Geochemistry and zircon U-Pb age of granodiorite porphyry: Constraints on diagenetic and metallogenic processes of the Jilongshan Cu-Au-Mo deposit, Middle-Lower Yangtze River Valley Metallogenic Belt, China
-
摘要:
长江中下游成矿带是燕山期古太平洋板块NW向俯冲背景下壳幔相互作用的外部响应,是长期成岩-成矿作用的直接结果,但丰山矿田的成岩-成矿事件并未得到深入的分析。以鄂东南丰山矿田鸡笼山矽卡岩型铜金钼矿床中与成矿有关的花岗闪长斑岩为研究对象,开展了详细的全岩地球化学和LA-ICP-MS锆石U-Pb测年分析,探讨丰山矿田的成岩-成矿过程。研究结果显示,来自鸡笼山矿床的花岗闪长斑岩为高钾钙碱性、准铝质花岗岩(A/CNK值多小于1),并且具有埃达克岩特征(高Sr/Y值);锆石U-Pb年龄为147.5±1.4 Ma,表明成矿岩体在晚侏罗世就位。综合已有研究,提出鸡笼山矿床成矿岩体为具有火山弧岩浆特征的埃达克质花岗岩,成矿岩体由富集岩石圈地幔的部分熔融形成,且岩浆上升过程中,遭受了地壳物质的混染。丰山矿田成岩-成矿事件统计分析结果表明,丰山矿田存在152~145 Ma和142~138 Ma两期成岩-成矿作用,第一期成岩-成矿事件对应形成斑岩-矽卡岩型铜-金-钼矿,第二期成岩-成矿事件对应形成斑岩型成矿系统。由于研究区西南侧和东北侧差异性隆升-剥蚀由大到小,东北侧丰山洞矿区现今保留完好的斑岩-矽卡岩型铜-金-钼矿和外围浅成低温热液金矿组成的斑岩型成矿系统,而其西南侧鸡笼山(斑岩-)矽卡岩型铜-金-钼矿外围无浅成低温热液金矿床,最西南侧的白果树岩体则剥蚀殆尽不见矿。
Abstract:The Middle-Lower Yangtze River Valley Metallogenic Belt is an external response to the crust-mantle interaction in the background of NW subduction of the paleo-pacific plate during the Yanshannian, which is a direct result of long-term diagenetic and metallogenic activity.However, the diagenetic and metallogenic events in the Fengshan district have not been analyzed in detail.In this study, a comprehensive study for the ore-related granodiorite porphyry from the Jilongshan skarn Cu-Au deposit, Fengtian orefield, is conducted.The results reveal that the ore-related granodiorite porphyry from the Jilongshan deposit is high-K calc-alkaline and metaluminous granitoids (A/CNK generally below 1), which are also characterized by adakitic features(high Sr/Y).Zircon LA-ICP-MS dating yields an age of 147.5±1.4 Ma, indicating that the mineralized intrusion was formed in the Late Jurassic.Combined with previous studies, it is revealed that the ore-related granodiorite porphyry from the Jilongshan deposit is adakitic granitoids characterized by volcanic arc magmatic features.The ore-forming rock mass was derived from partial melting of enriched lithosphere mantle which had experienced contaminations from crustal materials during ascending.Based on the statistical analysis of the diagenetic and metallogenic events in the Fengshan field, this paper concludes that there were two diagenetic and metallogenic stages in the Fengshan field from 152 to 145 Ma and 142 to 138 Ma.The first stage of diagenetic and metallogenic events corresponds to the formation of porphyry-skarn Cu-Au-Mo deposits, while the second stage of diagenetic and metallogenic events corresponds to the formation of porphyry mineralization system.Due to the differential uplift-ablation on the southwest and northeast sides of the study area, it shows that the porphyry Cu-Au-Mo deposits and the shallow-formed low-temperature hydrothermal Au deposits on the northeast side of the study area were well preserved.On the other hand, there are no shallow-formed low-temperature hydrothermal Au deposits on the periphery of the Jilongshan(porphyry-) skarn-type Cu-Au-Mo deposits on the southwest side.The southwest Baiguoshu rock body was completely missed without any mineralization.This study is important for understanding the diagenetic and metallogenic process of the Fengshan deposit, as well as for mineral prospecting.
-
-
图 1 长江中下游成矿带地质略图(据Pang et al., 2014)
Figure 1.
图 2 九瑞矿集区地质略图(据Pang et al., 2014)
Figure 2.
图 3 湖北省鸡笼山矿区地质略图(据Pang et al., 2014)
Figure 3.
图 5 鸡笼山矽卡岩型铜金矿花岗闪长斑岩主量、微量元素判别图解(埃达克质区域数据据Martin et al.,2005,鸡笼山、白果树、丰山洞岩体数据据王建等, 2014a和Pang et al., 2014)
Figure 5.
图 6 鸡笼山矽卡岩型铜金矿花岗闪长斑岩原始地幔多元素标准化蛛网图(a, 原始地幔标准数据据McDonough et al., 1995)及球粒陨石标准化稀土元素配分模式曲线图(b,球粒陨石标准数据据Boynton, 1984)
Figure 6.
表 1 鸡笼山矿床花岗闪长斑岩体主量、微量和稀土元素数据分析结果
Table 1. The major, trace and rare earth element concentrations for the granodiorite porphyry of the Jilongshan deposit
样品号 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 烧失量 总和 FeO K2O+Na2O Li Be J-640-12 63.22 15.34 4.46 2.47 3.29 3.44 3.04 0.07 0.63 0.24 3.54 99.75 2.06 6.48 24.50 1.93 J-590-12 63.52 15.31 4.54 2.29 3.58 4.27 3.04 0.08 0.63 0.25 1.98 99.48 2.09 7.31 19.60 1.73 J-390-12 63.28 15.78 4.97 2.35 4.82 3.87 2.96 0.09 0.60 0.19 0.99 99.91 2.55 6.83 10.90 1.60 J-290-12 63.57 15.56 4.35 2.23 5.05 3.86 3.21 0.09 0.56 0.19 1.31 99.97 1.61 7.07 11.40 1.71 J-490-24 63.01 15.38 4.04 2.25 4.60 3.87 4.59 0.07 0.57 0.19 1.36 99.93 3.52 8.46 11.30 1.51 Sc V Cr Co Ni Cu Zn Ga Rb Sr Mo Cd In Sb Cs Ba J-640-12 9.39 97.40 40.20 14.40 20.10 16.80 70.30 21.90 88.90 1111.00 0.32 0.05 0.04 0.30 2.97 942.00 J-590-12 9.95 104.00 35.40 14.00 18.80 22.60 71.60 20.80 86.30 994.00 0.65 0.08 0.04 0.35 2.03 973.00 J-390-12 11.20 112.00 38.10 14.20 17.50 149.00 67.00 21.40 77.40 564.00 2.36 0.08 0.03 0.12 0.72 794.00 J-290-12 11.10 99.30 24.00 13.80 12.50 1096.00 100.00 20.60 81.10 620.00 1.39 0.52 0.12 0.23 0.72 763.00 J-490-24 11.40 112.00 25.40 12.30 13.90 1903.00 60.70 19.90 87.80 668.00 27.10 0.31 0.10 0.29 1.19 990.00 W Re Tl Pb Bi Th U Nb Ta Zr Hf La Ce Pr Nd Sm J-640-12 0.98 <0.002 0.32 14.70 0.06 8.74 2.00 11.90 0.81 97.60 3.35 40.10 66.90 7.96 29.70 5.03 J-590-12 0.88 <0.002 0.35 15.50 0.19 8.24 1.93 12.60 0.84 102.00 3.47 37.20 65.00 7.96 30.90 5.39 J-390-12 0.39 0.02 0.18 7.67 0.02 6.36 1.74 16.10 1.09 54.40 2.15 30.20 51.90 6.53 26.10 4.84 J-290-12 0.56 0.00 0.22 16.70 0.12 6.89 1.84 16.40 1.13 52.50 2.07 34.00 59.20 7.29 27.50 4.89 J-490-24 1.16 0.05 0.21 10.90 0.16 6.23 1.31 15.30 1.07 51.00 2.07 21.00 39.30 5.11 21.20 4.17 Eu Gd Tb Dy Ho Er Tm Yb Lu Y (La/Yb)N δCe δEu ∑REE J-640-12 1.30 4.10 0.61 2.88 0.50 1.32 0.20 1.36 0.19 13.50 19.88 0.85 0.86 162.15 J-590-12 1.41 4.35 0.64 3.20 0.52 1.42 0.22 1.42 0.20 15.20 17.66 0.87 0.88 159.84 J-390-12 1.19 3.95 0.65 3.33 0.65 1.66 0.30 1.84 0.25 18.10 11.07 0.85 0.82 133.39 J-290-12 1.31 4.16 0.66 3.41 0.66 1.72 0.28 1.89 0.27 18.50 12.13 0.86 0.88 147.24 J-490-24 1.07 3.69 0.63 3.35 0.64 1.65 0.28 1.88 0.26 18.40 7.53 0.89 0.83 104.23 注:主量元素含量单位为%,微量、稀土元素含量单位为10-6。角标“N”代表球粒陨石标准化。δCe=CeN/(1/2×(LaN+PrN)),δEu= EuN/(1/2×(SmN+GdN)),(La/Yb)N=LaN/YbN,球粒陨石数据据Boynton, 1984 表 2 鸡笼山矽卡岩型铜金矿床花岗闪长斑岩LA-ICP-MS锆石U-Th-Pb同位素数据
Table 2. LA-ICP-MS zircon U-Th-Pb isotopic data of the granodiorite porphyry in the Jilongshan skarn Cu-Au deposit
测试点 元素含量/10-6 Th/U 同位素比值 年龄/Ma Th U Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 97.47 315.84 21.56 0.31 0.047082512 0.001361471 0.135681597 0.020598975 0.020785872 0.000303311 53.80 66.66 129.19 18.42 132.62 1.92 2 108.10 347.18 22.78 0.31 0.049502968 0.001519829 0.1432524 0.019697798 0.020999406 0.000277791 172.31 72.21 135.94 17.50 133.97 1.75 3 169.46 379.97 104.05 0.45 0.108561652 0.00506282 0.585904444 0.081831926 0.032860538 0.001195342 1775.93 85.18 468.25 52.44 208.43 7.46 4 100.40 299.76 21.96 0.33 0.047285947 0.001698473 0.148877267 0.01653 0.022926401 0.000307765 64.91 81.47 140.92 14.61 146.12 1.94 5 154.27 343.63 32.26 0.45 0.046979195 0.001654855 0.136781848 0.013384499 0.021258121 0.000377982 55.65 75.92 130.17 11.96 135.60 2.39 6 184.30 486.64 40.81 0.38 0.050147128 0.00115533 0.156155199 0.012827362 0.022408423 0.000327695 211.19 53.70 147.33 11.27 142.86 2.07 7 272.66 497.74 54.99 0.55 0.075259833 0.028071832 0.228188113 0.088588026 0.021537435 0.000360011 1075.93 813.69 208.70 73.37 137.37 2.27 8 159.11 515.56 29.96 0.31 0.051428854 0.001427456 0.163278828 0.011877362 0.022475045 0.000767836 261.18 64.80 153.57 10.37 143.28 4.84 9 136.36 372.69 28.39 0.37 0.045944031 0.001807065 0.138786414 0.007782737 0.023301192 0.001707457 - - 131.96 6.94 148.49 10.76 10 106.65 269.26 22.75 0.40 0.050142789 0.002014844 0.159952227 0.00745724 0.023433385 0.000473794 211.19 97.21 150.66 6.53 149.32 2.98 11 21456.29 70326.09 34.51 0.31 0.05309455 0.001623477 0.277042839 0.019225738 0.035251884 0.001704461 331.54 102.77 248.31 15.29 223.33 10.61 12 8799.25 45852.59 14.77 0.19 0.050634285 0.002213196 0.157391072 0.006956681 0.022939609 0.00035817 233.40 99.99 148.42 6.10 146.21 2.26 13 69443.93 137573.21 71.34 0.50 0.048456625 0.001471528 0.137937488 0.005126672 0.0205724 0.00032525 120.46 67.59 131.21 4.57 131.27 2.05 14 33971.48 121468.28 50.65 0.28 0.049848245 0.001863332 0.153881429 0.006516687 0.02239817 0.0003588 187.12 87.02 145.33 5.73 142.79 2.26 15 43469.19 116059.38 55.53 0.37 0.050159728 0.001205997 0.155844252 0.004997759 0.022551798 0.000280608 211.19 55.55 147.06 4.39 143.76 1.77 16 18065.77 62065.66 24.10 0.29 0.048686433 0.00152033 0.155554922 0.006023172 0.023283608 0.00027066 131.57 76.84 146.80 5.29 148.38 1.71 17 20333.67 89365.03 32.77 0.23 0.050288495 0.001397987 0.166597823 0.006407985 0.024048559 0.000286247 209.33 64.80 156.46 5.58 153.19 1.80 18 46361.89 116032.14 64.80 0.40 0.050320345 0.00122492 0.161467449 0.005977263 0.023345955 0.000266319 209.33 55.55 151.99 5.23 148.77 1.68 19 59792.92 112294.95 79.85 0.53 0.051732169 0.003118042 0.176835522 0.012022824 0.024779011 0.000367882 272.29 138.87 165.33 10.37 157.79 2.31 20 20853.33 86757.24 33.77 0.24 0.049436252 0.001520985 0.159371073 0.007294908 0.023460883 0.000269474 168.60 72.21 150.15 6.39 149.49 1.70 21 44712.81 133513.64 65.09 0.33 0.049641786 0.001170055 0.158073472 0.006474683 0.02316192 0.000311175 188.97 53.70 149.02 5.68 147.61 1.96 22 29399.36 120490.51 49.54 0.24 0.051850137 0.001301374 0.157955688 0.006409373 0.022105302 0.000270119 279.69 62.03 148.91 5.62 140.95 1.70 23 24830.25 68269.28 33.70 0.36 0.049009335 0.001610085 0.162797032 0.006984203 0.024332507 0.000301188 150.09 77.77 153.15 6.10 154.98 1.90 24 15713.64 82726.65 28.86 0.19 0.049098536 0.001545452 0.161064262 0.006946395 0.024017165 0.000410615 153.79 78.69 151.63 6.07 152.99 2.58 25 22623.99 83284.79 35.13 0.27 0.05221917 0.001829972 0.170571406 0.007723116 0.023784895 0.000425613 294.51 79.62 159.91 6.70 151.53 2.68 26 26836.75 103612.39 44.99 0.26 0.047978416 0.00137719 0.156065937 0.006327291 0.023568061 0.00026573 98.24 68.51 147.25 5.56 150.17 1.67 27 15607.10 78014.44 30.54 0.20 0.053214083 0.001777004 0.170528937 0.00719258 0.023449402 0.000300052 338.95 75.92 159.88 6.24 149.42 1.89 28 16952.57 86807.21 29.19 0.20 0.050198539 0.00144765 0.155825312 0.006037992 0.022816737 0.000338501 211.19 66.66 147.04 5.30 145.43 2.13 29 29124.61 79049.84 40.53 0.37 0.053273668 0.001791281 0.171598193 0.007516211 0.023375579 0.000255053 338.95 77.77 160.80 6.51 148.95 1.61 30 11892.45 54869.16 19.60 0.22 0.048624975 0.001815583 0.156943362 0.007565978 0.023524459 0.000320536 131.57 88.88 148.02 6.64 149.89 2.02 表 3 丰山矿田成矿相关花岗闪长斑岩体年龄分布
Table 3. Age distribution for the mineralized granodiorite porphyry from the Fengshan polymetallic ore cluster
岩体 岩性 锆石U-Pb测试方法 年龄/ Ma 资料来源 鸡笼山 花岗闪长斑岩 SHRIMP 138± 2 陈富文等, 2011 LA-ICP-MS 142.2± 1.1 赵玲等, 2013 LA-ICP-MS 151.6± 0.7 王建等, 2014a LA-ICP-MS 151.75±0.70 Pang et al., 2014 SHRIMP 148.1±1.3 Xie et al., 2019 SHRIMP 149.9±1.3 Xie et al., 2019 LA-ICP-MS 147.5±1.4 本文 丰山洞 花岗闪长斑岩 SHRIMP 146.2±2.0 Xie et al., 2007 SHRIMP 137±2 陈富文等, 2011 SHRIMP 146±2 Xie et al., 2011 曹家山 含矿花岗闪长斑岩脉 SIMS 145.9± 0.7 谢桂青等, 2017 竹林塘 含矿花岗闪长斑岩脉 SIMS 146.0±0.8 谢桂青等, 2017 白果树 花岗闪长斑岩 LA-ICP-MS 142.4±0.7 王建等, 2014a 东雷湾 花岗闪长斑岩 SIMS 145.8±1.0 Li et al., 2010 SHRIMP 140.0±1.0 Xie et al., 2011 邓家山 花岗闪长斑岩 SHRIMP 138±2 李亮等, 2009 SIMS 145.4±1.0 Li et al., 2010 SHRIMP 145.4±1.0 Xie et al., 2011 表 4 丰山矿田主要矿床成矿年龄分布
Table 4. Metallogenic age distribution of the Fengshan polymetallic ore field
矿床 辉钼矿Re-Os模式年龄/ Ma 资料来源 鸡笼山矽卡岩型铜-金矿 148.6±1.5 王建等, 2014b 150.79±0.82 Pang et al., 2014 150.1±2.1~147.7±1.2 谢桂青等, 2017 丰山洞斑岩-矽卡岩型铜矿 144.0± 2.1 Xie et al., 2007 146.7±2.1~144.0±2.1 谢桂青等, 2017 -
[1] Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984: 63-114.
[2] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0
[3] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
[4] Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
[5] Gill T B. Orogenic Andesite and Plate Tectonics[M]. Berlin: Springer-Verlag, 1981: 1-390.
[6] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1/2): 117-128.
[7] Li X H, Li W X, Wang X C, et al. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo)deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension[J]. Lithos, 2010, 119(3/4): 427-438.
[8] Ling M X, Wang F Y, Ding X, et al. Cretaceous Ridge Subduction Along the Lower Yangtze River Belt, Eastern China[J]. Economic Geology, 2009, 104(2): 303-321. doi: 10.2113/gsecongeo.104.2.303
[9] Liu S A, Li S G, He Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization[J]. Geochimica Et Cosmochimica Acta, 2010, 74(24): 7160-7178.
[10] Liu X Q, Cai Z L, Kang M X. Study on the Distribution Regularity of Accompanying Harmful Elements in the Copper-Bearing Skarn Mine at the Fengshan in the Mineral Processing System[J]. Procedia Earth and Planetary Science, 2011, 2: 139-144. doi: 10.1016/j.proeps.2011.09.023
[11] Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003.
[12] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[13] Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4): 307-324.
[14] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.
[15] McDonough W F, Sun S S. The Composition of The Earth[J]. Chemical Geology, 1995, 120: 223-254.
[16] Pang A J, Li S R, Santosh M, et al. Geochemistry, and zircon U-Pb and molybdenite Re-Os geochronology of Jilongshan Cu-Au deposit, southeastern Hubei Province, China[J]. Geological Journal, 2014, 49(1): 52-68.
[17] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.
[18] Pirajno F, Zhou T F. Intracontinental porphyry and porphyryskarnmineral systems in eastern China: Scrutiny of a special case "made-in-China"[J]. Economic Geology, 2015, 110(3): 603-629.
[19] Samake B, Xu Y M, Jiang S Y. Oxygen fugacity, temperature and pressure estimation from mineral chemistry of the granodiorite porphyry from the Jilongshan Au-Cu deposit and the Baiguoshu prospecting area in SE Hubei Province: A guide for mineral exploration[J]. Journal of Geochemical Exploration, 2018, 184: 136-149.
[20] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.
[21] Wang M, Gutzmer J, Michalak P P, et al. PGE geochemistry of the Fengshan porphyry-skarn Cu-Mo deposit, Hubei Province, Eastern China[J]. Ore Geology Reviews, 2014, 56: 1-12.
[22] Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province(eastern China): Implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89(3/4): 424-446.
[23] Xie G Q, Mao J W, Li R L, et al. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo(W)deposits in southeastern Hubei, China[J]. Mineralogy & Petrology, 2007, 90(3/4): 249-270.
[24] Xie G Q, Mao J W, Zhao H J. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt(MLYRB), East China[J]. Lithos, 2011, 125(1/2): 693-710.
[25] Xie G Q, Mao J W, Richards J P, et al. Distal Au Deposits Associated with Cu-Au Skarn Mineralization in The Fengshan Area, Eastern China[J]. Economic Geology, 2019, 114(1): 127-142.
[26] 闭忠敏, 杨松. 鸡笼山矽卡岩金(铜)矿床地质矿产特征、物质来源及成矿机制研究[J]. 矿产与地质, 2008, 22(6): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200806005.htm
[27] 常印佛, 刘湘培, 吴言昌. 长江中下游铁铜成矿带[M]. 北京: 地质出版社, 1991: 1-379.
[28] 陈富文, 梅玉萍, 李华芹. 鄂东丰山矿田花岗闪长斑岩体锆石SHRIMPU-Pb定年及其意义[J]. 地质学报, 2011, 85(1): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101006.htm
[29] 韩颖霄, 谢桂青. 鄂东南鸡笼山矽卡岩型金铜矿床金、银、碲、铋的赋存状态及其对成矿条件的制约[J]. 岩石矿物学杂志, 2016, 35(4): 655-676. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201604007.htm
[30] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
[31] 贾宝剑, 李胜荣, 杨庆雨, 等. 湖北鸡笼山金铜矿床流体包裹体He、Ar同位素组成及其地质意义[J]. 黄金, 2012a, 33(7): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201207002.htm
[32] 贾宝剑, 李胜荣, 杨庆雨, 等. 湖北鸡笼山矽卡岩型金铜矿床铅同位素地球化学研究[J]. 现代地质, 2012b, 26(3): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201203007.htm
[33] 李亮, 蒋少涌. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究[J]. 岩石学报, 2009, (11): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911019.htm
[34] 李新昊, 谢桂青, 李伟, 等. 鄂东矿集区宝团山金铜矿床地质特征、赋矿岩体锆石U-Pb年龄和Hf同位素组成及其地质意义[J]. 地质通报, 2018, 37(7): 1346-1359 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180718&flag=1
[35] 吕庆田, 史大年, 汤井田, 等. 长江中下游成矿带及典型矿集区深部结构探测——SinoProbe-03年度进展综述[J]. 地球学报, 2011, 32(3): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201103002.htm
[36] 庞阿娟, 李胜荣, 张华锋, 等. 湖北鸡笼山岩体主要矿物的成因矿物学意义[J]. 矿物岩石, 2012, 32(3): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201203005.htm
[37] 舒广龙, 刘继顺, 马光, 等. 湖北阳新丰山铜矿大理岩中金矿化地质特征与金赋存状态研究[J]. 黄金, 2003, (6): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200306004.htm
[38] 舒广龙. 湖北丰山矿田成矿地质背景及斑岩成矿系列与微细浸染金矿[D]. 中南大学博士学位论文, 2004.
[39] 王建, 谢桂青, 姚磊, 等. 鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因: 地球化学和锆石U-Pb年代学约束[J]. 矿床地质, 2014a, 33(1): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401009.htm
[40] 王建, 谢桂青, 陈风河, 等. 鄂东南地区鸡笼山矽卡岩金矿床的辉钼矿Re-Os同位素年龄及其构造意义[J]. 地质学报, 2014b, 88(8): 1539-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408015.htm
[41] 王建, 谢桂青, 余长发, 等, 杨庆雨. 鄂东南地区鸡笼山矽卡岩金矿床的矽卡岩矿物学特征及其意义[J]. 岩石矿物学杂志, 2014c, 33(1): 149-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201401013.htm
[42] 王敏芳, 张富成, 魏克涛, 等. 湖北省鸡笼山金铜矿床煌斑岩地球化学、矿物学特征及其地质意义[J]. 地球学报, 2018, 39(6): 721-735. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201806009.htm
[43] 谢桂青, 韩颖霄, 毛景文. 长江中下游成矿带丰山矿田发现新类型金矿——远端浸染型金矿床[J]. 矿床地质, 2017, 36(1): 265-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201701017.htm
[44] 闫峻, 安亚军, 陈江峰. 中国东部中—新生代基性岩的同位素特征: 源区性质及深部过程[J]. 地质论评, 2011, 57(4): 532-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104008.htm
[45] 姚凤良, 孙丰月. 长江中下游铁铜成矿带[M]. 北京: 地质出版社, 2006: 1-254.
[46] 翟裕生, 姚书振, 林新多. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社, 1992: 1-120.
[47] 詹小飞, 魏俊浩. 九瑞矿集区鸡笼山铜金矿床含矿岩体成因和地球动力学背景[J]. 地质科技情报, 2021, (3): 40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103012.htm
[48] 张国伟, 郭安林, 刘福田, 等. 秦岭造山带三维结构及其动力学分析[J]. 中国科学(D辑), 1996, (S1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1996S1000.htm
[49] 赵玲, 李亮, 匡福祥, 等. 江西九瑞矿集区鸡笼山Cu-Au-Mo矿床含矿岩体的年代学及地球化学研究[J]. 矿物岩石, 2013, 33(4): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201304008.htm
[50] 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602001.htm
[51] 周涛发, 范裕, 袁峰, 等. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 2011, 85(5): 712-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105010.htm
[52] 周涛发, 王世伟, 袁峰, 等. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用[J]. 岩石学报, 2016, 32(2): 271-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602001.htm
-