Petrogenesis of the Shuicaoba monzonitic granite porphyry in Ninglang, Yunnan: constraints from zircon U-Pb geochronology and geochemistry
-
摘要:
云南水草坝岩体位于祥云-宁蒗铜金成矿带北段,是金沙江-红河新生代富碱斑岩成矿带的重要组成部分。对水草坝二长斑岩进行了岩相学、锆石U-Pb年龄和岩石地球化学研究,为该区新生代构造岩浆演化提供新的约束。LA-ICP-MS锆石U-Pb分析结果表明,水草坝二长花岗斑岩形成于古近纪渐新世早期(33.1±0.3 Ma)。岩石地球化学特征显示,岩体具有高硅、富碱的特征,且A/CNK大于1,属于过铝质富碱二长花岗斑岩。岩石稀土元素总量较高(ΣREE = 114.68×10-6~384.79×10-6),稀土元素配分模式呈右倾型,轻、重稀土分馏明显((La/Yb)N = 440.37~114.09),Eu无明显异常(0.84~1.14),具有富集轻稀土元素和大离子亲石元素(Rb、Sr、K等)、亏损重稀土元素和高场强元素(Nb、Ta、Ti等),以及高Sr低Y、Yb的特征,属于典型的C型埃达克岩。综合分析认为,水草坝二长花岗斑岩岩浆源区主要为加厚下地壳的部分熔融,可能有少量幔源组分的参与。结合区域构造演化,认为水草坝二长花岗斑岩形成于印度-欧亚板块晚碰撞走滑期构造应力由挤压向伸展转换的动力学背景。
Abstract:The Shuicaoba monzonitic granite porphyry is located north segment of the Xiangyun-ninglang Cu-Au metallogenic belt, and it is also an important part of the Jinshajiang-Red River enozoic alkali-rich porphyry belt.Based on petrography, zircon U-Pb geochronology and petrogeochemical analysis of the Shuicaoba Monzogranite porphyry, new constraints have be provided for the Cenozoic tectonic magmatic evolution in this area.LA-ICP-MS zircon U-Pb dating indicates that Shuicaoba monzonitic granite porphyry is of Early Oligocene (33.1±0.3 Ma).The pluton is rich in SiO2 and alkali, with the ratio of A/CNK > 1, belonging to the peraluminaceous alkali rich monzonite porphyry.The rock has a total high amount of REE elements(ΣREE=114.68×10-6~384.79×10-6), right-leaning REE distribution pattern, and obvious fractionation of LREE((La/Yb)N = 440.37~114.09), showing no significant Eu anomaly(0.84~1.14).The adakite is enriching in LILE(such as Rb, Sr and Ba) and HFSE (such as Th, U, K and La), depleting in HREE, high field strength elements (Nb, Ta, Ti, etc.), with a high amount of Sr and low amount of Y and Yb, which is typical C-type Adakite.Comprehensive analysis shows that the magmatic source area of the Shuicaoba monzogranite porphyry is mainly partial melting of the thickened lower crust, and a small amount of mantle-derived components may be involved.Combined with the regional tectonic evolution, it is considered that the Shuicaoba monzogranite porphyry was formed under the dynamic background of the tectonic stress transition from compression to extension during the late Indian-Eurasian plate collision strike slip period.
-
-
图 1 印度-欧亚板块碰撞示意图(a)、三江造山带新生代富碱斑岩分布图(b)(据参考文献[13]修改)和水草坝地质简图(c)
Figure 1.
图 6 水草坝二长花岗斑岩Y-Sr/Y(a)和YbN-(La/Yb)N(b)图解(底图据参考文献[32]修改)
Figure 6.
图 7 水草坝二长花岗斑岩SiO2-Mg#(a)、SiO2-MgO(b)、SiO2-Ni(c)和SiO2-Cr(d)图解(底图据参考文献[22]修改)
Figure 7.
表 1 水草坝二长花岗斑岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb results of the Shuicaoba monzonitic granite porphyry
测点 Pb/
10-6232Th/
10-6238U/
10-6Th/U 同位素比值 年龄/Ma 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ SCB1-4-01 2.51 480 341 1.41 0.0477 0.0046 0.0324 0.0027 0.0051 0.0001 87.1 215 32.4 2.7 33.1 0.7 SCB1-4-02 1.33 215 200 1.08 0.0578 0.0097 0.0331 0.0042 0.0051 0.0002 524 374 33.1 4.2 32.8 1.0 SCB1-4-03 2.69 532 368 1.45 0.0499 0.0054 0.0333 0.0029 0.0051 0.0001 187 246 33.3 2.8 32.9 0.6 SCB1-4-05 2.70 462 388 1.19 0.0466 0.0041 0.0315 0.0026 0.0050 0.0001 27.9 206 31.5 2.6 32.2 0.5 SCB1-4-06 2.65 494 368 1.34 0.0473 0.0050 0.0320 0.0032 0.0050 0.0001 61.2 237 32.0 3.1 32.3 0.7 SCB1-4-08 2.75 540 386 1.40 0.0491 0.0045 0.0329 0.0027 0.0051 0.0001 150 200 32.9 2.6 32.7 0.6 SCB1-4-09 2.11 357 308 1.16 0.0469 0.0043 0.0326 0.0026 0.0051 0.0001 55.7 194 32.6 2.6 32.9 0.6 SCB1-4-10 2.21 424 302 1.40 0.0474 0.0047 0.0340 0.0032 0.0052 0.0001 77.9 209 33.9 3.1 33.7 0.7 SCB1-4-12 1.84 318 264 1.20 0.0492 0.0054 0.0339 0.0034 0.0053 0.0001 167 231 33.8 3.3 33.8 0.8 SCB1-4-14 1.28 221 188 1.17 0.0519 0.0072 0.0326 0.0035 0.0050 0.0002 283 289 32.6 3.4 32.3 1.0 SCB1-4-15 2.02 296 298 0.99 0.0500 0.0043 0.0336 0.0023 0.0052 0.0001 198 185 33.5 2.3 33.3 0.8 SCB1-4-16 1.77 310 254 1.22 0.0491 0.0051 0.0331 0.0027 0.0053 0.0001 150 239 33.0 2.6 33.8 0.8 SCB1-4-17 2.50 396 369 1.07 0.0481 0.0042 0.0336 0.0026 0.0052 0.0001 102 193 33.6 2.6 33.3 0.5 SCB1-4-18 3.28 666 427 1.56 0.0494 0.0055 0.0344 0.0034 0.0053 0.0001 169 237 34.3 3.3 34.0 0.7 SCB1-4-19 2.94 559 407 1.37 0.0473 0.0035 0.0330 0.0023 0.0051 0.0001 64.9 167 33.0 2.3 33.0 0.7 SCB1-4-20 2.89 541 393 1.38 0.0467 0.0039 0.0340 0.0025 0.0054 0.0001 35.3 185 34.0 2.4 34.4 0.7 SCB1-4-21 3.02 703 399 1.76 0.0499 0.0053 0.0326 0.0025 0.0051 0.0001 187 230 32.6 2.4 32.5 0.6 SCB1-4-22 4.66 907 653 1.39 0.0476 0.0031 0.0335 0.0021 0.0051 0.0001 79.7 148 33.5 2.1 32.9 0.4 SCB1-4-23 2.23 256 369 0.69 0.0480 0.0044 0.0328 0.0026 0.0050 0.0001 98.2 204 32.7 2.5 32.2 0.7 SCB1-4-24 3.06 697 406 1.72 0.0481 0.0041 0.0335 0.0025 0.0052 0.0001 102 198 33.5 2.5 33.6 0.7 SCB1-4-26 2.44 427 350 1.22 0.0486 0.0046 0.0342 0.0030 0.0053 0.0001 132 207 34.1 3.0 34.0 0.7 SCB1-4-27 2.00 353 300 1.18 0.0484 0.0047 0.0336 0.0027 0.0051 0.0001 117 215 33.5 2.6 33.0 0.7 SCB1-4-28 2.63 529 385 1.37 0.0497 0.0040 0.0330 0.0023 0.0050 0.0001 189 172 33.0 2.3 32.3 0.6 SCB1-4-29 2.83 520 425 1.22 0.0476 0.0044 0.0326 0.0026 0.0052 0.0001 79.7 204 32.6 2.6 33.3 0.6 表 2 水草坝二长花岗斑岩主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements analyses of the Shuicaoba monzonitic granite porphyry
样品号 SCB-1 SCB-2 SCB-3 SCB-4 SCB-5 SCB-6 SCB-7 SCB-8 SCB-9 SCB-10 D0073-1 D0073-2 D0073-3 D0073-4 D0073-5 SiO2 68.13 66.44 69.16 68.44 68.37 68.29 68.10 68.69 68.47 68.43 69.99 68.30 70.88 69.31 69.20 TiO2 0.31 0.33 0.35 0.35 0.36 0.33 0.32 0.31 0.30 0.33 0.24 0.28 0.35 0.25 0.26 Al2O3 16.52 15.55 16.37 16.42 16.54 15.98 15.89 16.16 16.33 16.06 15.49 16.15 15.14 15.44 16.15 TFe2O3 2.26 4.62 1.24 1.66 2.21 2.90 2.99 2.34 2.17 2.06 1.13 2.33 1.52 1.83 1.38 MnO 0.08 0.22 0.02 0.22 0.07 0.04 0.02 0.07 0.10 0.08 < 0.01 0.05 < 0.01 0.03 0.01 MgO 0.18 0.19 0.20 0.23 0.22 0.20 0.18 0.18 0.16 0.19 0.19 0.07 0.10 0.20 0.20 CaO 0.99 0.96 1.09 1.18 0.94 0.99 0.94 0.99 1.01 1.02 0.60 0.36 0.37 0.68 0.62 Na2O 4.89 4.78 4.85 5.16 4.53 4.82 4.80 4.96 4.90 4.88 4.06 2.75 2.85 3.58 4.15 K2O 5.13 4.97 5.12 4.78 5.05 4.91 5.10 5.10 5.08 5.09 6.07 6.63 6.44 6.02 5.90 P2O5 0.20 0.20 0.22 0.23 0.20 0.19 0.21 0.19 0.19 0.21 0.11 0.13 0.11 0.12 0.11 烧失量 0.82 1.46 0.90 0.88 1.24 0.96 1.05 0.78 0.83 0.74 1.34 2.18 1.53 1.95 1.36 总计 99.51 99.72 99.52 99.55 99.73 99.61 99.60 99.77 99.54 99.09 99.22 99.23 99.29 99.41 99.34 K2O+Na2O 10.02 9.75 9.97 9.94 9.58 9.73 9.90 10.06 9.98 9.97 10.13 9.38 9.29 9.60 10.05 K2O/Na2O 1.05 1.04 1.06 0.93 1.11 1.02 1.06 1.03 1.04 1.04 1.50 2.41 2.26 1.68 1.42 σ 4.00 4.06 3.80 3.88 3.62 3.74 3.90 3.94 3.91 3.91 3.80 3.48 3.10 3.50 3.86 A/NK 1.22 1.17 1.21 1.20 1.28 1.21 1.18 1.18 1.20 1.19 1.17 1.38 1.30 1.24 1.22 A/CNK 1.07 1.04 1.06 1.04 1.13 1.06 1.05 1.05 1.06 1.05 1.08 1.31 1.23 1.13 1.13 Mg# 15.66 8.75 27.32 24.41 18.83 13.85 12.30 15.20 14.66 17.69 28.15 6.54 13.29 20.30 25.25 Li 35.3 35.0 38.7 36.9 40.4 38.1 38.0 38.4 36.5 36.2 11.5 32.0 20.3 17.3 11.4 Be 7.39 8.62 6.82 6.51 6.97 7.93 8.61 7.55 7.17 7.18 5.14 5.18 4.56 5.24 5.63 Sc 1.84 1.72 2.01 2.00 2.54 1.99 2.20 1.94 1.62 1.82 1.44 2.40 2.38 1.57 1.70 V 31.3 33.1 31.6 33.5 35.9 32.7 34.3 31.4 30.0 32.8 22.4 27.9 31.6 23.0 22.9 Cr 6.18 4.67 7.02 5.88 6.21 5.68 5.42 6.68 6.12 5.25 4.72 6.13 7.06 4.65 4.66 Co 4.17 12.7 1.45 3.65 3.30 4.51 2.22 4.17 4.66 3.47 1.18 3.08 1.09 2.54 1.80 Ni 4.49 8.84 4.26 14.0 4.60 8.07 3.67 7.27 7.07 4.01 1.51 3.60 1.70 2.78 2.15 Cu 3.96 5.75 3.10 4.13 3.98 4.37 5.21 4.86 3.58 4.73 5.11 13.1 10.8 7.99 5.57 Zn 38.3 75.8 19.8 66.2 30.0 53.6 43.7 43.7 43.1 26.8 12.9 30.6 12.5 20.8 23.1 Ga 21.0 20.5 21.7 21.9 22.0 21.2 20.9 21.1 20.7 20.8 20.0 21.6 19.5 20.5 21.1 Ge 1.06 1.07 1.14 1.23 1.24 1.14 1.10 1.08 1.07 1.02 0.91 1.00 0.92 0.99 0.91 Rb 193 197 216 190 208 214 222 209 208 203 348 536 509 372 359 Sr 1241 1112 1191 1244 1133 1241 1218 1256 1268 1200 573 482 425 534 653 Y 10.1 14.0 12.9 18.3 15.0 18.0 12.8 10.8 10.3 8.12 5.85 10.9 7.45 8.47 7.36 Zr 154 155 157 164 176 156 153 160 158 204 172 182 192 177 189 Nb 22.2 23.1 25.0 24.9 25.9 23.7 23.5 22.7 22.1 22.9 18.5 19.8 19.7 18.8 19.0 Cs 4.48 5.10 4.73 4.66 4.71 4.74 4.69 4.71 4.78 5.05 4.50 5.20 4.95 4.83 4.02 Ba 2174 2044 1949 1864 1978 1932 2014 2040 2095 2056 1523 1509 1439 1516 1568 Hf 4.46 4.66 4.68 4.76 5.13 4.57 4.52 4.62 4.53 5.56 5.44 5.90 5.92 5.62 5.83 Ta 1.22 1.31 1.38 1.32 1.41 1.29 1.30 1.24 1.21 1.25 0.89 0.99 0.96 0.93 0.92 Pb 44.3 46.6 46.1 45.4 48.7 44.0 66.3 563 46.0 43.5 40.5 46.1 45.3 45.8 48.3 Th 37.5 38.4 44.7 43.3 44.3 41.5 42.5 39.5 38.7 39.4 34.6 34.3 30.7 35.9 39.1 U 13.1 16.4 11.5 11.6 12.8 9.96 14.3 11.3 10.8 11.1 11.6 9.09 11.1 17.1 18.7 La 50.5 47.1 68.4 125 94.3 74.6 54.8 48.4 51.4 46.5 37.9 56.0 31.9 52.3 47.2 Ce 125 106 97.4 138 133 112 88.1 116 109 135 55.8 71.4 49.5 77.4 74.7 Pr 8.82 8.03 11.6 22.4 19.0 13.3 9.03 7.74 8.19 7.26 6.10 9.38 5.65 9.52 7.95 Nd 29.4 27.9 39.7 72.8 63.5 44.9 30.8 25.9 27.4 23.7 19.9 29.7 18.3 30.0 24.9 Sm 4.40 4.38 5.74 9.91 9.31 6.61 4.70 3.91 4.18 3.54 2.78 4.38 2.78 4.32 3.54 Eu 1.31 1.33 1.58 2.25 2.13 1.75 1.43 1.26 1.31 1.17 0.83 1.19 0.83 1.14 1.01 Gd 3.32 3.74 4.15 6.79 6.29 5.10 3.65 3.15 3.19 2.79 1.97 3.32 2.04 3.14 2.58 Tb 0.37 0.45 0.46 0.71 0.66 0.57 0.43 0.36 0.37 0.30 0.22 0.40 0.26 0.36 0.30 Dy 1.89 2.32 2.20 3.24 3.09 2.80 2.19 1.86 1.88 1.57 1.13 2.02 1.40 1.75 1.47 Ho 0.34 0.44 0.39 0.52 0.51 0.49 0.41 0.34 0.34 0.29 0.20 0.35 0.26 0.30 0.26 Er 0.97 1.25 1.10 1.38 1.38 1.35 1.17 0.99 0.98 0.85 0.59 0.99 0.76 0.84 0.75 Tm 0.15 0.18 0.16 0.18 0.19 0.19 0.17 0.15 0.15 0.13 0.094 0.15 0.12 0.12 0.11 Yb 0.93 1.16 0.99 1.10 1.20 1.18 1.13 0.96 0.95 0.89 0.62 0.95 0.79 0.78 0.76 Lu 0.15 0.18 0.16 0.16 0.18 0.18 0.18 0.15 0.14 0.14 0.098 0.14 0.12 0.12 0.12 (La/Yb)N 54.04 40.72 69.23 114.09 78.78 63.37 48.64 50.65 54.28 52.55 60.85 58.78 40.37 67.08 61.89 δEu 1.05 1.00 0.99 0.84 0.85 0.92 1.06 1.10 1.10 1.14 1.08 0.96 1.07 0.95 1.02 ∑REE 227.28 204.21 234.06 384.79 334.69 265.00 198.14 211.46 209.14 223.81 128.23 180.42 114.68 182.01 165.67 LREE/HREE 26.99 20.02 23.40 26.32 23.82 21.36 20.23 25.57 25.16 31.17 24.97 20.69 18.94 23.54 25.08 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 徐恒. 云南程海-宾川断裂带斑岩地球化学特征及成因[D]. 昆明理工大学博士学位论文, 2016.
[2] 李文昌, 江小均. 扬子西缘陆内构造转换系统与构造-岩浆-成矿效应[J]. 地学前缘, 2020, 27(2): 151-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002011.htm
[3] 葛良胜, 邹依林, 李振华, 等. 云南马厂箐(铜、钼)金矿床地质特征及成因研究[J]. 地质与勘探, 2002, 38(5): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200205002.htm
[4] 曾普胜, 莫宣学, 喻学惠. 滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J]. 岩石矿物学杂志, 2002, 21(3): 231-241. doi: 10.3969/j.issn.1000-6524.2002.03.005
[5] 梁华英, 孙卫东, 喻亨祥, 等. 西藏东缘玉龙斑岩铜矿带含矿岩体时代及斑岩铜金矿床形成研究[J]. 矿床地质, 2006, 25(S1): 415-418. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1110.htm
[6] 李光斗. 宁蒗-祥云斑岩型矿床成矿条件及找矿方向研究[J]. 昆明理工大学学报(理工版), 2009, 34(1): 1-6. doi: 10.3969/j.issn.1007-855X.2009.01.001
[7] 张道红, 张学书, 杨艳, 等. 扬子地台西缘富碱斑岩的岩石地球化学特征及找矿前景[J]. 地球学报, 2003, 34(1): 168-176. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB201306001027.htm
[8] 张超, 戚学祥, 唐贯宗, 等. 滇西哀牢山构造带长安铜钼金矿集区碱性斑岩岩石地球化学、锆石U-Pb定年及其对成矿作用的约束[J]. 岩石学报, 2014, 30(8): 2204-2216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408006.htm
[9] Deng J, Wang Q F, Li G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. doi: 10.1016/j.earscirev.2014.05.015
[10] Deng J, Wang Q F, Li G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70: 457-485. doi: 10.1016/j.oregeorev.2015.02.015
[11] 王建华, 李文昌, 和文言, 等. 金沙江-红河走滑构造与富碱斑岩铜金多金属成矿作用的关系[J]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1804.014.html https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1804.014.html
[12] 郭晓东. 云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因[D]. 中国地质大学(北京)博士学位论文, 2009.
[13] Yan Q G, Jiang X J, Li C, et al. Geodynamic Background of Intracontinental Cenozoic Alkaline Volcanic Rocks in Laojiezi, Western Yangtze Craton: Constraints from Sr-Nd-Hf-O Isotopes[J]. Acta Geologica Sinica, 2018, 92(6): 2098-2119.
[14] 辛未. 云南省哀牢山-红河成矿带新生代金铜钼成矿作用研究[D]. 吉林大学博士学位论文, 2019.
[15] 赵甫峰, 刘显凡, 卢秋霞, 等. 云南六合正长斑岩中花岗岩包体锆石U-Pb定年及其地质意义[J]. 地质学报, 2011, 85(10): 1574-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110005.htm
[16] 黄永高, 罗改, 张彤, 等. 滇西丽江地区新生代富碱斑岩年代学、地球化学特征及其地质意义[J]. 现代地质, 2018, 32(1): 28-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201801003.htm
[17] 王宏, 张锦让, 周清, 等. 云南宁蒗光马山二长斑岩岩石地球化学及锆石U-Pb年龄[J]. 地质通报, 2019, 38(11): 1858-1866. doi: 10.12097/j.issn.1671-2552.2019.11.009 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191109&flag=1
[18] 黄景厚, 周清, 张锦让, 等. 四川盐源西范坪渐新世含矿二长斑岩成因浅析[J]. 地质学报, 2019, 93(3): 622-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903008.htm
[19] 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2): 340-351. doi: 10.3969/j.issn.1000-3657.2006.02.013
[20] 薛传动, 骆少勇, 宋玉财, 等. 滇西北中甸陆家村石英二长斑岩的锆石SHRIMP定年及其意义[J]. 岩石学报, 2010, 26(6): 1845-1855. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006018.htm
[21] 李勇. 滇西"三江"地区新生代钾质岩浆岩年代学特征、岩石成因及其地质意义[D]. 中国地质大学(北京)博士学位论文, 2012.
[22] Lu Y J, Kerrich R, Mccuaig T C, et al. Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications[J]. Journal of Petrology, 2013, 54(7): 1309-1348. doi: 10.1093/petrology/egt013
[23] 洪涛, 游军, 吴楚, 等. 滇西桃花花岗斑岩中新太古代—古元古代锆石年龄信息: 对扬子板块西缘基底时代的约束[J]. 岩石学报, 2015, 31(9): 2583-2596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509009.htm
[24] 周洁. 云南省永胜分水岭-大理笔架山铜多金属矿床成矿成岩特征及构造背景研究[D]. 中国地质大学(北京)博士学位论文, 2017.
[25] 蒋小芳, 王生伟, 孙晓明, 等. 云南永仁直苴铜多金属矿床含矿斑岩体锆石U-Pb年龄[J]. 矿床地质, 2014, 33(S1): 281-282. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1143.htm
[26] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[27] Middlmost E. Naming materials in the magma/igneous rock system earth[J]. Science Reviews, 1994, 37(3/4): 215-224.
[28] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.
[29] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[30] Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Magmatism in the ocean basins. Geological Society of London Special Publication, 1989, 42(1): 313-345.
[31] Chen J L, Xu J F, Zhao W X. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the Southern Tibetan Plateau[J]. Lithos, 2011, 125: 928-939. doi: 10.1016/j.lithos.2011.05.006
[32] Defant M J, Drummond M S. Derivation of some modem arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0
[33] Chiaradia M. Adakite-like magmas from fractional crystallization and meltingassimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador)[J]. Chemical Geology, 2009, 265: 468-487. doi: 10.1016/j.chemgeo.2009.05.014
[34] Li J W, Zhao X F, Zhou M F, et al. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology, 2009, 157: 383-409. doi: 10.1007/s00410-008-0341-x
[35] Huang F, Li S G, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 2008, 255: 1-13. doi: 10.1016/j.chemgeo.2008.02.014
[36] Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.
[37] Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47: 119-144. doi: 10.1093/petrology/egi070
[38] 张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造成矿意义[J]. 岩石学报, 2001, 17(7): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm
[39] 张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9/10): 959-965. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409170&flag=1
[40] Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in theNingzhen area of east China: partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30: 1111-1114.
[41] Wang Q, Xu J F, Zhao Z H, et al. Cretaceous high-potassium intrusive rocks in theYueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime withina continent[J]. Geochem. J., 2004, 38: 417-434. doi: 10.2343/geochemj.38.417
[42] 张宏飞, 王靖, 徐旺春, 等. 俯冲陆壳部分熔融形成埃达克质岩浆[J]. 高校地质学报, 2007, 13(2): 224-234. doi: 10.3969/j.issn.1006-7493.2007.02.007
[43] 汪洋. 中国东部中生代钾质火成岩研究中的几个问题[J]. 地质论评, 2007, 53(2): 198-206. doi: 10.3321/j.issn:0371-5736.2007.02.007
[44] 王强, 许继锋, 赵振华. 一种新的火成岩——埃达克岩的研究综述[J]. 地球科学进展, 2001, 16(2): 201-208. doi: 10.3321/j.issn:1001-8166.2001.02.010
[45] Petford N, Atherton M. Na-rich partial melts from newly under plated basaltic crust: the Cordillera blanca batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
[46] 曹淑云, 刘俊来, Leiss B, 等. 哀牢山-红河剪切带左行走滑作用起始时间约束: 点苍山高温糜棱岩的显微构造与热年代学证据[J]. 地质学报, 2009, 83(10): 1388-1400. doi: 10.3321/j.issn:0001-5717.2009.10.003
[47] Cao S, Liu J, Leiss B, et al. Oligo-Miocene shearing a-long the Ailao Shan- Red River shear zone: constraints from structural analysis and zircon U/ Pb geochronology of mag-matic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 2011, 19(4): 975-993. doi: 10.1016/j.gr.2010.10.006
[48] Chen X Y, Li J L, Tang Y, et al. Contrasting exhumation histories along a crustal-scale strike-slip fault zone: the Eo-cene to Miocene Ailao Shan-Red River shear zone in south-eastern Tibet[J]. Journal of Asian Earth Sciences, 2015, 114: 174-187. doi: 10.1016/j.jseaes.2015.05.020
[49] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
[50] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multi- cationic parameters[J]. Chem. Geol., 1985, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8
-