The age determination of Late Paleozoic volcanic rocks in Shuanghetun area, Mulan County, Heilongjiang Province and its constraints on tectonic environment
-
摘要:
黑龙江省木兰县双合屯地区出露一套酸性火山岩, 前人根据岩性组合将其划分为下二叠统五道岭组, 通过对其中的流纹岩进行锆石U-Pb测年, 获得年龄为303±4 Ma, 结合岩石地层特征, 将其重新厘定为唐家屯组, 形成时代为晚石炭世。该套火山岩属于准铝质-过铝质高钾钙碱性火山岩, 具有A型花岗岩的地球化学特征。轻、重稀土元素分异明显, 具有强烈的负Eu异常, 富集大离子亲石元素Rb、K、U等, 亏损高场强元素Nb、P、Ti等, 表明岩浆来源于下地壳的部分熔融, 可能为碰撞造山后伸展机制下的产物。结合区域地质构造背景, 火山岩可能形成于额尔古纳-兴安地块与松嫩-张广才岭地块发生碰撞造山后的伸展环境, 表明研究区在晚石炭世已由碰撞造山转向造山后伸展阶段。
Abstract:A set of acidic volcanic rocks are exposed in Shuanghetun area, Mulan County, Heilongjiang Province.According to the lithologic association, they were divided into Early Permian Wudaoling Formation.In this work, the zircon U-Pb age of the rhyolite is 303±4 Ma.Based on the lithostratigraphic characteristics and zircon U-Pb dating data, they are redefined as Tangjiatun Formation and formed in Late Carboniferous.The quasi aluminous-peraluminous high-K calc alkaline volcanic rocks have geochemical characteristics of A-type granite.The obvious differentiation of LREE and HREE, with strong negative Eu anomaly, enrichment of large ion lithophile elements Rb, K, U, etc., and depletion of high field strength elements Nb, P, Ti, etc., indicate that the magma originated from partial melting of the lower crust, which may be the product of post collisional orogenic extension mechanism.Combined with the regional geological tectonic setting, it may have formed in the collision between Erguna -Xing'an block and Songnen -Zhangguangcailing block.The post orogenic extensional environment indicates that the study area changed from collisional orogeny to post orogenic extension in the Late Carboniferous.
-
-
图 10 研究区火山岩(Zr+Nb+Ce+Y)-(Na2O+K2O)/CaO(a)和K2O-Na2O(b)图解(据参考文献[28]修改)
Figure 10.
表 1 研究区流纹岩U-Pb锆石测年数据
Table 1. U-Pb zircon dating result of rhyolite in the study area
序号 含量/10-6 同位素比值 年龄/Ma Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 14 262 0.0464 0.0006 0.3882 0.0085 0.0607 0.0013 0.0079 0.0002 292 4 333 7 628 46 2 6 110 0.0491 0.0006 0.3795 0.0143 0.0561 0.0021 0.0076 0.0002 309 4 327 12 456 83 3 5 86 0.0496 0.0006 0.5466 0.0305 0.0800 0.0043 0.0103 0.0002 312 4 443 25 1197 105 4 5 99 0.0501 0.0006 0.4003 0.0186 0.0580 0.0027 0.0089 0.0002 315 4 342 16 529 103 5 4 83 0.0479 0.0006 0.3492 0.0178 0.0529 0.0027 0.0077 0.0001 302 4 304 16 323 116 6 4 87 0.0475 0.0006 0.3526 0.0150 0.0539 0.0023 0.0083 0.0002 299 4 307 13 365 94 7 5 100 0.0495 0.0006 0.3791 0.0150 0.0556 0.0022 0.0091 0.0002 311 4 326 13 436 88 8 4 75 0.0503 0.0006 0.4039 0.0227 0.0582 0.0033 0.0105 0.0002 317 4 344 19 537 124 9 7 138 0.0488 0.0006 0.3857 0.0123 0.0573 0.0018 0.0093 0.0001 307 3 331 11 504 70 10 9 152 0.0493 0.0006 0.3808 0.0106 0.0560 0.0015 0.0090 0.0001 310 4 328 9 454 60 11 12 202 0.0486 0.0005 0.3442 0.0089 0.0514 0.0013 0.0090 0.0002 306 3 300 8 259 57 12 5 103 0.0483 0.0006 0.3880 0.0150 0.0583 0.0022 0.0094 0.0002 304 4 333 13 540 83 13 5 96 0.0489 0.0006 0.3666 0.0147 0.0544 0.0022 0.0099 0.0002 308 4 317 13 387 90 14 6 124 0.0484 0.0006 0.4175 0.0139 0.0626 0.0021 0.0098 0.0002 304 4 354 12 695 70 15 6 121 0.0473 0.0005 0.3381 0.0128 0.0518 0.0020 0.0096 0.0002 298 3 296 11 277 86 16 8 150 0.0475 0.0006 0.4917 0.0125 0.0751 0.0018 0.0117 0.0002 299 3 406 10 1070 49 17 8 138 0.0471 0.0005 0.5350 0.0132 0.0823 0.0020 0.0106 0.0002 297 3 435 11 1253 47 18 6 106 0.0488 0.0006 0.4615 0.0178 0.0687 0.0026 0.0119 0.0002 307 4 385 15 888 78 19 18 311 0.0468 0.0005 0.3936 0.0078 0.0609 0.0011 0.0096 0.0002 295 3 337 7 637 40 20 6 120 0.0452 0.0005 0.5236 0.0201 0.0840 0.0031 0.0101 0.0002 285 3 428 16 1293 72 21 11 181 0.0470 0.0005 0.4407 0.0114 0.0680 0.0017 0.0109 0.0002 296 3 371 10 868 52 注:测试单位为天津地质矿产研究所测试中心 表 2 研究区火山岩主量、微量和稀土元素分析结果
Table 2. Analysis results of major, trace and rare earth elements of volcanic rocks in the study area
样品号 P7TC44 P17TC23 D2201 SGTC3 5346 5347 岩性 流纹质凝灰岩 流纹英安岩 流纹岩 流纹质凝灰岩 流纹质凝灰岩 流纹质熔结凝灰岩 SiO2 73.96 69.96 74.76 65.22 72.16 72.84 Al2O3 14.07 14.8 13.14 14.33 13.53 13.43 CaO 0.3 0.77 0.46 0.38 1.1 0.68 MgO 0.23 0.6 0.19 0.47 0.39 0.18 Fe2O3 0.35 1.22 0.88 3.87 0.21 0.56 FeO 1.47 1.52 0.83 3.06 1.99 1.43 P2O5 0.05 0.12 0.03 0.07 0.07 0.03 Na2O 3.76 4.52 3.57 2.44 3.85 4.63 K2O 4.09 4.32 4.66 6.09 4.54 4.52 MnO 0.08 0.09 0.05 0.91 0.11 0.15 TiO2 0.28 0.47 0.19 0.29 0.31 0.22 TFeO 1.79 2.62 1.62 6.54 2.18 1.93 烧失量 0.52 0.76 0.54 1.96 0.82 0.48 总计 99.16 99.15 99.3 99.09 99.08 99.15 σ 1.99 2.9 2.13 3.27 2.41 2.81 La 43.9 60.4 44.9 31.6 53.2 48.5 Ce 95 139 95.1 109 111 98.4 Pr 10.9 14 10.6 7.59 12.3 11.4 Nd 40.5 51.7 37 26.5 45.3 42.1 Sm 7.38 7.86 6.77 5.05 8.77 7.86 Eu 1.27 1.46 0.69 0.81 1.1 1.34 Gd 6.48 6.07 5.82 4.78 7.84 7.08 Tb 1.01 0.84 0.96 0.87 1.34 1.22 Dy 6.03 4.74 5.88 5.81 8.26 7.47 Ho 1.21 0.92 1.19 1.26 1.74 1.57 Er 3.69 2.72 3.71 4.16 5.26 4.74 Tm 0.55 0.39 0.55 0.67 0.87 0.79 Yb 3.6 2.53 3.69 4.54 5.82 5.51 Lu 0.55 0.38 0.56 0.7 0.93 0.87 Y 35.3 24.2 33.9 35.5 45.8 44.1 ΣREE 222.07 293.01 217.42 203.34 263.73 238.85 LREE 198.95 274.42 195.06 180.55 231.67 209.6 HREE 23.12 18.59 22.36 22.79 32.06 29.25 δEu 0.55 0.62 0.33 0.5 0.4 0.54 δCe 1.03 1.13 1.03 1.67 1.02 0.99 Rb 122 112 175 244 148 140 Ba 768 946 424 775 479 764 Th 13.7 7.39 17.8 19 14.5 12.4 U 3.17 0.98 2.49 6.15 3.82 4.04 K 33938 35847 38668 50534 37672 37506 Nb 18.6 14.6 21 22.8 20.5 20.1 Sr 95 84 69 76 98 41 Nd 40.5 51.7 37 26.5 45.3 42.1 Zr 292 445 237 261 328 174 Hf 8.7 9.7 6.1 8.3 11.8 6.2 Sm 7.38 7.86 6.77 5.05 8.77 7.86 Y 35.3 24.2 33.9 35.5 45.8 44.1 Yb 3.6 2.53 3.69 4.54 5.82 5.51 Lu 0.55 0.38 0.56 0.7 0.93 0.87 注: 测定单位为自然资源部哈尔滨矿产资源监督检测中心。主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 裴福萍, 许文良, 杨德彬, 等. 松辽盆地南部中生代火山岩: 锆石U-Pb年代学及其对基底性质的制约[J]. 地球科学(中国地质大学学报), 2008, (5): 603-617. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805005.htm
[2] 杨红章, 陈家富, 刘俊来, 等. 兴安地块东南缘晚石炭世侵入岩的锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质学报, 2019, 93(9): 2226-2244. doi: 10.3969/j.issn.0001-5717.2019.09.009
[3] 杨文鹏, 赵超, 尹国良, 等. 黑龙江塔溪地区晚古生代后造山花岗岩特征及其地质意义[J]. 现代地质, 2016, 30(6): 1244-1253. doi: 10.3969/j.issn.1000-8527.2016.06.006
[4] 周传芳, 杨华本, 李向文, 等. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 97-111. doi: 10.13278/j.cnki.jjuese.20180284
[5] 葛茂卉, 张进江, 刘恺, 等. 小兴安岭—张广才岭地区晚古生代至中生代花岗岩的成因及其地质意义[J]. 岩石矿物学杂志, 2020, 39(4): 385-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202004001.htm
[6] 董玉. 佳木斯地块与松嫩-张广才岭地块拼合历史: 年代学与地球化学证据[D]. 吉林大学博士学位论文, 2018.
[7] 何雨思. 张广才岭晚古生代福兴屯组的时代与物源: 对区域构造演化的意义[D]. 吉林大学硕士学位论文, 2019.
[8] 杨晓平, 汪岩, 那福超, 等. 嫩江-黑河晚古生代碰撞过程的岩石构造建造学响应[J]. 世界地质, 2017, 36(4): 1064-1071. doi: 10.3969/j.issn.1004-5589.2017.04.004
[9] Kuzmin M L, Abramovich G Y, Dril S L, et al. The Mongolian-Okhotsksuture as the evidence of Late Paleozoic-Mesozoic collisional processesin central Asia[C]//Abstract of 30th IGC, 1996, (1): 261.
[10] Zhao X X, Coe R S. Paleomagnetic constraints on the paleogeographyof China: Implications for Gondwana land[C]//Abstract of 30th IGC, 1996, (1): 231.
[11] 郝文丽, 许文良, 王枫, 等. 张广才岭"新元古代"一面坡群的形成时代: 来自岩浆锆石和碎屑锆石U-Pb年龄的制约[J]. 岩石学报, 2014, 30(7): 1867-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407003.htm
[12] 唐杰, 许文良, 王枫, 等. 张广才岭帽儿山组双峰式火山岩成因: 年代学与地球化学证据[J]. 世界地质, 2011, 30(4): 508-520. doi: 10.3969/j.issn.1004-5589.2011.04.002
[13] 林强. 东北亚中生代火山岩研究若干问题的思考[J]. 世界地质, 1999, (2): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ902.002.htm
[14] 王国君. 内蒙古阿荣旗阿力格亚地区晚石炭世花岗岩地球化学特征及成因讨论[J]. 有色矿冶, 2018, 34(6): 6-11, 18. doi: 10.3969/j.issn.1007-967X.2018.06.002
[15] 钱程, 陆露, 秦涛, 等. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳-兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 2018, 92(11): 2190-2214. doi: 10.3969/j.issn.0001-5717.2018.11.002
[16] 黑龙江省地质矿产局. 黑龙江省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 109-110.
[17] 赵忠海, 孙景贵, 郭艳, 等. 黑龙江五道岭组地层时代划分及其与钼矿的关系[J]. 地质与资源, 2017, 26(1): 25-33. doi: 10.3969/j.issn.1671-1947.2017.01.005
[18] 于倩, 葛文春, 杨浩, 等. 张广才岭五道岭组火山岩的锆石U-Pb年代学及地球化学特征[J]. 世界地质, 2013, 32(4): 707-716. doi: 10.3969/j.issn.1004-5589.2013.04.007
[19] 赵盛焱. 黑龙江松江地区火山岩岩石地球化学特征研究[D]. 河北地质大学硕士学位论文, 2016.
[20] Lin J, Liu Y S, Yang Y H, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016, 1(1): 5-27. doi: 10.1016/j.sesci.2016.04.002
[21] Ludwig K R. User's manual for Isoplot/Ex, version 3.00. A geo-chronological toolkit for microsoft Excel[M]. Berkeley Geochronol-Ogy Center Special Publication No. 4, Berkeley, California, USA: Berkeley Geochronology Center, 2003.
[22] Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055
[23] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[24] 杨学明, 杨小勇. 岩石地球化学[M]. 北京: 中国科技大学出版社, 2000.
[25] 王兴, 郑涛, 谷华娟, 等. 黑龙江滨东地区唐家屯组火山岩时代的U-Pb年代学证据[J]. 地质与资源, 2016, 25(3): 237-243. doi: 10.3969/j.issn.1671-1947.2016.03.005
[26] 高振家, 陈克强, 魏家庸. 中国岩石地层辞典[M]. 武汉: 中国地质大学出版社, 2000.
[27] 王林, 杨言辰, 张国宾, 等. 黑龙江秋皮沟铜矿床年代学与地球化学特征及成因[J]. 世界地质, 2013, 32(1): 24-34. doi: 10.3969/j.issn.1004-5589.2013.01.004
[28] Whalen J B, 周泰禧. A型花岗岩的地球化学特征、鉴别标志和岩石成因[J]. 地质地球化学, 1989, (2): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198902005.htm
[29] Li X H, Li Z X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic studyof Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia[J]. Precambrian Res., 2002, 113: 135-154. doi: 10.1016/S0301-9268(01)00207-8
[30] Tischendorf G, Paelchen W. Zur. Klassifikation von Granitoiden. gische Classification of granitoids[J]. Zeitschrift fuer Geolo Wissens Chaften, 1985, 13(5): 615-627.
[31] Kerr A, Fryer B J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 1993, 104(1/4): 39-60
[32] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America, 1979, 11(7): 468.
[33] 路应辉. 秦岭造山带晚三叠世花岗岩地球化学研究[D]. 中国科学技术大学博士学位论文, 2017.
[34] 张旗, 王焰, 潘国强, 等. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 2008, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm
[35] Taylor S R, Mclennan S M. The chemical composition of the Archaeancrust(in the nature of the lower continental crust)[J]. GeologicalSociety Special Publications, 1986, 24: 173-178.
[36] 宋维民, 庞雪娇, 付俊, 等. 内蒙古科尔沁右翼中旗碱长花岗岩锆石U-Pb年代学、岩石地球化学及其动力学意义[J]. 吉林大学学报(地球科学版), 2015, 45(3): 847-859. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201503017.htm
[37] Bernard B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.
[38] Sylvester P J. Post-collisional alkaline granites[J]. J Geol., 1989, 97: 261-280.
[39] Xu G Z, Deng C Z, Li C L, et al. Petrogenesis of Late Carboniferous A-type granites and Early Cretaceous adakites of the Songnen Block, NE China: Implications for the geodynamic evolution of the Paleo-Asian and Paleo-Pacific oceans[J]. Lithos, 2020, 366-367.
[40] 赵春荆, 彭玉鲸, 党增欣, 等. 吉黑东部构造格架及地壳演化[M]. 沈阳: 辽宁大学出版社, 1996.
[41] 邵军, 李秀荣, 杨宏智. 黑龙江翠宏山铅锌多金属矿区花岗岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地球学报, 2011, 32(2): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201102008.htm
[42] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, (12): 1239-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512014.htm
[43] 赵院冬, 莫宣学, 李士超, 等. 小兴安岭西北部花岗质糜棱岩锆石LA-ICP-MS U-Pb年龄、岩石地球化学特征及地质意义[J]. 地质论评, 2015, 61(2): 443-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201502022.htm
[44] 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm
[45] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
[46] 孙德有, 吴福元, 李惠民, 等. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J]. 科学通报, 2000, (20): 2217-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200020018.htm
[47] 那福超, 宋维民, 杨雅军, 等. 内蒙古东部大石寨地区大石寨组火山岩的成因及其大地构造背景[J/OL]. 地球科学, 2021: 1-29[2021-03-17]. htpp://kns.cnki.net/kcms/detail/42.1874.P.20200923.1457.002.html.
-