In-situ LA-SF-ICP-MS U-Pb dating and geochemistry of garnets from Hongniu-Hongshan skarn-type copper deposit in northwestern Yunnan
-
摘要:
红牛-红山铜矿床是义敦岛弧南段已发现最大的(远端)矽卡岩型矿床,目前其赋矿矽卡岩成岩时代缺乏直接的年代学证据。矽卡岩成岩年龄的精准测定对于该矿床在义敦岛弧南段中生代2期斑岩成矿事件中的定位具有重要意义。红牛-红山矿床矽卡岩中石榴子石可分为2期,早期石榴子石多见于贫矿矽卡岩,粗粒结构,为均质体;晚期石榴子石多见于富矿矽卡岩,细—中粒结构,发育振荡环带,具非均质光性异常。对2期石榴子石开展了原位LA-SF-ICP-MS U-Pb定年和微区成分分析,获得早期石榴子石和晚期石榴子石的U-Pb年龄分别为84.2±3.0 Ma和81.7±3.5 Ma。主量和微量元素含量表明,2期石榴子石属钙铁榴石-钙铝榴石系列,亏损Rb、Ba、K、Sr等,富集Th、U、P;其中,早期石榴子石相对富钙铁榴石组分、LREE/HREE值高,Eu呈高正异常,晚期石榴子石相对富钙铝榴石、LREE/HREE值低、Eu无异常。结合本区燕山晚期碰撞型斑岩成矿事件,认为约80 Ma为本矿床远端矽卡岩成岩成矿时期,成矿作用与同期酸性斑岩关系密切。石榴子石地球化学特征揭示,干矽卡岩阶段水/岩比值高,以渗滤交代作用为主,早期流体为氧化、高温、富铁、弱碱性的相对封闭体系,晚期为相对还原、相对低温、富铝、酸性的开放体系。
Abstract:Hongniu-Hongshan copper deposit is the largest(distal)skarn type deposit discovered in the south section of Yidun Arc.However, there is no direct chronological evidence for the diagenetic age of ore-bearing skarn.The accurate determination of the diagenetic age of skarn is of great significance to the location of this deposit in the two stages of Mesozoic metallogenic events of porphyry in the south section of Yidun Arc.The garnets in skarn of the deposit can be divided into two stages, where the early garnets(Grt Ⅰ)are mostly found in skarn of lean ore with coarse grain structure and isotopic body; and the late garnets(GrtⅡ)are mostly found in skarn of rich ore with fine-medium grain structure, oscillatory zoning and heterogeneous and optical anomaly.Based on in-situ LA-SF-ICP-MS U-Pb dating and electron microprobe in-situ concentrations analysis of two stages of garnets in this paper, the U-Pb ages of GrtⅠ and GrtⅡ are 84.2±3.0 Ma and 81.7±3.5 Ma, respectively.The contents of major and trace elements suggest that the garnets of the two stages are classified in the andradite and grossularite series, lack of Rb, Ba, K, Sr, etc.and rich in elements Th, U and P, where GrtⅠare characterized by relatively rich in andradite, high LREE/HREE ratio and high positive anomaly of Eu, while GrtⅡ features relatively rich in grossularite, low LREE/HREE ratio and no abnormal Eu.In combination of the Late Yanshanian mountain metallogenic events of regional collisional porphyry, it is deemed that the diagenetic and metallogenic period of distal skarn in this deposit is at about 80 Ma, when that mineralization is closely related to the acidic porphyry over the same period.The geochemical characteristics of garnets reveal that the dry skarn stage is characterized by a high water/rock ratio and dominated by infiltration metasomatism.The early fluid developed into a relatively closed system of oxidation, high temperature, rich iron and weak alkalinity, and the late stage formed an open system of a relative reduction, relatively low temperature, rich aluminum and acid.
-
-
图 1 义敦岛弧(a, 据Hou et al., 2007修改) 及义敦南段地质矿产简图(b, 据Wang et al., 2014a; Zu et al., 2016修改)
Figure 1.
图 2 红牛-红山铜矿床地质简图(据 Zu et al., 2016修改)
Figure 2.
图 5 红牛-红山铜矿床石榴子石球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun et al.,1989)
Figure 5.
图 6 石榴子石形成环境判别图解(底图据洪东铭等,2020)
Figure 6.
表 1 红牛-红山铜矿床石榴子石原位LA-SF-ICP-MS U-Th-Pb分析结果
Table 1. LA-SF-ICP-MS garnet U-Th-Pb analysis results of the Hongniu-Hongshan copper deposit
测点号 含量/10-6 Th/U 同位素比值 rho 同位素年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235Pb 1σ 206Pb/238U 1σ HN21-32 -1 0.11 0.49 5.39 4.28 0.1234 0.0186 0.1875 0.0214 0.0139 0.0008 0.51 174.5 18.3 88.8 5.1 -2 0.13 0.25 5.26 1.86 0.0704 0.0122 0.1086 0.0159 0.0136 0.0008 0.38 104.6 14.6 87.0 4.8 -3 0.23 1.39 5.19 6.11 0.0986 0.0156 0.1589 0.0229 0.0142 0.0006 0.30 149.8 20.1 90.6 3.9 -4 0.17 0.55 5.44 3.34 0.1409 0.0349 0.1571 0.0222 0.0139 0.0008 0.38 148.1 19.5 89.3 4.8 -5 0.23 1.45 6.91 6.31 0.0850 0.0113 0.1419 0.0162 0.0136 0.0006 0.41 134.7 14.4 87.3 4.1 -6 0.35 1.51 5.09 4.32 0.1615 0.0211 0.2795 0.0343 0.0150 0.0007 0.40 250.2 27.2 96.1 4.7 -7 0.09 0.70 5.53 7.86 0.0881 0.0140 0.1348 0.0185 0.0139 0.0007 0.37 128.4 16.5 88.7 4.5 -8 0.31 0.54 4.69 1.76 0.1424 0.0330 0.1710 0.0246 0.0138 0.0010 0.49 160.3 21.3 88.5 6.2 -9 0.12 2.61 5.58 22.51 0.0956 0.0222 0.1385 0.0191 0.0153 0.0008 0.40 131.7 17.0 97.8 5.4 -10 0.15 2.33 5.10 15.12 0.0773 0.0121 0.1409 0.0195 0.0136 0.0006 0.32 133.8 17.3 87.1 3.8 -11 0.12 2.28 4.64 19.07 0.1580 0.0236 0.2449 0.0295 0.0147 0.0007 0.41 222.4 24.1 93.8 4.6 -12 0.30 0.08 3.64 0.26 0.1848 0.0235 0.3834 0.0393 0.0183 0.0010 0.53 329.6 28.8 117.1 6.3 -13 0.32 0.63 4.74 1.97 0.1015 0.0164 0.1651 0.0255 0.0148 0.0008 0.36 155.2 22.3 94.7 5.2 -14 0.38 0.08 2.70 0.22 0.4199 0.0510 1.0970 0.0712 0.0264 0.0013 0.76 751.9 34.5 168.2 8.2 -15 0.24 0.27 4.14 1.13 0.1369 0.0389 0.1354 0.0292 0.0124 0.0010 0.36 128.9 26.1 79.1 6.1 HN21-31 -1 0.27 0.96 1.88 3.58 0.6972 0.0939 2.3215 0.1574 0.0333 0.0019 0.83 1218.9 48.1 211.3 11.8 -2 0.14 1.40 2.38 10.14 0.5117 0.1095 0.8800 0.0776 0.0211 0.0015 0.78 641.0 41.9 134.5 9.2 -3 0.34 1.02 1.97 3.01 0.5988 0.0566 1.9974 0.1564 0.0296 0.0019 0.82 1114.6 53.0 188.0 11.9 -4 2.80 2.24 3.33 0.80 0.6653 0.0287 10.3598 0.9573 0.1089 0.0092 0.91 2467.5 85.6 666.5 53.2 -5 0.19 0.73 1.61 3.87 0.7197 0.1171 2.0102 0.1383 0.0280 0.0019 0.98 1119.0 46.7 178.1 11.9 -6 0.18 0.67 1.43 3.79 0.7573 0.1154 1.9461 0.1695 0.0301 0.0022 0.83 1097.1 58.4 191.3 13.7 -7 0.17 2.03 3.49 12.05 0.4196 0.1150 0.5090 0.0596 0.0161 0.0009 0.46 417.8 40.1 103.0 5.5 -8 0.32 1.97 2.79 6.16 0.7508 0.1827 1.3099 0.0917 0.0229 0.0014 0.90 850.1 40.3 145.9 9.1 -9 1.31 1.94 2.35 1.48 0.7225 0.0349 7.6769 0.3166 0.0825 0.0030 0.88 2193.9 37.1 510.8 17.9 -10 0.46 1.25 2.00 2.74 0.8057 0.1092 2.5277 0.1996 0.0328 0.0021 0.81 1280.0 57.5 208.2 13.2 -11 0.30 2.42 3.19 7.96 0.3657 0.0727 0.5585 0.0761 0.0169 0.0011 0.47 450.6 49.6 108.1 6.9 -12 0.89 3.37 3.67 3.79 0.5900 0.0401 2.8993 0.2029 0.0391 0.0021 0.78 1381.7 52.9 247.5 13.3 -13 0.67 2.04 3.17 3.02 0.6532 0.0562 2.5140 0.1368 0.0337 0.0017 0.94 1276.1 39.6 213.7 10.8 -14 0.25 3.44 4.71 13.54 0.2994 0.0311 0.5525 0.0418 0.0169 0.0009 0.66 446.7 27.3 108.3 5.4 -15 0.56 0.26 9.73 0.46 0.2692 0.0188 0.6472 0.0525 0.0186 0.0009 0.59 506.8 32.4 118.5 5.6 -16 0.71 0.95 3.47 1.34 0.5675 0.0479 2.1040 0.1656 0.0306 0.0015 0.63 1150.1 54.2 194.0 9.5 -17 4.63 3.54 13.35 0.76 0.6791 0.0487 5.2668 0.6489 0.0541 0.0043 0.64 1863.5 105.1 339.4 26.2 -18 0.76 0.26 6.80 0.34 0.4863 0.0317 1.7329 0.1227 0.0278 0.0013 0.67 1020.8 45.6 177.0 8.2 -19 0.94 0.27 6.91 0.28 0.5669 0.0333 2.1252 0.1246 0.0293 0.0012 0.70 1157.0 40.5 186.2 7.6 -20 0.63 0.05 0.84 0.07 1.0630 0.2190 9.9000 2.0576 0.0954 0.0144 0.73 2425.5 191.7 587.7 84.7 -21 0.45 0.21 6.23 0.46 0.4310 0.0398 0.9936 0.0706 0.0204 0.0012 0.86 700.5 35.9 130.1 7.8 -22 0.60 0.25 5.84 0.42 0.4383 0.0747 0.8896 0.0726 0.0211 0.0016 0.90 646.1 39.0 134.7 9.8 -23 0.72 0.31 5.92 0.43 0.4809 0.0332 1.6120 0.0920 0.0275 0.0015 0.95 974.9 35.8 174.9 9.3 -24 0.48 0.11 0.88 0.23 0.8233 0.1027 5.3009 0.6295 0.0624 0.0071 0.96 1869.0 101.5 390.0 43.0 -25 5.73 0.35 0.98 0.06 0.8233 0.0397 82.2347 9.4681 0.7449 0.0849 0.99 4489.7 115.5 3588.5 313.6 表 2 红牛-红山铜矿床石榴子石电子探针分析结果及端元组分
Table 2. The EPMA results and endmember components of the garnets from the Hongniu-Hongshan copper deposit
% 样号 HN21-32 HN21-31 测点号 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 SiO2 39.20 39.37 39.44 39.49 40.10 39.44 39.90 39.84 39.55 38.55 38.57 38.74 38.34 38.66 38.35 38.60 38.64 38.70 38.47 TiO2 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.08 0.15 0.07 0.08 0.08 0.29 0.13 0.11 0.04 0.04 Al2O3 0.03 0.06 0.03 0.04 0.02 0.02 0.03 0.02 0.04 10.74 10.70 8.90 11.23 10.30 10.65 11.91 7.05 7.07 5.58 Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL FeO 19.63 19.50 19.50 19.45 19.39 19.54 19.34 19.25 19.48 11.10 11.15 12.48 10.67 11.25 11.36 10.34 14.11 14.04 15.39 MnO 0.18 0.18 0.17 0.13 0.13 0.13 0.13 0.13 0.13 0.37 0.47 0.32 0.41 0.38 0.34 0.45 0.31 0.28 0.26 MgO 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.07 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 CaO 40.31 40.23 40.15 40.22 39.72 40.21 39.95 40.10 40.13 38.75 38.54 39.03 38.87 38.91 38.56 38.17 39.25 39.36 39.72 Na2O BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL K2O BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.01 BDL BDL BDL P2O5 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.03 总计 99.44 99.44 99.39 99.43 99.44 99.43 99.44 99.44 99.43 99.66 99.64 99.62 99.68 99.66 99.64 99.67 99.55 99.58 99.53 以12个氧原子为标准计算的阳离子 Si 3.21 3.22 3.23 3.23 3.27 3.23 3.25 3.25 3.23 3.04 3.05 3.08 3.03 3.06 3.03 3.03 3.09 3.10 3.10 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 Al 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.83 1.04 0.96 0.99 1.10 0.66 0.67 0.53 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 1.35 1.33 1.33 1.33 1.32 1.34 1.32 1.31 1.33 0.73 0.74 0.83 0.70 0.74 0.75 0.68 0.94 0.94 1.04 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.02 Mg 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 3.54 3.53 3.52 3.52 3.47 3.52 3.49 3.51 3.51 3.28 3.26 3.32 3.29 3.29 3.26 3.21 3.37 3.37 3.43 Ura 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 And 56.73 56.46 56.57 56.37 56.90 56.66 56.42 55.94 56.55 33.23 33.50 37.13 31.85 33.53 34.19 31.38 41.75 41.49 45.09 Pyr 0.18 0.18 0.19 0.20 0.18 0.17 0.20 0.21 0.23 0.12 0.10 0.14 0.12 0.13 0.14 0.10 0.15 0.12 0.14 Spe 0.35 0.35 0.34 0.25 0.25 0.25 0.25 0.25 0.25 0.75 0.95 0.64 0.83 0.77 0.70 0.92 0.62 0.55 0.50 Gro 42.74 43.01 42.91 43.18 42.67 42.91 43.13 43.60 42.96 65.90 65.45 62.08 67.20 65.55 64.97 67.60 57.49 57.83 54.27 Alm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 注:BDL为低于检测限; Ura—钙铬榴石;And—钙铁榴石;Pyr—镁铝榴石;Spe—锰铝榴石;Gro—钙铝榴石;Alm—铁铝榴石 表 3 红牛-红山铜矿床石榴子石LA-SF-ICP-MS微量和稀土元素分析结果
Table 3. LA-SF-ICP-MS trace element and rare earth element analyses of the garnets from the Hongniu-Hongshan copper deposit
10-6 样号 HN21-32 HN21-31 测点号 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 Cu 2.15 BDL 5.90 0.23 BDL 0.13 0.11 0.15 0.73 0.38 0.06 0.06 0.05 0.22 0.10 BDL BDL 0.23 BDL Zn 4.40 3.72 2.51 2.91 2.29 1.80 1.89 1.64 2.60 2.34 2.63 2.88 1.74 2.61 2.08 7.16 2.92 2.37 2.42 Rb 0.32 0.03 0.01 BDL 0.01 BDL 0.04 0.03 0.02 0.13 0.02 0.31 0.05 0.05 0.01 3.61 0.08 BDL 0.09 Sr 0.27 0.12 0.14 0.17 0.12 0.12 0.16 0.10 0.09 0.26 0.08 0.16 0.05 0.06 0.07 2.36 0.19 0.09 0.14 Y 0.73 3.39 0.04 0.01 BDL BDL BDL BDL 0.01 19.99 26.71 23.93 13.45 12.94 56.08 32.41 22.06 15.32 10.02 Zr 0.56 0.40 0.03 0.06 0.02 0.01 BDL 0.01 0.02 13.09 24.09 13.32 15.54 24.50 36.29 23.96 19.77 8.78 6.79 Nb 0.01 0.02 BDL 0.01 BDL BDL 0.01 BDL BDL 4.21 5.89 3.30 3.88 3.32 12.47 6.04 3.98 1.97 1.46 Mo 0.50 0.52 1.53 0.13 0.06 0.02 0.05 0.06 0.09 0.08 BDL 0.04 0.13 0.02 0.02 BDL 0.14 0.11 0.11 Ag 0.18 BDL BDL BDL BDL BDL BDL BDL 0.19 BDL 0.03 0.13 BDL 0.04 BDL 0.16 BDL BDL BDL Sn 9.56 20.35 59.22 120.44 112.41 104.69 89.47 114.78 125.33 132.76 250.76 164.48 78.30 81.86 205.68 200.27 233.77 135.44 173.83 Ba 0.05 BDL BDL 0.07 BDL 0.04 0.02 0.02 0.05 0.10 0.01 0.32 0.04 0.02 0.04 1.81 0.13 0.06 0.02 Hf 0.03 0.01 BDL BDL BDL BDL BDL BDL BDL 0.17 0.63 0.14 0.30 0.52 1.04 0.48 0.26 0.12 0.08 Ta BDL 0.01 BDL BDL BDL BDL BDL BDL BDL 0.10 0.14 0.09 0.11 0.09 0.33 0.16 0.15 0.05 0.04 W 35.89 40.51 453.82 52.29 11.58 39.33 16.82 21.37 27.22 7.54 2.80 6.98 10.43 7.65 0.52 3.78 91.71 26.25 57.39 Au BDL BDL 0.01 0.02 BDL 0.02 BDL BDL BDL BDL BDL 0.02 BDL BDL BDL 0.01 BDL BDL 0.02 Th 0.07 0.09 0.03 0.08 0.03 0.04 0.06 0.04 0.10 0.42 0.35 0.70 0.39 0.58 0.07 0.13 4.33 3.28 4.95 U 0.26 0.49 4.89 2.73 1.64 1.49 1.96 2.28 3.32 1.09 1.48 1.57 1.40 1.35 0.78 1.04 7.52 4.20 5.77 La 6.289 8.137 5.994 3.542 2.905 2.238 2.612 2.712 3.217 0.326 0.228 0.500 0.516 0.511 0.178 0.130 1.966 0.996 1.637 Ce 13.111 21.904 17.823 27.255 20.794 18.926 21.182 25.626 32.439 5.057 2.551 7.647 7.578 8.485 2.892 1.656 18.722 12.791 17.822 Pr 1.247 2.814 1.185 2.886 2.029 1.772 2.138 2.775 3.965 2.225 1.255 3.286 3.180 3.593 1.181 0.704 5.404 4.768 5.776 Nd 3.671 11.593 2.050 4.635 3.007 2.581 2.759 3.779 6.551 18.806 11.231 27.141 24.829 28.340 11.214 6.808 31.228 35.349 38.234 Sm 0.359 1.625 0.069 0.091 0.056 0.044 0.049 0.057 0.067 6.568 5.447 7.768 6.890 7.106 7.310 4.042 6.695 8.689 7.136 Eu 0.111 0.282 0.082 0.058 0.054 0.047 0.061 0.066 0.118 1.983 2.019 2.433 1.511 1.847 2.004 1.428 2.294 2.465 2.527 Gd 0.211 1.034 0.004 0.025 BDL BDL 0.026 0.015 0.014 5.227 6.144 5.378 4.472 4.553 10.491 6.464 4.150 4.166 3.702 Tb 0.032 0.104 0.004 0.001 0.004 0.000 0.003 0.004 0.005 0.713 0.917 0.778 0.528 0.529 1.645 1.000 0.510 0.554 0.399 Dy 0.140 0.606 0.007 0.004 0.004 0.011 BDL 0.004 0.004 3.937 5.120 4.516 2.893 2.767 10.347 5.540 3.122 2.683 1.958 Ho 0.027 0.101 0.002 BDL BDL 0.001 0.001 BDL 0.004 0.766 1.040 0.825 0.501 0.503 2.045 1.175 0.696 0.432 0.335 Er 0.063 0.281 0.001 0.001 BDL BDL BDL BDL BDL 2.003 2.641 2.316 1.400 1.507 5.854 3.256 1.959 1.290 0.821 Tm 0.007 0.022 BDL 0.001 BDL 0.001 BDL 0.001 BDL 0.216 0.335 0.233 0.146 0.160 0.806 0.414 0.277 0.151 0.101 Yb 0.037 0.119 0.005 0.005 0.005 BDL BDL BDL 0.011 1.346 2.192 1.552 0.917 0.741 4.685 2.461 1.832 0.943 0.623 Lu 0.004 0.026 BDL BDL BDL 0.002 0.001 0.001 BDL 0.183 0.358 0.241 0.130 0.133 0.712 0.375 0.304 0.124 0.090 ΣREE 25.31 48.65 27.22 38.50 28.86 25.62 28.83 35.04 46.39 49.36 41.48 64.62 55.49 60.77 61.37 35.45 79.16 75.40 81.16 LREE/HREE 47.54 20.22 1240.74 1050.20 2298.16 1681.37 954.11 1449.50 1247.19 2.43 1.21 3.08 4.05 4.58 0.68 0.71 5.16 6.29 9.11 (La/Yb)N 122.45 49.20 835.98 488.76 402.15 4.08 207.36 0.17 0.07 0.23 0.40 0.49 0.03 0.04 0.77 0.76 1.89 δEu 1.23 0.67 16.12 3.70 2.77 5.20 5.26 6.90 11.92 1.03 1.07 1.15 0.83 0.99 0.70 0.85 1.33 1.25 1.50 注:BDL为低于检测限 -
[1] Bau M. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(3/4) : 219-230.
[2] Chelle-Michou C, Chiaradia M, Ovtcharova M, et al. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots(the Eocene Coroccohuayco deposit, Peru) [J]. Lithos, 2014, 198/199: 129-140. doi: 10.1016/j.lithos.2014.03.017
[3] Crowe D E, Riciputi L R, Bezenek S, et al. Oxygen isotope and trace element zoning in hydrothermal garnets: windows into large-scale fluid-flow behavior[J]. Geology, 2001, 29(6) : 479-482. doi: 10.1130/0091-7613(2001)029<0479:OIATEZ>2.0.CO;2
[4] Deng X D, Li J W, Luo T, et al. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry[J]. Contributions to Mineralogy & Petrology, 2017, 172(9) : 71.
[5] Deng X D, Luo T, Li J W, et al. Direct dating of hydrothermal tungsten mineralization using in situ wolframite U-Pb chronology by laser ablation ICP-MS[J]. Chemical Geology, 2019, 515: 94-104. doi: 10.1016/j.chemgeo.2019.04.005
[6] Duan Z, Gleeson S A, Gao W H, et al. Garnet U-Pb dating of the Yinan Au-Cu skarn deposit, Luxi District, North China Craton: implications for district-wide coeval Au-Cu and Fe skarn mineralization[J]. Ore Geology Reviews, 2020, 118: 103310. doi: 10.1016/j.oregeorev.2020.103310
[7] Fernando G, Hauzenberger C A, Baumgartner L P, et al. Modeling of retrograde diffusion zoning in garnet: evidence for slow cooling of granulites from the Highland Complex of Sri Lanka[J]. Mineralogy & Petrology, 2003, 78(1/2) : 53-71.
[8] Fu Y, Sun X M, Li D F, et al. U-Pb geochronology and geochemistry of U-rich garnet from the giant Beiya gold-polymetallic deposit in SW China: constraints on skarn mineralization process[J]. Minerals, 2018, 8(4) : 128. doi: 10.3390/min8040128
[9] Gao X, Yang L Q, Meng J Y, et al. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, Northwest Yunnan, China[J]. Ore Geology Reviews, 2017, 91: 945-962. doi: 10.1016/j.oregeorev.2017.08.012
[10] Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1) : 185-205. doi: 10.1016/j.gca.2007.09.033
[11] Gevedon M, Seman S, Barnes J D, et al. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J]. Earth and Planetary Science Letters, 2018, 498: 237-246. doi: 10.1016/j.epsl.2018.06.036
[12] He P L, Huang X L, Yang F, et al. Mineralogy constraints on magmatic processes controlling adakitic features of Early Permian high-magnesium diorites in the western Tianshan Orogenic Belt[J]. Journal of Petrology, 2021, 61(11/12) : egaa114.
[13] Hou Z Q, Zaw K, Pan G T, et al. Sanjiang Tethyan metallogenesis in SW China: tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31(1/4) : 48-87.
[14] Jamtveit B, Wogelius R A, Fraser D C. Zonation patterns of skarn garnets: records of hydrothermal system evolution[J]. Geology, 1993, 21: 113-116.
[15] Kim H S. Deformation-induced garnet zoning[J]. Gondwana Research, 2006, 10(3/4) : 379-388.
[16] Kong D X, Xu J F, Chen J L. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system: implications for Late Triassic metallogenesis within the Yidun Terrane, southeastern Tibetan Plateau[J]. Chemical Geology, 2016, 441: 148-161. doi: 10.1016/j.chemgeo.2016.08.012
[17] Leng C B, Zhang X C, Hu R Z, et al. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China[J]. Journal of Asian Earth Sciences, 2012, 60: 31-48. doi: 10.1016/j.jseaes.2012.07.019
[18] Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587-599. doi: 10.1016/j.oregeorev.2019.03.011
[19] Li W C, Zeng P S, Hou Z Q, et al. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China[J]. Economic Geology, 2011, 106: 79-92. doi: 10.2113/econgeo.106.1.79
[20] Li W C, Yu H J, Gao X, et al. Review of Mesozoic multiple magmatism and porphyry Cu-Mo(W) mineralization in the Yidun Arc, eastern Tibet Plateau[J]. Ore Geology Reviews, 2017, 90: 795-812. doi: 10.1016/j.oregeorev.2017.03.009
[21] Lin J, Liu Y S, Yang Y H, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016, 1(1) : 5-27. doi: 10.1016/j.sesci.2016.04.002
[22] Liu X L, Chen J H, Li W C, et al. Late Cretaceous magmatism and porphyry Mo-Cu polymetallic mineralization in the Tongchanggou intrusion, Geza Arc, southwestern China[J]. Arabian Journal of Geosciences, 2019, 12(14) : 437. doi: 10.1007/s12517-019-4593-8
[23] Luo T, Deng X, Li J, et al. U-Pb geochronology of wolframite by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7) : 1439-1446. doi: 10.1039/C9JA00139E
[24] Martin L A J, Ballèvre M, Boulvais P, et al. Garnet re-equilibration by coupled dissolution-reprecipitation: evidence from textural, major element and oxygen isotope zoning of 'cloudy' garnet[J]. Journal of Metamorphic Geology, 2011, 29(2) : 213-231. doi: 10.1111/j.1525-1314.2010.00912.x
[25] Mayanovic R A, Anderson A J, Bassett W A, et al. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes[J]. Chemical Geology, 2007, 239(3/4) : 266-283.
[26] Mezger K, Hanson G N, Bohlen S R. U-Pb systematics of garnet: dating the growth of garnet in the late Archean Pikwitonei granulite domain at Cauchon and Natawahunan lakes, Manitoba, Canada[J]. Contributions to Mineralogy & Petrology, 1989, 101(2) : 136-148.
[27] Qu X M, Hou Z Q, Zhou S G. Geochemical and Nd, Sr isotopic study of the postorogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China[J]. Resource Geology, 2002, 52: 163-172. doi: 10.1111/j.1751-3928.2002.tb00128.x
[28] Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27(1) : 119-137. doi: 10.1016/j.jsg.2004.06.011
[29] Scheibner B, Wrner G, Civetta L, et al. Rare earth element fractionation in magmatic Ca-rich garnets[J]. Contributions to Mineralogy & Petrology, 2007, 154(1) : 55-74.
[30] Seman S, Stockli D F, Mclean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017: S0009254117302541.
[31] Smith M P, Henderson P, Jeffries T E R, et al. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 2004, (3) : 3.
[32] Somarin A K. Garnetization as a ground preparation process for copper mineralization: evidence from the Mazraeh skarn deposit, Iran[J]. International Journal of Earth Sciences, 2010, 99(2) : 343-356. doi: 10.1007/s00531-008-0394-0
[33] Sun S S, Mcdonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special publication, 1989, 42(1) : 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[34] Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth & Planetary Science Letters, 1984, 67(1) : 70-78.
[35] Tang Y W, Cui K, Zheng Z, et al. LA-ICP-MS U-Pb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China[J]. Gondwana Research, 2020, 83: 217-231. doi: 10.1016/j.gr.2020.02.006
[36] Tang Y W, Gao J F, Lan T G, et al. In situ low-U garnet U-Pb dating by LA-SF-ICP-MS and its application in constraining the origin of Anji skarn system combined with Ar-Ar dating and Pb isotopes[J]. Ore Geology Reviews, 2021, 130: 103970. doi: 10.1016/j.oregeorev.2020.103970
[37] Wafforn S, Seman S, Kyle J R, et al. Andradite garnet U-Pb geochronology of the big Gossan skarn, Ertsberg-Grasberg mining district, Indonesia[J]. Economic Geology, 2018, 113(3) : 769-778. doi: 10.5382/econgeo.2018.4569
[38] Wang B Q, Zhou M F, Li J W, et al. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: adakitic magmatism and porphyry copper mineralization[J]. Lithos, 2011, 127(1/2) : 24-38.
[39] Wang B Q, Zhou M F, Chen W T, et al. Petrogenesis and tectonic implications of the Triassic volcanic rocks in the northern Yidun terrane, Eastern Tibet[J]. Lithos, 2013, 175/176(8) : 285-301.
[40] Wang X S, Hu R Z, Bi X W, et al. Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun terrane: new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J]. Lithos, 2014a, 208/209: 202-219. doi: 10.1016/j.lithos.2014.08.016
[41] Wang X S, Bi X W, Leng C B, et al. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 2014b, 61: 73-95. doi: 10.1016/j.oregeorev.2014.01.006
[42] Wang P, Dong G C, Santosh M, et al. Copper isotopes trace the evolution of skarn ores: a case study from the Hongshan-Hongniu Cu deposit, southwest China[J]. Ore Geology Reviews, 2016, 88: 822-831.
[43] Xiao Y Y, Chen S, Niu Y L, et al. Mineral compositions of syn-collisional granitoids and their implications for the formation of juvenile continental crust and adakitic magmatism[J]. Journal of Petrology, 2020, 61(3) : egaa038. doi: 10.1093/petrology/egaa038
[44] Yang Y H, Wu F Y, Yang J H, et al. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2) : 231-239. doi: 10.1039/C7JA00315C
[45] Yardley B, Rochelle C A, Barnicoat A C, et al. Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism[J]. Mineralogical Magazine, 1991, 55(380) : 357-365. doi: 10.1180/minmag.1991.055.380.06
[46] Yu H J, Li W C, Yin G H, et al. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J]. Acta Geologica Sinica, 2014, 88(4) : 1183-1194. doi: 10.1111/1755-6724.12282
[47] Zang Z, Dong L, Liu W, et al. Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system[J]. Scientific Reports, 2019, 9(1) : 10382. doi: 10.1038/s41598-019-46868-4
[48] Zhai D G, Liu J J, Zhang H Y, et al. Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence[J]. Lithos, 2014, 190/191: 279-291. doi: 10.1016/j.lithos.2013.12.017
[49] Zhang Y, Shao Y J, Zhang R Q, et al. Dating ore deposit using garnet U-Pb geochronology: example from the Xinqiao Cu-S-Fe-Au deposit, eastern China[J]. Minerals, 2018, 8(1) : 31. doi: 10.3390/min8010031
[50] Zhang S, Chen H, Shu Q, et al. Unveiling growth histories of multi-generational garnet in a single skarn deposit via newly-developed LA-ICP-MS U-Pb dating of grandite[J]. Gondwana Research, 2019, 73: 65-76. doi: 10.1016/j.gr.2019.04.003
[51] Zu B, Xue C J, Zhao Y, et al. Late Cretaceous metallogeny in the Zhongdian area: Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J]. Ore Geology Reviews, 2015, 64: 1-12. doi: 10.1016/j.oregeorev.2014.06.009
[52] Zu B, Xue C J, Chi G X, et al. Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit: insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China[J]. Ore Geology Reviews, 2016, 77: 25-42. doi: 10.1016/j.oregeorev.2016.02.002
[53] 艾永富, 金玲年. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报(自然科学版), 1981, (1) : 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198101009.htm
[54] 边晓龙, 张静, 王佳琳, 等. 滇西北红山矽卡岩型铜矿床石榴子石原位成分及其地质意义[J]. 岩石学报, 2019, 35(5) : 1463-1477. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201905010.htm
[55] 陈莉, 刘函, 贺娟. 滇西北休瓦促钨钼矿床两期岩浆作用的LA-ICP-MS锆石U-Pb年龄及矿床成因[J]. 地质通报, 2020, 39(6) : 929-942. http://dzhtb.cgs.cn/cn/article/id/20200612
[56] 邓军, 王长明, 李龚健. 三江特提斯叠加成矿作用样式及过程[J]. 岩石学报, 2012, 28(5) : 1349-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205003.htm
[57] 范晓. 四川巴塘县亥隆-措莫隆矽卡岩型锡多金属矿的矿床特征、成矿作用与矿化分带[J]. 四川地质学报, 2009, 29(S2) : 112-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB2009S2020.htm
[58] 高雪, 邓军, 孟健寅, 等. 滇西红牛矽卡岩型铜矿床石榴子石特征[J]. 岩石学报, 2014, 30(9) : 2695-2708. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409019.htm
[59] 洪东铭, 简星, 黄鑫, 等. 石榴石微量元素地球化学及其在沉积物源分析中的应用[J]. 地学前缘, 2020, 27(3) : 191-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003019.htm
[60] 侯增谦, 杨岳清, 曲晓明, 等. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 2004, 78(1) : 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm
[61] 黄肖潇, 许继峰, 陈建林, 等. 中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因[J]. 岩石学报, 2012, 28(5) : 1493-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205014.htm
[62] 冷成彪, 陈喜连, 张静静, 等. 斑岩型Cu±Mo±Au矿床的勘查标志: 岩石化学和矿物化学指标[J]. 地质学报, 2020, 94(11) : 3189-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011003.htm
[63] 李文昌, 尹光侯, 余海军, 等. 滇西北格咱火山-岩浆弧斑岩成矿作用[J]. 岩石学报, 2011, 27(9) : 2541-2552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109006.htm
[64] 李文昌, 余海军, 尹光候. 西南"三江"格咱岛弧斑岩成矿系统[J]. 岩石学报, 2013, 29(4) : 1129-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304003.htm
[65] 李文昌. 义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型[D]. 中国地质大学(北京) 博士学位论文, 2007.
[66] 廖远安, 姚学良. 四川巴塘措莫隆含锡花岗岩序列——单元演化特征及找矿标志[J]. 矿物岩石, 1995, (4) : 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS504.001.htm
[67] 林彬, 陈蕾, 刘振宇, 等. 石榴子石U-Pb精确测年对斑岩-矽卡岩型铜矿床成岩时限的制约——以西藏桑日铜矿为例[J]. 地质学报, 2020, 94(10) : 2883-2892. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010008.htm
[68] 林方成, 杨家瑞, 陈慈德, 等. 义敦成矿带铜银铅锌锡矿产资源调查评价进展与潜力[J]. 四川地质学报, 2003, (3) : 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB200303002.htm
[69] 林清茶, 夏斌, 张玉泉. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义[J]. 地质通报, 2006, 25(1) : 133-137. http://dzhtb.cgs.cn/cn/article/id/20060120
[70] 刘树文, 王宗起, 闫全人, 等. 川西雀儿山花岗岩的地球化学和岩石成因[J]. 地质学报, 2006, 80(9) : 1355-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609011.htm
[71] 刘学龙, 李文昌, 尹光侯, 等. 云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究[J]. 岩石学报, 2013, 29(9) : 3049-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309008.htm
[72] 刘学龙, 李文昌, 张娜, 等. 扬子西缘乡城-丽江结合带燕山期斑岩Mo多金属矿床成矿系统[J]. 岩石学报, 2016, 32(8) : 2281-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608004.htm
[73] 刘学龙, 李文昌, 张娜, 等. 云南格咱岛弧地苏嘎成矿岩体Ⅰ型花岗岩年代学、地球化学特征及地质意义[J]. 地质论评, 2014, 60(1) : 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401012.htm
[74] 刘益, 孔志岗, 陈港, 等. 滇东南官房钨矿床石榴子石原位LA-SF-ICP-MS U-Pb定年及地质意义[J]. 岩石学报, 2021, 37(3) : 847-864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103013.htm
[75] 欧阳永棚, 周显荣, 尧在雨, 等. 赣东北朱溪钨(铜) 矿床两期石榴石研究及其对成矿作用的指示[J]. 地学前缘, 2020, 27(4) : 219-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004022.htm
[76] 彭惠娟. 云南中甸红牛-红山斑岩-矽卡岩型铜矿床成矿过程及义敦岛弧斑岩-矽卡岩成矿系统研究[D]. 中国地质科学院博士学位论文, 2014.
[77] 曲晓明, 侯增谦, 周书贵. 川西连龙夕卡岩型锡、银多金属矿床成矿地质特征[J]. 地球学报, 2001, (1) : 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200101005.htm
[78] 任江波, 许继峰, 陈建林. 中甸岛弧成矿斑岩的锆石年代学及其意义[J]. 岩石学报, 2011, 27(9) : 2591-2599. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109010.htm
[79] 王新松, 毕献武, 冷成彪, 等. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 矿物学报, 2011, 31(3) : 315-321. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103003.htm
[80] 万丽, 刘慧, 曾祥健. 普朗斑岩型铜矿床成矿元素多重分形特征及其矿化强度指示[J]. 吉林大学学报(地球科学版), 2021, 51(4) : 1054-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202104008.htm
[81] 肖成东, 刘学武. 东蒙地区夕卡岩石榴石稀土元素地球化学及其成因[J]. 中国地质, 2002, 29(3) : 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200203013.htm
[82] 徐兴旺, 蔡新平, 屈文俊, 等. 滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J]. 地质学报, 2006, 80(9) : 1422-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609016.htm
[83] 杨立强, 高雪, 和文言. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 2015, 31(11) : 3155-3170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201511001.htm
[84] 应汉龙, 王登红, 付小方. 四川巴塘夏塞花岗岩和银多金属矿床年龄及硫、铅同位素组成[J]. 矿床地质, 2006, (2) : 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200602002.htm
[85] 应立娟, 唐菊兴, 王登红, 等. 西藏甲玛超大型铜矿石榴子石特征及成因意义[J]. 地质学报, 2012, 86(11) : 1735-1747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211004.htm
[86] 张立中, 陈蕾, 王国平, 等. 石榴石U-Pb定年对山西义兴寨金矿床角砾岩筒时间的限制和金矿成因的指示[J]. 地球科学, 2020, 45(1) : 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202001009.htm
[87] 张能德. 川西白玉—稻城地区花岗岩类的年龄[J]. 四川地质学报, 1994, 14(2) : 88-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199402001.htm
[88] 张小波, 张世涛, 陈华勇, 等. 石榴子石U-Pb定年在矽卡岩矿床中的应用: 以鄂东南高椅山硅灰石(-铜) 矿床为例[J]. 地球科学, 2020, 45(3) : 856-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111002.htm
[89] 赵斌, 李统锦, 李昭平. 夕卡岩形成的物理化学条件实验研究[J]. 地球化学, 1983, (3) : 256-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198303004.htm
[90] 赵斌, 赵劲松, 刘海臣. 长江中下游地区若干Cu(Au)、Cu-Fe(Au) 和Fe矿床中钙质夕卡岩的稀土元素地球化学[J]. 地球化学, 1999, 28(2) : 113-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX902.001.htm
[91] 郑震, 杜杨松, 曹毅, 等. 安徽冬瓜山矽卡岩铜矿石榴石成分特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(2) : 235-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202012.htm
[92] 邹光富, 郑荣才, 胡世华, 等. 四川巴塘县夏塞银多金属矿床特征[J]. 成都理工大学学报(自然科学版), 2008, 35(1) : 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200801015.htm
-