-
摘要:
渭河盆地具有丰富的地热资源,开发利用地热资源有助于调整能源结构、降低雾霾及改善环境。在对区域地质、地球物理、石油勘探、地热井钻井等资料收集及分析的基础上,采用镜下鉴定、储层物性等分析方法,对渭河盆地地热地质条件、热储层物性特征、热储层评价等开展了深入研究。研究结果表明:渭河盆地具有较好的深部构造热背景;新近系张家坡组和蓝田-灞河组、高陵群砂岩孔隙类型以原生粒间孔为主,高陵群砂岩孔隙不发育;渭河盆地新近系上新统张家坡组砂岩热储层孔隙度为3.35%~31.2%,平均值为13.3%;渗透率为0.47×10-3~235×10-3μm2,平均值为29.2×10-3μm2,储层类型属于Ⅳ类储集层;中新统蓝田-灞河组砂岩热储层孔隙度为5.2%~31.2%,平均值为17%;渗透率为0.05×10-3~5684×10-3μm2,平均值为326×10-3μm2,储层类型属于Ⅲ类储集层;中新统高陵群砂岩热储层孔隙度为2.5%~13.9%,平均值为5.8%;渗透率为0.01×10-3~11.04×10-3μm2,平均值为0.75×10-3μm2;储层类型属于Ⅵ类储集层。砂泥岩压实曲线显示张家坡组成岩强度弱,埋藏较浅—中等,岩石呈正常—弱压实,沉积物为弱固结—半固结,处于早成岩B期,地热井容易出砂。而蓝田-灞河组下段、高陵群的声波时差值大多偏离,随深度的增加声波时差值变化不明显,反映为中等压实-强压实特征,由于蓝田-灞河组和高陵群埋藏较深,沉积物为半固结—固结砂岩,蓝田-灞河组、高陵群主要处于晚成岩A期,地热井不易出砂。新近系热储层的研究表明,渭河盆地蓝田-灞河组埋藏较深,热储层物性好,是最有利的地热开发层段,加大渭河盆地地热开发利用对实现双碳目标具有重要意义。
Abstract:Weihe basin is rich in geothermal resources.The development and utilization of geothermal resources is helpful to adjust energy structure, improve environmental protection and reduce haze pollution.Through regional geology, geophysics, petroleum exploration and geothermal well drilling, this paper makes an in-depth study on geothermal geological conditions, physical properties and reservoir evaluation in Weihe basin.The results show that the Moho surface and Curie uplift in Weihe basin have thin lithosphere and good deep thermal background; The pore types of the newly recent Zhangjiapo Formation and the Lantian-Bahe Formation were dominated by primary intergranular pores, and the pores of the Gaoling Group were not developed; The porosity of Zhangjiapo Formation of Neogene Pliocene is 3.35%~31.2%, with an average of 13.3%;permeability is 0.47×10-3~235×10-3μm2, average 29.2×10-3μm2; the reservoir type belongs to class Ⅳ reservoir; the porosity of Lantian-Bahe Formation of Miocene is 5.2%~31.2%, with an average of 17%;permeability is 0.05×10-3~5684×10-3μm2, average 326×10-3μm2; the reservoir type belongs to class Ⅲ reservoir; the porosity of Gaoling Group of Miocene is 2.5%~13.9%, with an average of 5.8%;permeability 0.01×10-3~11.04×10-3μm2, average 0.75×10-3μm2; the reservoir type belongs to class Ⅵ reservoir; the compaction curve of sand and mudstone shows that Zhangjiapo constituent rock has weak strength, shallow to medium burial, normal weak compaction of rock, weak consolidation semi consolidation of sediment, easy sand production, and is in early diagenetic stage B.The acoustic moveout values of the lower section of Lantian-Bahe Formation and Gaoling Group mostly deviate, and the acoustic moveout values do not change significantly with the increase of depth, which is reflected in the characteristics of medium compaction strong compaction.Due to the deep burial of Lantian-Bahe Formation and Gaoling Group, the sediments are semi consolidated sandstone, which is not easy to produce sand.Lantian-Bahe Formation and Gaoling Group are mainly in late diagenetic stage A.Through the study of Neogene thermal reservoirs, it is believed that the thermal reservoirs in the Weihe River Basin are relatively stable.Promoting the geothermal water development in this area has guiding significance for realizing the goals of 2030 carbon peak, 2060 carbon neutral and double carbon.
-
Key words:
- thermal reservoir /
- Neogene /
- reservoir evaluation /
- diagenetic characteristics /
- Weihe basin
-
-
图 1 渭河盆地大地构造位置(据朱瑞静等,2020修改)
Figure 1.
图 2 渭河盆地构造单元划分(据任战利, 2018修改)
Figure 2.
表 1 渭河盆地新近系地层划分
Table 1. Quaternary stratigraphic division of Weihe basin
地层系统 岩石地层 岩性描述 新生界 新近系 上新统 张家坡组 河流相、河湖相沉积,由灰绿色、浅棕红色泥岩,砂质泥岩夹薄层灰色细粉砂岩组成 蓝田-灞河组 为河湖相和河流相沉积,1/2固结成岩。上部为紫红色巨厚含钙质结核泥岩及砂质泥岩,下部以数十层中细粒砂岩为主,夹粘土岩。产哺乳动物化石 中新统 高陵群 由棕红色,砖红色含钙质结核泥岩、砂质泥岩夹灰色中薄层疏松砂岩与砂砾岩组成。为一套河、湖相沉积;2/3固结成岩(陈健,2009) 表 2 LC1井新近系岩石类型
Table 2. Statistics of Neogene rock types in LC1 well
层位 参数 泥岩 粉砂岩 细砂岩 砂岩总计 砂泥比 砂厚比 张家坡组 h 835 34 / 34 0.04 0.1 % 96.1 3.9 / 3.9 蓝田-灞河组 h 336 74 / 74 0.22 0.605 % 82 18 / 18 高陵群 h 465 80 35 115 0.25 0.17 % 80.2 13.8 6 19.8 注:h—岩性厚度/m;%—岩性百分含量 表 3 碎屑岩储层评价标准
Table 3. Evaluation criteria of clastic rock reservoir
评价指标 储层级别 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 物性 孔隙度/% ≥30 30~25 25~15 15~10 10~5 <5 渗透率/(10-3μm2) ≥2000 2000~500 500~50 50~10 10~1 1~0.1 储层类型 特高孔渗 高孔渗 中孔渗 低孔渗 特低孔渗 超低孔渗 -
[1] Athy L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24.
[2] Chapman R E. Compaction and fluid migration: Practical petroleum geology[J]. Sedimentary Geology, 1980, 25(1/2);163-164.
[3] Fisher Q J, Casey M, Clennell M B, et al. Mechanical compaction of deeply buried sandstones of the North Sea[J]. Marine & Petroleum Geology, 1999, 16(7): 605-618.
[4] Jin G, Zhou S Y, Liu M, et al. Crustal structures across the western Weihe Graben, North China: Implications for extrusion tectonics at the northeast margin of Tibetan Plateau[J]. Journal of Geophysical Research-Solid Earth, 2015, 120(7): 5070-5081. doi: 10.1002/2014JB011210
[5] Pan W, Huang Z, Ning M, et al. Crustal structure beneath the Weihe Graben in central China: Evidence for the tectonic regime transformation in the Cenozoic[J]. Journal of Asian Earth Sciences, 2014, 81: 105-114. doi: 10.1016/j.jseaes.2013.11.010
[6] Qu Wei, Wang Y S, Xu C, et al. . Tectonic stress field of the Weihe basin using the finite element method[J]. Geomatics and Information Science of Wuhan Univers, 2017, 42(12): 1749-1755.
[7] SY/T 5477-2003, 碎屑岩成岩阶段划分标准[S]. 国家经济贸易委员会, 2003.
[8] 陈建兵, 王振福. 关中盆地地热钻井施工常见问题预防及处理方法探讨[J]. 探矿工程(岩土钻掘工程), 2019, 46(7): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201907005.htm
[9] 陈健. 咸阳地热田地质构造特征与形成机制研究[J]. 陕西煤炭, 2009, 28(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ200902014.htm
[10] 陈娟萍. 鄂尔多斯盆地东北部山西组储层控制因素分析[D]. 西北大学硕士学位论文, 2005.
[11] 邓亚仁, 任战利, 任文波. 关中地区地热分布控制因素与地热开发前景[J]. 西部大开发(土地开发工程研究), 2017, 2(11): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTG201711005.htm
[12] 豆惠萍. 基于水文地球化学模拟的地热尾水回灌化学堵塞研究[D]. 长安大学硕士学位论文, 2012.
[13] 杜栩. 异常压力与油气分布[J]. 地学前缘, 1995, (4): 137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY504.001.htm
[14] 谷海艳. 砂泥岩压实曲线制作及其效果——以鸳鸯沟-双台子地区为例[J]. 城市地理, 2015, (22): 74.
[15] 郭西锋, 韩斌虎. 关中盆地新近系灞河组-蓝田组沉积相研究[J]. 内蒙古石油化工, 2008, 34(18): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200818040.htm
[16] 洪增林, 张银龙, 周阳. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质, 2019, 46(5): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905023.htm
[17] 李明诚. 石油与天然气运移第二版[M]. 北京: 石油工业出版社, 1994.
[18] 李智超, 李文厚, 李永项, 等. 渭河盆地新生代沉积相研究[J]. 古地理学报, 2015, 17(4): 529-540. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504009.htm
[19] 李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西北大学博士学位论文, 2018.
[20] 林承焰, 王文广, 董春梅, 等. 砂岩压实作用研究现状及进展[J]. 沉积学报, 2020, 38(3): 538-553. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202003008.htm
[21] 刘伟, 窦齐丰, 黄述旺, 等. 成岩作用的定量表征与成岩储集相研究——以科尔沁油田交2断块区九佛堂组(J3jf)下段为例[J]. 中国矿业大学学报, 2002, (5): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200205014.htm
[22] 马荣图, 李学森. 西安市临潼区渭水曲项1-1井储层特征与地热资源评价[J]. 四川地质学报, 2021, 41(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202101011.htm
[23] 权新昌, 柏形世. 关中盆地渭南城区地热资源分布规律与开发建议[J]. 中国煤炭地质, 2004, 16(6): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200406007.htm
[24] 饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm
[25] 任小庆, 郭世炎. 陕西杨凌示范区五泉镇地热资源潜力分析[J]. 地质学刊, 2018, 42(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201804018.htm
[26] 任战利, 白奋飞, 肖晖, 等. 渭河盆地含氦天然气成藏条件及评价研究报告[R]. 中石化华北油气勘探分公司, 2008.
[27] 任战利, 陈玉林, 李晓辉, 等. 西安地热水井回灌实验研究报告[R]. 西安市水资源利用技术服务中心, 2011.
[28] 任战利, 刘润川, 任文波, 等. 渭河盆地地温场分布规律及其控制因素[J]. 地质学报, 2020, 94(7): 1938-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007003.htm
[29] 任战利, 任文波, 刘润川, 等. 陕西地热资源调查分布评价报告[R]. 陕西延长石油(集团)有限责任公司研究院, 2017.
[30] 任战利, 任文波, 刘润川, 等. 鄂尔多斯盆地地热资源调查分布评价成果报告[R]. 中国地质调查局西安地质调查中心, 2018.
[31] 孙凤华, 陈祥, 王振平. 泌阳凹陷安棚深层系成岩作用与成岩阶段划分[J]. 西安石油大学学报: 自然科学版, 2004, 19(1): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200401006.htm
[32] 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 中国地质大学(北京)博士学位论文, 2015.
[33] 汪万红. 秦岭北缘断裂带深部流体特征与区域地震活动的关系研究[D]. 中国地震局兰州地震研究所硕士学位论文, 2008.
[34] 王贵玲. 京津冀地区地热资源开发利用与减霾应对建议[J]. 地热能, 2018, (1): 11-12.
[35] 王洁. 琼东南盆地压力演化时-空差异性及其控制因素[D]. 中国地质大学(武汉)硕士学位论文, 2013.
[36] 王鹏, 赵澄林. 柴达木盆地北缘地区第三系成岩作用研究[J]. 西安石油学院学报: 自然科学版, 2002, 17(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200204000.htm
[37] 王仁朋. 粒度分析反映的千河流域晚更新世以来的环境演变[D]. 长安大学硕士学位论文, 2017.
[38] 王秀雅, 孙丰博, 王占川, 等. 湖北省通山县王家庄地热资源特征及储量评价[J]. 河北地质大学学报, 2020, 43(6): 45-49, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX202006009.htm
[39] 徐胜强, 陆斌, 崔世波, 等. 咸阳地热WH1井砂岩地层回灌试验研究与应用[J]. 探矿工程(岩土钻掘工程), 2014, 41(7): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201407003.htm
[40] 闫文中, 穆根胥, 刘建强. 陕西渭河盆地关中城市群地热尾水回灌试验研究[J]. 上海国土资源, 2014, 35(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201402009.htm
[41] 阳仿勇. 异常高压气藏动态预测方法研究[D]. 西南石油学院硕士学位论文, 2003.
[42] 杨超, 雷裕红. 鄂尔多斯盆地南部三叠系延长组泥岩压实特征[J]. 非常规油气, 2018, 5(6): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201806004.htm
[43] 杨志洲, 于欣, 常园. 陕西关中盆地沣峪-高冠峪地区地热特征及成因研究[J]. 中外能源, 2015, 20(7): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201507009.htm
[44] 张慧. 浅议地热能的综合开发利用[J]. 经济研究参考, 2013, (35): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JJCK201335022.htm
[45] 张少泉. 地球物理学概论[M]. 北京: 地震出版社, 1986: 460-472.
[46] 赵俊彦. 渭河盆地地震地裂缝成因机制探讨[D]. 长安大学硕士学位论文, 2020.
[47] 赵西蓉. 渭河断陷盆地地热资源赋存特征与热储分析[J]. 煤田地质与勘探, 2006, (2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200602014.htm
[48] 周阳, 穆根胥, 张卉, 等. 关中盆地地温场划分及其地质影响因素[J]. 中国地质, 2017, 44(5): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705014.htm
[49] 朱瑞静, 安润莲, 荆丽波, 等. 渭河盆地油气地质特征与资源前景[J]. 中国石油和化工标准与质量, 2020, 40(3): 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ202003065.htm
-