Geochemical characteristics and petrogenesis of Late Carboniferous A-type granites in the middle section of Xiemisitai Mountain, West Junggar
-
摘要:
西准噶尔谢米斯台山中段发育大量晚石炭世A型花岗岩, 岩性主要为石英正长岩-正长花岗岩-正长花岗斑岩-二长花岗岩。通过LA-ICP-MS锆石U-Pb定年, 获得正长花岗斑岩、石英正长岩、正长花岗岩和二长花岗岩年龄加权平均值分别为301.7±2.5 Ma、302.1±3.6 Ma、301.6±3.1 Ma和305.3±2.5 Ma。岩石属高钾钙碱性和钾玄岩系列, 具有高硅、富碱、过铝质、贫钙、低镁、高TFeO/MgO值(>3.45)等特征, 同时岩石相对富集轻稀土元素(Eu除外)和大离子亲石元素(Rb、K), 相对亏损Ba、Nb、Ta元素, 强烈亏损Sr、P、Ti元素, 与典型铝质A型花岗岩特征一致。岩石εHf(t)均为正值(8.93~14.82, 平均12.64), 二阶段模式年龄(正长花岗岩平均452.01 Ma、二长花岗岩平均565.17 Ma)与形成年龄相近。认为该地区A型花岗岩形成于后碰撞伸展背景, 由于软流圈上涌, 诱发了俯冲流体交代过的下地壳发生部分熔融, 岩浆演化过程中经历了斜长石、辉石、磷灰石、榍石等矿物的结晶分异, 并在岩浆活动初期具有火山弧印迹(A2型), 随着板内进一步伸展, 出现了板内裂谷特征(A1型), 为区域地质演化提供了新的依据。
Abstract:A large number of Late Carboniferous A-type granites developed in the middle of Xiemisitai Mountain, West Junggar.The main lithologies are quartz syenite-syenogranite-orthoclase granite porphyry-monzonitic granite.The LA-ICP-MS zircon U-Pb dating results show that the weighted mean ages of orthoclas granite porphyry, quart syenite, syenogranite and monzonitic granite are 301.7±2.5 Ma, 302.1±3.6 Ma, 301.6±3.1 Ma and 305.3±2.5 Ma.The rocks belong to the high potassium calc-alkaline and shoshonite series, they have high silicon, rich alkal, peraluminous, low calcium, low magnesium, high TFeO/MgO value(>3.45)and other characteristics.The rocks are relatively enriched in light rare earth elements(except Eu)and large ion lithophile elements(Rb, K), relatively depleted in Ba, Nb, Ta, and strongly depleted in Sr, P, Ti, which is consistent with the characteristics of typical aluminum A-type granite.The εHf(t)of the rocks is positive(8.93~14.82, average 12.64), and the two-stage model age(average 452.01 Ma of syenogranite and average 565.17 Ma of monzogranite)is similar to the formation age.Accordingly, it is considered that the A-type granite in this area is formed in the post-collision extension background.Due to the upwelling of the asthenosphere, the melting of the lower crust previously metasomatized by the subduction-related fluid occured.It has experienced the crystallization differentiation of minerals such as plagioclase, pyroxene, apatite and sphene, and showed volcanic arc imprinting(A2 type)in the early stage of magmatic activity.With the further extension of the plate, the characteristics of intraplate rift(A1 type)appear, which provides a new basis for regional geological evolution.
-
Key words:
- A type granite /
- zircon U-Pb age /
- Hf isotopes /
- West Junggar
-
-
图 3 样品稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b) (标准化值据Sun et al., 1989)
Figure 3.
图 13 Y-Nb(a)、(Yb+Ta)-Rb(b)、Yb-Ta(c)及SiO2-Al2O3(d)图解(据Pearce et al., 1984)
Figure 13.
表 1 谢米斯台山中段花岗岩主量、微量和稀土元素地球化学数据
Table 1. Geochemical data of the granites in middle section of Xiemisitai Mountain
岩性 SiO2 TiO2 Al2O3 CaO Fe2O3 FeO K2O Na2O P2O5 MgO MnO 烧失量 总计 正长花岗斑岩 74.02 0.18 12.66 0.41 1.74 0.35 4.84 3.73 0.03 0.33 0.04 0.89 100.01 正长花岗斑岩 75.43 0.17 12.63 0.32 1.14 0.34 5.54 3.02 0.03 0.25 0.02 0.83 99.98 正长花岗斑岩 73.84 0.20 13.00 0.53 1.48 0.46 5.04 3.66 0.03 0.34 0.05 0.87 100.00 正长花岗斑岩 73.08 0.25 13.54 0.54 1.71 0.32 5.03 3.35 0.05 0.54 0.04 1.26 100.00 正长花岗斑岩 75.03 0.19 12.97 0.29 0.84 0.47 4.93 3.95 0.01 0.13 0.04 0.59 100.00 石英正长岩 67.41 0.59 14.95 1.64 1.1 1.64 4.03 4.43 0.12 0.65 0.08 2.12 99.99 石英正长岩 67.89 0.58 14.86 1.63 1.03 1.74 4.11 4.68 0.13 0.67 0.07 2.04 100.01 石英正长岩 67.95 0.65 14.82 1.81 1.57 0.66 4.33 4.29 0.14 0.40 0.08 2.32 99.99 石英正长岩 70.54 0.51 14.74 0.62 1.6 0.80 4.90 4.72 0.11 0.60 0.04 0.79 99.99 石英正长岩 71.42 0.45 14.45 0.66 1.28 0.88 5.16 4.27 0.08 0.51 0.07 0.82 99.99 正长花岗岩 72.59 0.37 13.63 0.61 1.27 0.72 4.98 4.29 0.06 0.32 0.07 0.28 99.99 正长花岗岩 68.70 0.65 15.15 1.30 1.69 1.26 4.69 4.92 0.14 0.65 0.09 0.40 100.00 正长花岗岩 69.62 0.47 14.93 1.34 1.08 1.53 4.95 4.52 0.17 0.69 0.09 0.47 100.00 正长花岗岩 75.41 0.28 13.07 0.15 1.07 0.38 5.31 4.04 0.02 0.14 0.03 0.29 100.00 正长花岗岩 71.75 0.42 14.50 0.66 1.48 0.53 5.09 4.72 0.07 0.37 0.05 0.47 100.00 正长花岗岩 71.21 0.41 14.45 0.80 1.37 0.62 5.16 4.67 0.07 0.36 0.05 0.44 100.00 正长花岗岩 73.05 0.36 13.33 0.90 1.32 0.69 4.73 4.04 0.09 0.44 0.05 1.03 99.99 正长花岗岩 71.06 0.40 13.91 1.18 1.56 0.79 4.69 4.28 0.11 0.51 0.06 1.27 100.00 二长花岗岩 70.05 0.41 14.76 0.96 1.3 1.04 5.02 4.67 0.10 0.48 0.08 0.44 99.99 二长花岗岩 67.61 0.59 15.32 1.50 1.46 1.65 4.85 4.86 0.17 0.90 0.11 0.48 100.00 二长花岗岩 67.63 0.56 15.23 1.60 1.63 1.40 4.71 4.81 0.16 0.85 0.10 0.53 99.98 岩性 σ La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm 正长花岗斑岩 2.35 52.4 105.5 11.85 39.3 7.76 0.51 6.08 0.97 6.58 1.29 4.16 0.67 正长花岗斑岩 2.25 31.4 68.3 6.77 22.8 4.71 0.35 4.11 0.69 4.80 1.05 3.54 0.56 正长花岗斑岩 2.44 50.5 103.5 11.30 38.9 7.46 0.56 5.93 0.89 5.63 1.13 3.73 0.62 正长花岗斑岩 2.32 37.0 110.0 8.43 29.7 5.92 0.68 5.69 0.88 6.05 1.27 3.90 0.62 正长花岗斑岩 2.46 59.9 125.5 14.25 48.1 9.79 0.60 7.69 1.19 7.63 1.54 4.75 0.74 石英正长岩 2.86 46.6 95.1 10.95 39.6 7.90 1.94 6.40 0.95 5.93 1.19 3.61 0.56 石英正长岩 3.05 44.0 92.3 10.40 36.2 7.46 1.77 5.94 0.81 5.17 1.07 3.18 0.51 石英正长岩 2.92 45.8 98.0 10.85 40.1 7.62 1.83 6.38 0.95 5.87 1.14 3.46 0.54 石英正长岩 3.35 31.9 65.4 7.81 26.6 5.85 1.05 4.70 0.78 4.90 1.05 3.07 0.51 石英正长岩 3.12 38.5 77.1 8.88 28.9 5.95 1.05 4.84 0.84 4.91 1.02 2.94 0.47 正长花岗岩 2.89 38.3 80.6 9.41 29.5 6.45 0.87 5.14 0.86 5.02 1.12 3.20 0.52 正长花岗岩 3.58 40.6 86.0 10.05 33.4 7.41 1.57 6.09 0.98 5.67 1.24 3.40 0.54 正长花岗岩 3.36 40.1 82.9 8.61 28.6 5.90 1.20 5.02 0.73 4.48 0.97 2.86 0.44 正长花岗岩 2.70 32.9 85.0 7.64 24.0 5.21 0.58 4.09 0.74 4.84 1.01 3.05 0.53 正长花岗岩 3.34 46.8 93.2 11.00 35.9 7.48 1.24 6.04 0.96 5.80 1.23 3.66 0.58 正长花岗岩 3.41 48.2 101.0 11.20 36.2 7.40 1.16 5.89 0.96 5.76 1.19 3.52 0.55 正长花岗岩 2.55 36.0 73.6 7.89 26.0 5.51 0.76 4.42 0.74 4.30 0.96 2.76 0.46 正长花岗岩 2.84 41.9 82.7 9.46 29.2 6.09 0.99 4.64 0.77 4.51 0.94 2.75 0.45 二长花岗岩 3.45 46.7 97.2 10.90 35.0 7.34 1.41 5.93 0.95 5.55 1.14 3.41 0.51 二长花岗岩 3.81 45.9 93.0 11.05 36.9 7.77 1.62 6.28 1.01 6.09 1.27 3.50 0.58 二长花岗岩 3.64 46.2 97.5 10.60 35.1 7.24 1.56 5.95 0.98 5.81 1.16 3.20 0.52 岩性 Yb Lu Y ΣREE LREE HREE LREE/HREE (La/Yb)N δEu δCe Rb Ba Th 正长花岗斑岩 4.52 0.65 40.5 242.24 217.32 24.92 8.72 8.32 0.22 1.00 149.5 350 15.70 正长花岗斑岩 3.51 0.56 32.8 153.15 134.33 18.82 7.14 6.42 0.24 1.10 183.5 304 16.75 正长花岗斑岩 3.90 0.57 34.6 234.62 212.22 22.40 9.47 9.29 0.25 1.02 147.5 387 15.10 正长花岗斑岩 4.03 0.59 40.3 214.76 191.73 23.03 8.33 6.59 0.35 1.47 142.5 506 14.00 正长花岗斑岩 4.62 0.68 46.3 286.98 258.14 28.84 8.95 9.30 0.20 1.02 122.5 176.5 13.80 石英正长岩 3.65 0.56 34.5 224.94 202.09 22.85 8.84 9.16 0.81 1.00 86.2 1715 8.03 石英正长岩 3.14 0.47 30.5 212.42 192.13 20.29 9.47 10.05 0.79 1.02 81.5 1225 7.43 石英正长岩 3.60 0.55 35.0 226.69 204.20 22.49 9.08 9.13 0.78 1.04 103.0 559 8.44 石英正长岩 3.27 0.57 24.6 157.46 138.61 18.85 7.35 7.00 0.59 0.99 106.0 982 9.07 石英正长岩 3.42 0.52 26.0 179.34 160.38 18.96 8.46 8.07 0.58 0.98 114.0 1020 9.80 正长花岗岩 3.58 0.58 28.5 185.15 165.13 20.02 8.25 7.67 0.45 1.01 110.5 663 9.53 正长花岗岩 3.53 0.57 29.7 201.05 179.03 22.02 8.13 8.25 0.69 1.01 90.5 1285 6.90 正长花岗岩 2.90 0.50 25.4 185.21 167.31 17.90 9.35 9.92 0.66 1.04 121.5 876 10.10 正长花岗岩 3.66 0.58 25.3 173.83 155.33 18.5 8.40 6.45 0.37 1.27 134.5 136.0 12.95 正长花岗岩 3.92 0.65 30.5 218.46 195.62 22.84 8.56 8.56 0.55 0.97 112.5 626 11.50 正长花岗岩 3.83 0.61 33.1 227.47 205.16 22.31 9.20 9.03 0.52 1.03 116.5 624 10.45 正长花岗岩 3.43 0.53 25.2 167.36 149.76 17.6 8.51 7.53 0.46 1.02 123.0 480 13.95 正长花岗岩 3.20 0.52 24.8 188.12 170.34 17.78 9.58 9.39 0.55 0.98 115.5 601 10.95 二长花岗岩 3.56 0.55 30.1 220.15 198.55 21.60 9.19 9.41 0.63 1.02 112.0 784 9.16 二长花岗岩 3.84 0.61 31.6 219.42 196.24 23.18 8.47 8.57 0.69 0.98 102.0 975 8.52 二长花岗岩 3.43 0.58 29.9 219.83 198.20 21.63 9.16 9.66 0.71 1.04 100.5 980 8.48 岩性 U K Ta Nb Sr Nd P Zr Hf Ti Ga Tzr Mg# 正长花岗斑岩 2.12 40161.7 2.4 26.7 66.8 39.3 130.986 203 6.4 1080 17.8 830.58 23.49 正长花岗斑岩 1.83 45970.2 2.4 26.9 67.0 22.8 130.986 183 6.1 1020 17.2 828.76 24.60 正长花岗斑岩 2.13 41821.3 2.3 25.4 73.9 38.9 130.986 211 6.8 1200 17.3 831.13 25.28 正长花岗斑岩 2.24 41738.3 2.1 26.6 104.5 29.7 218.31 258 7.5 1500 18.5 837.36 34.12 正长花岗斑岩 3.56 40908.5 2.3 32.2 28.5 48.1 43.662 243 7.8 1140 19.2 835.50 15.90 石英正长岩 2.09 33440.4 1.5 21.6 289 39.6 523.944 444 9.9 3540 19.0 846.80 30.59 石英正长岩 2.09 34104.3 1.4 19.9 206 36.2 567.606 397 9.5 3480 17.5 843.11 30.93 石英正长岩 2.07 35929.8 1.6 31.1 126.5 40.1 611.268 431 9.7 3900 19.6 844.97 25.60 石英正长岩 2.01 40659.6 2.2 23.3 136.0 26.6 480.282 397 8.7 3060 17.5 846.00 32.32 石英正长岩 4.15 42817 2.4 23.4 167.0 28.9 349.296 372 9.3 2700 17.2 844.43 30.91 正长花岗岩 2.28 41323.4 2.4 21.8 126.5 29.5 261.972 327 8.2 2220 16.1 840.88 23.44 正长花岗岩 1.93 38917 2.2 22.6 252 33.4 611.268 415 8.5 3900 18.0 844.21 29.41 正长花岗岩 2.66 41074.5 2.0 21.4 208 28.6 742.254 343 7.8 2820 17.9 839.47 32.96 正长花岗岩 1.94 44061.7 2.4 27.0 13.0 24.0 87.3239 312 8.4 1680 18.6 841.32 15.67 正长花岗岩 3.09 42236.2 2.2 26.5 74.8 35.9 305.634 420 9.5 2520 19.3 846.77 26.16 正长花岗岩 2.86 42817 2.0 26.8 92.5 36.2 305.634 428 9.0 2460 18.6 846.44 25.73 正长花岗岩 2.79 39248.9 2.4 23.9 112.5 26.0 392.958 275 6.8 2160 18.0 836.03 29.46 正长花岗岩 2.37 38917 2.1 22.1 143.0 29.2 480.282 283 6.7 2400 19.3 835.48 29.30 二长花岗岩 2.03 41655.3 2.3 26.6 146.5 35.0 436.62 405 9.2 2460 19.1 844.81 27.91 二长花岗岩 2.14 40244.7 2.3 28.1 218 36.9 742.254 419 9.4 3540 18.4 843.26 35.12 二长花岗岩 1.71 39083 2.1 25.7 222 35.1 698.592 388 8.6 3360 16.3 841.25 34.58 注:主量元素含量单位为%,微量元素含量单位为10-6;TZr=1290/2.95+0.85 M + Ln(49600/Zrmelt)(℃), Zrmelt为熔体中的含量(指质量分数),M=(Na+K+2Ca)/(Al×Si),计算中令Si+Al+Fe+Mg+Ca+Na+K+P=1(Watson et al., 1983) 表 2 LA-ICP-MS锆石U-Th-Pb同位素数据
Table 2. LA-ICP-MS zircon U- Th-Pb dating results
测试点 元素含量/10-6 Th/U 同位素比值 年龄/Ma 谐和度/% Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 正长花岗斑岩 01 7.65 62.92 128.48 0.49 0.3435 0.03182 0.04815 0.00098 299.8 24.1 303.2 6.0 98.9 02 6.25 60.86 98.08 0.62 0.31715 0.04056 0.04768 0.00109 279.7 31.3 300.2 6.7 93.2 03 6.76 57.4 112.02 0.51 0.33856 0.0336 0.04831 0.00101 296.1 25.5 304.2 6.2 97.3 04 7.74 53.92 129.62 0.42 0.37371 0.03193 0.04836 0.00099 322.4 23.6 304.4 6.01 105.9 05 15.92 256.4 232.41 1.10 0.36177 0.02011 0.04727 0.00082 313.5 15.00 297.7 5.0 105.3 06 16.64 150.12 267.64 0.56 0.35295 0.01915 0.04896 0.00082 306.9 14.4 308.1 5.0 99.6 07 3.93 41.51 65.21 0.64 0.32288 0.05035 0.04727 0.00121 284.1 38.7 297.7 7.5 95.4 08 7.89 99.01 129.48 0.76 0.32867 0.0283 0.0473 0.00093 288.6 21.6 297.9 5.8 96.9 09 7.90 88.62 129.63 0.68 0.35503 0.02899 0.04815 0.00095 308.5 21.7 303.1 5.8 101.8 10 10.99 116.31 179.64 0.65 0.35562 0.02351 0.04812 0.00088 308.9 17.6 302.9 5.4 102.0 11 8.71 84.81 138.39 0.61 0.36684 0.02766 0.04844 0.00094 317.3 20.6 304.9 5.8 104.1 12 18.28 91.71 332.82 0.28 0.34951 0.01657 0.04724 0.00077 304.4 12.5 297.5 4.7 102.3 13 12.15 120.47 198.2 0.61 0.31981 0.02577 0.04804 0.00088 281.8 19.8 302.5 5.4 93.2 14 8.94 113.61 135.44 0.84 0.32845 0.0302 0.04798 0.00097 288.4 23.1 302.1 6.0 95.5 15 8.43 86.03 136.23 0.63 0.35304 0.03241 0.04811 0.00099 307.0 24.3 302.9 6.1 101.4 16 7.93 76.83 132.91 0.58 0.37487 0.03168 0.04758 0.00098 323.3 23.4 299.6 6.1 107.9 17 11.09 193.48 160.92 1.20 0.36525 0.02713 0.04767 0.00094 316.1 20.2 300.2 5.8 105.3 18 20.42 154.04 336.75 0.46 0.39381 0.02037 0.04817 0.00083 337.2 14.8 303.3 5.1 111.2 19 3.72 29.79 65.36 0.46 0.32841 0.05704 0.04823 0.00132 288.3 43.6 303.6 8.1 95.0 20 15.08 151.67 238.29 0.64 0.36066 0.02222 0.04746 0.00086 312.7 16.6 298.9 5.3 104.6 石英正长岩 01 7.92 107.08 119.22 0.90 0.35456 0.03581 0.04851 0.00109 308.1 26.8 305.4 6.7 100.9 02 3.47 44.23 52.16 0.85 0.36586 0.06675 0.0468 0.00153 316.6 49.6 294.8 9.4 107.4 03 3.88 51.06 59.08 0.86 0.32953 0.05982 0.04717 0.00144 289.2 45.7 297.1 8.8 97.3 04 12.07 255.57 157.11 1.63 0.34698 0.03109 0.0472 0.00101 302.4 23.4 297.3 6.2 101.7 05 3.67 45.58 55.5 0.82 0.35477 0.06594 0.04798 0.00157 308.3 49.4 302.1 9.7 102.1 06 2.55 29.09 39.4 0.74 0.36914 0.08328 0.04836 0.00182 319.0 61.8 304.5 11.2 104.8 07 2.91 42.15 48.56 0.87 0.3507 0.06971 0.04649 0.00159 305.2 52.4 292.9 9.8 104.2 08 4.71 60.73 73.96 0.82 0.32555 0.05141 0.04934 0.00134 286.2 39.4 310.5 8.2 92.2 09 2.74 35.52 47.22 0.75 0.32875 0.07534 0.04602 0.00154 288.6 57.6 290.0 9.5 99.5 10 13.88 211.76 210.31 1.01 0.3447 0.02205 0.04805 0.00087 300.7 16.7 302.6 5.3 99.4 11 2.49 28.15 38.42 0.73 0.41264 0.07765 0.04884 0.00162 350.8 55.8 307.4 10.0 114.1 12 3.20 46.21 49.93 0.93 0.3263 0.06447 0.04678 0.00147 286.7 49.4 294.7 9.1 97.3 13 3.29 37.59 55.26 0.68 0.33373 0.07462 0.04852 0.00164 292.4 56.8 305.4 10.1 95.7 14 4.65 68.57 64.51 1.06 0.28955 0.0583 0.05093 0.00157 258.2 45.9 320.2 9.6 90.6 15 3.35 43.36 50.15 0.86 0.45106 0.07456 0.0497 0.00178 378.0 52.2 312.7 11.0 120.9 16 8.68 115.82 124.55 0.93 0.42538 0.03905 0.04905 0.00117 359.9 27.8 308.7 7.2 116.6 17 4.14 46.47 61.59 0.75 0.30829 0.06689 0.05005 0.00155 272.9 51.9 314.9 9.5 91.7 18 3.17 43.59 49.82 0.87 0.35601 0.0791 0.04747 0.00161 309.2 59.2 299.0 9.9 103.4 19 19.75 337.08 282.13 1.19 0.43525 0.02333 0.04722 0.00086 366.9 16.5 297.4 5.3 113.4 20 3.00 39.99 47.33 0.84 0.29387 0.08089 0.04763 0.00162 261.6 63.5 299.9 9.9 92.2 21 3.29 38.33 51.24 0.75 0.40973 0.06901 0.04698 0.00154 348.7 49.7 296.0 9.5 117.8 正长花岗岩 01 4.36 53.9 67.1 0.80 0.35098 0.05449 0.04919 0.00135 305.5 41.0 309.6 8.3 98.7 02 7.06 84.02 113.45 0.74 0.35658 0.03376 0.04719 0.00102 309.7 25.3 297.3 6.3 104.1 03 13.38 187 201.04 0.93 0.36254 0.02337 0.04845 0.00089 314.1 17.4 305.0 5.5 103.0 04 3.67 44.65 59.61 0.75 0.39679 0.04716 0.04693 0.0012 339.3 34.2 295.7 7.4 114.7 05 12.31 207.71 184.34 1.13 0.35824 0.02208 0.0473 0.00085 310.9 16.5 297.9 5.2 104.4 06 4.17 47.18 68.67 0.69 0.37458 0.04383 0.04732 0.00113 323.0 32.4 298.0 7.0 108.4 07 3.46 34.33 61.19 0.56 0.35435 0.04704 0.04689 0.00122 308.0 35.3 295.4 7.5 104.3 08 8.67 91.09 132.68 0.69 0.38827 0.02699 0.04959 0.00095 333.1 19.7 312.0 5.8 106.8 09 6.23 83.27 95.31 0.87 0.34993 0.03383 0.04911 0.00104 304.7 25.5 309.0 6.4 98.6 10 42.45 753.69 624.31 1.21 0.37189 0.01157 0.04693 0.0007 321.1 8.6 295.7 4.3 108.6 11 4.31 47.9 70.88 0.68 0.32034 0.04325 0.04831 0.00117 282.2 33.3 304.1 7.2 92.8 12 5.70 56.95 97.52 0.58 0.32382 0.03762 0.04617 0.00105 284.8 28.9 290.9 6.5 97.9 13 6.49 73.27 104.25 0.70 0.33942 0.03544 0.04847 0.00109 296.7 26.9 305.1 6.7 97.3 14 3.28 37.81 54.92 0.69 0.35489 0.05654 0.04937 0.00139 308.4 42.4 310.6 8.5 99.3 15 4.22 51.76 64.34 0.80 0.35128 0.05432 0.04785 0.00134 305.7 40.8 301.3 8.3 101.5 16 5.58 59.97 89.38 0.67 0.35334 0.03777 0.04896 0.00116 307.2 28.3 308.1 7.1 99.7 二长花岗岩 01 9.73 122.1 143.84 0.85 0.351 0.02798 0.04968 0.001 305.5 21.0 312.5 6.1 97.8 02 17.15 222.5 269.43 0.83 0.36869 0.01954 0.04785 0.00082 318.7 14.5 301.3 5.1 105.8 03 3.56 64.15 48.25 1.33 0.34573 0.06925 0.04825 0.00145 301.5 52.3 303.8 9.0 99.2 04 9.36 117.03 149.1 0.78 0.36322 0.02768 0.04727 0.00091 314.6 20.6 297.7 5.6 105.7 05 15.71 171.3 244.45 0.70 0.36317 0.01933 0.04951 0.00084 314.6 14.4 311.5 5.2 101.0 06 11.71 142.49 184.72 0.77 0.34926 0.02517 0.04872 0.00092 304.2 18.9 306.7 5.6 99.2 07 17.42 186.84 275.31 0.68 0.37433 0.01807 0.04911 0.0008 322.9 13.4 309.0 5.0 104.5 08 11.78 131.86 195 0.68 0.34358 0.02691 0.04743 0.00095 299.9 20.3 298.7 5.9 100.4 09 11.98 191.17 176.5 1.08 0.35296 0.02823 0.04833 0.00097 306.9 21.2 304.3 6.0 100.9 10 8.06 95.35 127.45 0.75 0.33855 0.03607 0.04876 0.00109 296.1 27.4 306.9 6.7 96.5 11 8.65 79.28 134.3 0.59 0.3589 0.03366 0.04984 0.00105 311.4 25.2 313.5 6.5 99.3 12 9.06 157.11 122.29 1.28 0.36806 0.03242 0.04989 0.00103 318.2 24.1 313.8 6.3 101.4 13 11.24 140.83 174.65 0.81 0.3538 0.0266 0.04957 0.00094 307.6 20.0 311.9 5.8 98.6 14 11.76 162.95 185.18 0.88 0.36273 0.02226 0.0474 0.00087 314.3 16.6 298.5 5.4 105.3 15 6.79 109.27 94.13 1.16 0.35437 0.03846 0.04952 0.00113 308.0 28.8 311.6 7.0 98.8 16 10.82 210.12 157.67 1.33 0.33062 0.02702 0.04729 0.00093 290.0 20.6 297.9 5.7 97.4 17 14.40 191.55 214.33 0.89 0.35049 0.02197 0.0487 0.00089 305.1 16.5 306.5 5.5 99.5 18 5.23 68.97 81.42 0.85 0.37012 0.04054 0.04858 0.0012 319.7 30.0 305.8 7.4 104.6 19 26.34 743.14 312.18 2.38 0.33206 0.01769 0.04759 0.00081 291.1 13.5 299.7 5.0 97.1 20 10.27 130.17 161.35 0.81 0.36991 0.02725 0.04763 0.00094 319.6 20.2 299.9 5.8 106.6 21 6.64 65.74 107.36 0.61 0.36775 0.03679 0.04876 0.00109 318.0 27.3 306.9 6.7 103.6 表 3 锆石Lu-Hf同位素组成
Table 3. Zircon Lu-Hf isotopic compositions
测点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ fLu/Hf 年龄/Ma (176Hf/177Hf)i εHf(0) εHf(t) 2σ tDM1/Ma tDM2/Ma 正长花岗岩 5 0.072432 0.001484 0.282953 0.000026 -0.96 298.0 0.28295 6.41 12.67 0.89 429.10 503.93 6 0.070813 0.001490 0.282908 0.000026 -0.96 295.4 0.28290 4.80 11.00 0.92 495.04 608.95 7 0.072638 0.001510 0.282992 0.000030 -0.95 309.0 0.28298 7.79 14.28 1.06 373.15 409.69 9 0.105843 0.002144 0.283016 0.000028 -0.94 295.7 0.28300 8.64 14.72 0.99 344.57 371.10 10 0.066694 0.001374 0.283014 0.000034 -0.97 297.9 0.28301 8.54 14.82 1.20 341.38 366.40 二长花岗岩 6 0.091832 0.001993 0.282984 0.000029 -0.94 309.0 0.28298 7.49 13.88 1.02 390.52 435.29 7 0.075353 0.001585 0.282949 0.000028 -0.95 298.7 0.28295 6.25 12.50 0.98 437.09 515.50 14 0.118519 0.002526 0.282854 0.000030 -0.92 297.9 0.28285 2.88 8.93 1.04 589.28 742.74 16 0.131718 0.002792 0.282931 0.000033 -0.92 306.7 0.28293 5.61 11.79 1.17 478.57 567.14 注:εHf(0)=((176Hf/177Hf)s/(176Hf/177Hf)CHUR, 0-1)×10000;fLu/Hf=(176Lu/177Hf)s/(176Lu/177Hf)CHUR-1;εHf(t)=((176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)/((176Hf/177Hf)CHUR, 0-(176Lu/177Hf)chur×(eλt-1))-1)×10000;tDM1=1/λ×(1+(176Hf/177Hf)s-(176Hf/177Hf)DM/((176Lu/177Hf)s-(176Lu/177Hf)DM));tDM2= tDM1(Hf)-(tDM1(Hf)- t)((fcc- fs)/(fcc- fDM))。(176Hf/177Hf)s和(176Lu/177Hf)s为样品的实测值;(176Lu/177Hf)CHUR=0.0332, (176Hf/177Hf)CHUR, 0=0.282772(Blichert-Toft et al., 1997);(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325(Griffin et al., 2000);fcc=-0.548(大陆地壳平均值),fDM=0.16,t=锆石结晶年龄;λ=1.865×10-11yr-1(Soderlund et al., 2004) -
[1] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.
[2] Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X
[3] Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1/4): 137-152.
[4] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. doi: 10.1007/BF00374895
[5] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[6] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? [J]. Chemical Geology, 2009, 266(3/4): 364-389.
[7] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 4: 133-147.
[8] Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110: 46-56. doi: 10.1007/BF00310881
[9] King P L, White A J R, Chappell B W, et al. Characterization and origin of alumnious A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38: 371-391. doi: 10.1093/petroj/38.3.371
[10] Loiselle M C, Wones D R. Characteristic and origin of anorogennic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7): 468.
[11] Pearce J A, Harris H B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of grantic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[12] Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3
[13] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle com position and processes[J]. Geological Society, London, Special Publications, 1998, 42(1): 313-345.
[14] Tang G J, Wang Q, Wyman D A, et al. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hfisotope evidence from granitoids in the western Junggar region, NW China[J]. Lithos, 2012a, 128/131: 73-83. doi: 10.1016/j.lithos.2011.11.003
[15] Tang G J, Wang Q, Wyman D A, et al. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth[J]. Lithos, 2012b, 140/141: 86-102. doi: 10.1016/j.lithos.2012.01.025
[16] Tang G J, Wang Q, Wyman D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang(west China) [J]. Chemical Geology, 2010, 277(3/4): 281-300.
[17] Treuil M, Joron J L. Utilisation des elements hygromagmatophiles pour la simplification de la modelisation quantitative des processus magmatiques: Exemples de I'Afar et de lador sale medioatlantique[J]. Societa Italiana Mineralogiae Petrologia, 1975, 31(1): 125-174.
[18] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributiongs to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[19] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effect in a variety of crustal magmas types[J]. Earth and Planetary Science Letters, 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X
[20] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4): 102-117.
[21] Zhou T F, Yuan F, Fan Y, et al. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106(3/4): 191-206.
[22] 陈家富, 韩宝福, 张磊. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义[J]. 岩石学报, 2010, 26(8): 2317-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008009.htm
[23] 段丰浩, 李永军, 陈荣光, 等. 新疆西准噶尔库尔尕克希岩体年代学、地球化学特征及岩石成因[J]. 岩石矿物学杂志, 2017, 36(3): 295-311. doi: 10.3969/j.issn.1000-6524.2017.03.002
[24] 高睿, 肖龙, 王国灿, 等. 西准噶尔晚古生代岩浆活动和构造背景[J]. 岩石学报, 2013, 29(10): 3413-3434. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310008.htm
[25] 高源, 郑常青, 姚文贵, 等. 大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J]. 地质学报, 2013, 87(9): 1293-1310. doi: 10.19762/j.cnki.dizhixuebao.2013.09.008
[26] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
[27] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 2007, (3): 64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006
[28] 韩吟文, 马振东, 张宏飞, 等. 地球化学[M]. 北京: 地质出版社, 2003.
[29] 何国琦, 刘建波, 张越迁, 等. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J]. 岩石学报, 2007, 23(7): 1573-1576. doi: 10.3969/j.issn.1000-0569.2007.07.002
[30] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[31] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017
[32] 李海, 李永军, 徐学义, 等. 新疆西准噶尔萨吾尔地区早石炭世埃达克岩地球化学特征、岩石成因及其意义[J]. 岩石学报, 2020, 36(7): 2017-2034. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007006.htm
[33] 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质通报, 2004, 23(3) : 304-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm
[34] 邱检生, 王德滋, 蟹泽聪史, 等. 福建沿海铝质A型花岗岩的地球化学及岩石成因[J]. 地球化学, 2000, 29(4): 313.321. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm
[35] 童英, 王涛, 洪大卫, 等. 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619-641. doi: 10.3969/j.issn.1000-6524.2010.06.003
[36] 王京彬, 徐新. 新疆北部后碰撞构造演化与成矿[J]. 地质学报, 2006, (1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm
[37] 王中刚. 新疆北部花岗岩类成因类型及其与成矿的关系[J]. 新疆地质, 1994(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI401.001.htm
[38] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报. 2007b, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[39] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, (16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[40] 徐芹芹, 季建清, 龚俊峰, 等. 新疆西准噶尔晚古生代以来构造样式与变形序列研究[J]. 岩石学报, 2009, 25(3): 636-644. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903016.htm
[41] 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, (3): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY803.015.htm
[42] 杨钢, 肖龙, 王国灿, 等. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义[J]. 地球科学--中国地质大学学报, 2015, (3): 548.562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201503014.htm
[43] 杨高学, 李永军, 张兵, 等. 新疆西准噶尔接特布调A型花岗岩年代学、地球化学及岩石成因[J]. 地球学报, 2013, 34(3): 295-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201303008.htm
[44] 杨进辉, 吴福元, 邵济安, 等. 冀北张—宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素[J]. 地球科学, 2006, (1): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601011.htm
[45] 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J]. 中国地质, 2006, (3): 626-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603019.htm
[46] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201204015.htm
[47] 张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010, 26(2) : 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002008.htm
[48] 纵瑞文, 王志宏, 范若颖, 等. 新疆西准噶尔洪古勒楞组与泥盆系—石炭系界线新知[J]. 地质学报, 2020, 94(8): 2460-2475. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202008021.htm
-