.076 0.0019 548 12 471 12 5 798 1124 92.6 0.71 0.645 0.017 0.072 0.0018 505 10 449 11 9 107 344 93.3 0.31 3.337 0.086 0.227 0.0058 1490 20 1319 30 13 672 548 5.60 1.22 0.190 0.009 0.029 0.0008 177 7 181 5 14 266 348 18.2 0.77 0.701 0.022 0.034 0.0009 539 13 217 6 流纹岩S18T46 1 239 211 45.4 1.13 0.197 0.011 0.029 0.0008 182 10 182 5 2 241 220 31.5 1.09 0.196 0.010 0.029 0.0008 182 9 182 5 4 196 178 15.8 1.10 0.220 0.011 0.028 0.0008 202 9 181 5 5 174 411 26.8 0.42 0.200 0.010 0.028 0.0008 186 9 180 5 6 179 443 21.9 0.40 0.197 0.008 0.029 0.0008 182 7 182 5 8 244 486 22.8 0.50 0.192 0.008 0.029 0.0008 179 7 183 5 11 165 322 10.6 0.51 0.213 0.015 0.028 0.0009 196 12 181 6 12 166 390 10.5 0.43 0.191 0.008 0.028 0.0008 177 7 181 5 13 204 433 12.7 0.47 0.196 0.009 0.029 0.0008 182 7 182 5 14 171 183 5.61 0.94 0.197 0.010 0.029 0.0008 182 9 183 5 15 149 158 4.42 0.94 0.214 0.017 0.028 0.0009 197 14 181 5 17 223 217 5.30 1.03 0.195 0.008 0.028 0.0008 181 7 181 5 18 236 514 11.0 0.46 0.205 0.009 0.028 0.0008 189 7 180 5 21 183 179 3.80 1.02 0.199 0.013 0.029 0.0009 184 11 184 5 22 192 201 4.34 0.95 0.203 0.011 0.028 0.0008 188 9 180 5 24 132 149 7.00 0.88 0.194 0.008 0.028 0.0008 180 7 180 5 注:Pb*=0.241×206Pb+0.221×207Pb+0.524×208Pb 表 2 叶巴组玄武岩(S18T45)和流纹岩(S18T46)主量、微量及稀土元素含量
Table 2. Major, trace and rare earth elements contents of basalts(S18T45)and rhyolites(S18T46)from Yeba Formation
样品号 S18T45H1 S18T45H2 S18T45H3 S18T45H4 S18T46H1 S18T46H2 S18T46H3 SiO2 46.7 51.1 47.5 49.1 78.2 78.5 79.4 TiO2 1.64 1.53 1.58 1.57 0.11 0.11 0.1 Al2O3 17.3 167 16.9 16.5 13.0 12.7 12.4 TFe2O3 3.67 3.74 3.55 3.73 0.62 0.60 0.60 MnO 0.21 0.19 0.20 0.20 0.01 0.02 0.01 MgO 4.04 3.76 3.59 4.13 0.27 0.25 0.26 CaO 6.29 4.71 6.83 5.38 0.15 0.16 0.16 Na2O 2.05 2.94 2.24 2.50 4.02 4.20 3.90 K2O 3.35 2.68 3.35 2.83 1.95 1.72 1.79 P2O5 0.46 0.48 0.45 0.46 0.06 0.06 0.06 烧失量 7.64 5.51 7.62 6.70 1.08 1.07 1.08 总量 99.7 99.8 99.9 99.6 99.7 99.6 100 Cr 3.87 6.67 7.15 4.24 2.28 2.96 3.83 Ni 2.10 3.28 3.28 2.04 0.38 0.45 1.06 Rb 16.7 26.5 31.2 35.9 58.6 51.4 53.7 Sr 83.3 115 102 112 49.0 60.8 43.1 Y 28.4 33.4 31.4 29.5 11.8 12.6 9.99 Zr 158 155 152 156 69.1 66.9 65.4 Nb 10.6 10.4 10.2 10.5 8.18 8.09 7.46 Ba 371 391 482 457 420 475 250 La 15.4 19.5 18.1 17.8 16.8 21.2 18.3 Ce 37.9 44.5 43.0 43.3 34.0 42.7 36.1 Pr 5.06 5.86 5.65 5.50 3.77 4.41 3.60 Nd 22.4 26.0 24.8 24.4 13.5 15.9 12.8 Sm 5.57 6.43 6.07 5.95 2.57 2.97 2.40 Eu 1.76 2.29 1.94 1.99 0.63 0.70 0.58 Gd 6.06 7.05 6.67 6.37 2.51 2.69 2.20 Tb 0.97 1.10 1.06 1.01 0.40 0.42 0.33 Dy 5.74 6.43 6.31 5.99 2.26 2.38 1.89 Ho 1.22 1.38 1.33 1.26 0.49 0.50 0.40 Er 3.53 3.86 3.71 3.57 1.44 1.40 1.14 Tm 0.51 0.55 0.55 0.52 0.21 0.22 0.17 Yb 3.28 3.46 3.41 3.29 1.36 1.37 1.10 Lu 0.50 0.53 0.52 0.51 0.21 0.21 0.17 Hf 3.90 3.80 3.85 3.94 2.48 2.40 2.33 Ta 0.71 0.70 0.68 0.70 0.57 0.56 0.53 Pb 2.01 2.616 2.24 2.268 6.673 11.26 12 Th 3.36 3.84 3.96 3.73 5.34 5.40 4.14 U 0.89 0.98 0.95 1.03 1.78 1.74 1.62 K 30195 23590 30130 25286 16188 14279 14860 Ti 10673 9724 10261 10129 659 659 599 P 2180 2221 2128 2161 262 262 262 V 174 161 175 159 6.65 5.71 6.47 Mg# 57.1 54.9 55.0 57.3 50.4 49.1 50.1 Eu* 0.93 1.04 0.93 0.99 0.75 0.76 0.77 注: Mg#=(MgO/40.3)/(MgO/40.3+TFe2O3×0.89/71.9×0.85)×100;Eu*=Eu/SQRT(Sm×Gd);主量元素含量单位为%, 微量和稀土元素含量单位为10-6 -
[1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
[2] 胡培远, 翟庆国, 赵国春, 等. 青藏高原纳木错西缘新元古代中期岩浆事件: 对北拉萨地块起源的约束[J]岩石学报, 2019, 35(10): 3115-3129. doi: 10.18654/1000-0569/2019.10.10
[3] 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904014.htm
[4] Wu H, Sun S, Liu H, et al. Anearly cretaceous slab window beneath central Tibet, SW China: evidence from OIB-like alkaline gabbros in the Duolong area[J]. Terra Nova, 2019, 31: 67-75.
[5] Zhai Q G, Tang Y, Hu P Y, et al. The Beila Ophiolite from the Bangong-Nujiang Suture Zone, Northern Tibetan Plateau[J]. Acta Geologica Sinica, 2017, (S1): 51-51.
[6] 刘琦胜, 江万, 简平, 等. 宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征[J]. 岩石学报, 2006, 22(3): 643-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603013.htm
[7] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005
[8] 陈炜, 马昌前, 宋志强, 等. 西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩: 锆石U-Pb年代学及地球化学证据[J]. 地质科技情报, 2011, 30(6): 1-12. doi: 10.3969/j.issn.1000-7849.2011.06.001
[9] 张雨轩, 解超明, 于云鹏, 等. 早侏罗世新特提斯洋俯冲作用——来自松多高镁闪长岩锆石U-Pb定年及Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1387-1399. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180803&flag=1
[10] Wei Y, Zhao Z, Niu Y, et al. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane[J]. Lithos, 2017, 278/281: 477-490. doi: 10.1016/j.lithos.2017.02.013
[11] Zhu D C, Pan G T, Wang L Q, et al. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China[J]. Geological Bulletin of China, 2008, 27(4): 458-468.
[12] 杨志明, 侯增谦, 夏代详, 等. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示[J]. 矿床地质, 2008, 27(1): 28-36. doi: 10.3969/j.issn.0258-7106.2008.01.003
[13] Kang Z Q, Xu J F, Wilde S A, et al. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos, 2014, 200/201: 157-168. doi: 10.1016/j.lithos.2014.04.019
[14] 董昕, 张泽明. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义[J]. 岩石学报, 2013, 29(6): 1933-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306007.htm
[15] 水新芳, 贺振宇, 张泽明, 等. 西藏冈底斯带东段早侏罗世英云闪长岩的岩浆起源及其对拉萨地体地壳演化的意义[J]. 地质学报, 2016, 90(11): 3129-3152. doi: 10.3969/j.issn.0001-5717.2016.11.011
[16] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3): 229-245.
[17] Meng Y, Dong H, Cong Y, et al. The early-stage evolution of the Neo-Tethys Ocean: Evidence from granitoids in the middle Gangdese batholith, southern Tibet[J]. Journal of Geodynamics, 2016, 94/95: 39-49.
[18] Guo L, Liu Y, Liu S, et al. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: Implications for early history of the Neo-Tethys[J]. Lithos, 2013, 179: 320-333. doi: 10.1016/j.lithos.2013.06.011
[19] Xie F, Tang J, Lang X, et al. The different sources and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite[J]. Lithos, 2018, 314/315: 447-462. doi: 10.1016/j.lithos.2018.06.024
[20] Wang R, Tafti R, Hou Z Q, et al. Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization[J]. Chemical Geology, 2017, 451: 116-134. doi: 10.1016/j.chemgeo.2017.01.010
[21] Wang R, Qiu J, Yu S, et al. Crust-mantle interaction during Early Jurassic subduction of Neo-Tethyan oceanic slab: Evidence from the Dongga gabbro-granite complex in the southern Lhasa subterrane, Tibet[J]. Lithos, 2017, 292/293: 262-277. doi: 10.1016/j.lithos.2017.09.018
[22] 舒楚天, 龙晓平, 王强, 等. 藏南早侏罗世新特提斯洋俯冲过程中壳幔混合作用: 来自日喀则东嘎闪长质岩体的证据[J]. 地球化学, 2018, 47(5): 478-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201805003.htm
[23] 邹洁琼, 余红霞, 王保弟, 等. 南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义[J]. 地球科学, 2018, 43(8): 2795-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808020.htm
[24] 王旭辉, 郎兴海, 邓煜霖, 等. 西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 高校地质学报, 2018, 24(1): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801004.htm
[25] Xu B, Hou Z Q, Zheng Y C, et al. In situ elemental and isotopic study of diorite intrusions: implication for Jurassic arc magmatism and porphyry Cu-Au mineralization in southern Tibet[J]. Ore Geology Reviews, 2017, 90: 1063-1077. doi: 10.1016/j.oregeorev.2017.04.036
[26] 董彦辉. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J]. 岩石学报, 2006, 22(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603015.htm
[27] 陈炜, 马昌前, 边秋娟, 等. 西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据[J]. 地质科技情报, 2009, (3): 31-40. doi: 10.3969/j.issn.1000-7849.2009.03.006
[28] 曾忠诚, 刘德民, 泽仁扎西, 等. 西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义[J]. 吉林大学学报: 地球科学版, 2009, (3): 435-445. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903011.htm
[29] 黄丰, 许继峰, 陈建林, 等. 早侏罗世叶巴组与桑日群火山岩: 特提斯洋俯冲过程中的陆缘弧与洋内弧?[J]. 岩石学报, 2015, 31(7): 2089-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507022.htm
[30] 熊秋伟, 陈建林, 许继峰, 等. 拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因[J]. 地质通报, 2015, 34(9): 1645-1655. doi: 10.3969/j.issn.1671-2552.2015.09.006 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20150906&flag=1
[31] 解超明, 段梦龙, 于云鹏, 等. 西藏松多地区早侏罗世变质辉长岩的成因及其构造意义[J]. 岩石学报, 2019, 35(10): 3065-3082. doi: 10.18654/1000-0569/2019.10.07
[32] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation- Inductively coupled Plasma-Mass spectrometry[J]. Geostandards and Geoana-lytical Research, 2004, 28: 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[33] Andersen T. Correction of common lead in U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[34] Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003.
[35] Govindaraju K. Compilation of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994.
[36] Mampel D, Nandi A K, Schellhorn K, et al. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60: 1217-1229. doi: 10.1016/0016-7037(96)00001-4
[37] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报, 2008, 27(4): 458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080403&flag=1
[38] 耿全如, 潘桂棠, 金振民, 等. 西藏冈底斯带叶巴组火山岩地球化学及成因[J]. 地球科学, 2005, 30(6): 747-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506010.htm
[39] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[40] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78: 1-24. doi: 10.1016/j.lithos.2004.04.042
[41] Jones D S, Barnes C G, Premowr et al. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: a composite(?), bimodal, oceanic, fringing arc[J]. Precambrian Research, 2011, 185: 231-249. doi: 10.1016/j.precamres.2011.01.011
[42] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy & Petrology, 2010, 160(2): 297-312.
[43] Sajona F G, Bellon H, Maury R C, et al. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calcalkaline lavas and Nb enriched basalts of Leyte and Mindanao(Philippines)[J]. Tectonophysics, 1994, 237: 47-72. doi: 10.1016/0040-1951(94)90158-9
[44] Reagan M K, Gill J B. Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanites in arc magma sources[J]. Journal of Geophysical Research, 1989, 94: 4619-4633. doi: 10.1029/JB094iB04p04619
[45] Castillo P R. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico[J]. Geological Society of America Bulletin, 2008, 120: 451-462. doi: 10.1130/B26166.1
[46] Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraints on "postorogenic" magmatism[J]. Geology, 1992, 20: 931-934.
[47] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54: 117-137. doi: 10.1016/S0024-4937(00)00034-7
[48] Cai K D, Sun M, Yuan C, et al. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2010, 18: 638-652. doi: 10.1016/j.gr.2010.02.010
[49] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0
[50] Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: a study of quartz tholeites to olivine melilities from south eastern Australia utilizing geochemical and experimental petrological data[J]. J. Petrol., 1978, 19: 463-513. doi: 10.1093/petrology/19.3.463
[51] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
[52] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59: 101-118. doi: 10.1016/0012-821X(82)90120-0
[53] Wang H, Wu Y B, Qin Z W, et al. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogeny, central China: implication for the geodynamic evolution of the North Qinling arc-back-arc system[J]. Lithos, 2013, 179: 1-15. doi: 10.1016/j.lithos.2013.07.021
[54] Christian P, Paquette J L. A mantle derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brevenne metavolcanics, Massif Central(France)[J]. Contributions to Mineralogy and Petrology, 1997, 129(2/3): 222-238.
[55] Coward M P, Dewey J F, Hancock P L. Continental extensional tectonics[J]. Geological Society, Special Publication, 1987, 28: 1-637.
[56] Riley T R, Leat P T, Kelley S P, et al. Thinning of the Antarctic Peninsula lithosphere through the Mesozoic: evidence from Middle Jurassic basaltic lavas[J]. Lithos, 2003, 67: 163-179. doi: 10.1016/S0024-4937(02)00266-9
[57] Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227: 148-160. doi: 10.1016/j.lithos.2015.03.021
[58] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080913&flag=1
① 朱利东, 杨文光, 王刚, 等. 西藏唐加地区4幅1: 5万区域地质调查报告. 2018.
-