-
摘要:
南京汤泉地区地下热水资源丰富,阐明其补给来源及成因模式,对于地下热水的科学开发意义重大。采用水化学及同位素地球化学分析方法对其进行了系统研究。结果表明,研究区地下热水与浅层冷水水化学组成差异明显,热储温度为63~75℃,循环深度为1.8~2.3 km。大气降水入渗是地下热水的补给来源,补给高程范围为321~539 m;循环周期为2046~6474 a;地下热水上涌过程中会混入比例为4%~26%的浅部岩溶冷水。经分析,该地热系统成因上属于中低温对流型,补给区主要为老山复背斜构造内的碳酸盐岩裸露区,依靠区域大地热流供热,热储层主要为上震旦统白云岩,盖层为寒武系、白垩系及第四系,地下热水经深循环沿NEE向与NW向断裂交会通道向上运移,并与浅部冷水发生混合,形成本区的地热异常。
Abstract:Nanjing Tangquan is rich in geothermal water.It is of great significance for the sustainable use of geothermal water to reveal its supply source and genesis mechanism.The method of hydrochemistry and isotope geochemistry was taken to make the systematic study.The chemical composition of geothermal water is different from that of shallow cold water.The thermal reservoir temperature has been estimated to be 63~75℃, with a water circulation depth of 1.8~2.3 km.The geothermal fluid origins from the rainfall, and the altitude of recharge area is 321~539 m.The water age is 2046~6474 a, with shallow karst cold water mixed while upwelling, and the mixing ratio is 4%~26%.Based on these analysis, a genesis model of the study area has been postulated to be a low-medium temperature geothermal system of a convective type.It receives the precipitation from the karst outcropping area in Laoshan complex anticline, and it is gradually heated by the normal heat flow during circulating.The thermal reservoir is originally the Upper Sinian series dolomite.The cap rocks are mainly Cambrian, Cretaceous and Quaternary strata.The geothermal water flows upward in the intersection zones of the NEE- and NW-striking faults along deep circulation, and mixing with cold water in shallow, forming the geothermal anomalies.
-
Key words:
- geothermal water /
- hydrogeochemistry /
- origin of geothermal water /
- genesis model /
- Nanjing
-
-
表 1 水化学及同位素测试数据
Table 1. The data of hydrochemistry and isotopes
水样编号 温度/℃ 离子含量/(mg·L-1) 同位素值/‰ K+ Na+ Ca2+ Mg2+ Cl- HCO3- SO42- H2SiO3 δD δ18O H1 37.0 6.77 12.4 682.0 102.0 5.55 301 1789 55.1 -54.9 -8.83 H2 46.0 6.96 12.2 566.0 108.0 6.93 299 1523 60.2 -56.2 -8.71 H3 22.0 3.60 11.8 174.0 33.9 20.8 134 444 20.3 -49.9 -8.00 H4 32.4 4.92 12.0 464.0 84.4 6.93 332 1178 48.0 -54.3 -8.62 H5 35.5 5.31 13.2 457.0 88.4 10.4 332 1180 46.8 -54.2 -8.74 H6 41.4 6.38 12.6 541.0 98.9 6.93 314 1489 54.5 -55.8 -9.27 C1 15.8 4.79 21.7 368.0 71.2 41.6 343 904 32.6 -46.6 -7.85 C2 15.2 0.81 17.4 138.0 35.0 24.3 270 230 32.0 -46.8 -7.98 C3 14.8 61.80 50.5 66.5 21.3 54.1 339 75.5 30.0 -43.9 -7.58 C4 16.2 0.64 98.9 52.8 10.8 69.3 257 49.9 27.0 -46.0 -7.16 C5 14.6 1.63 21.7 58.6 22.1 41.6 157 62.9 31.9 -44.2 -7.69 C6 16.5 2.93 63.6 126 32.7 70.7 389 139 35.3 -44.4 -7.47 C7 16.5 2.05 67.3 92.8 19.4 54.1 299 115 23.7 -42.9 -7.11 C8 16.2 4.10 46.6 84.5 23.0 61.0 213 96.4 36.2 -45.0 -7.14 C9 15.6 3.39 66.4 57.2 20.5 61.0 163 69.8 42.4 -44.1 -7.30 表 2 二氧化硅地热温标计算结果
Table 2. The calculation results of SiO2 geothermometer
℃ 样品编号 井口温度 无定形硅 α-方石英 β-方石英 玉髓 Fournier, 1977 H1 37.0 -15 50 3 70 H2 46.0 -12 54 7 75 H3 22.0 -49 10 -33 27 H4 32.4 -20 44 -2 64 H5 35.5 -21 43 -3 63 H6 41.4 -16 50 3 70 表 3 地下热水循环深度
Table 3. Depth of geothermal water circulation
样品编号 深度/m 备注 H1 2117 H2 2292 H3 417 混入冷水较多,计算结果偏低 H4 1854 H5 1807 H6 2096 表 4 汤泉地区地下热水补给高程计算结果
Table 4. The recharge altitude of geothermal water in Tangquan
样品编号 δ18O/‰ δ2H/‰ 补给高程/m H1 -8.83 -54.9 392 H2 -8.71 -56.2 354 H3 -8.00 -49.9 116 H4 -8.62 -54.3 321 H5 -8.74 -54.2 362 H6 -9.27 -55.8 539 表 5 汤泉地区地下热水混合比例计算结果
Table 5. The mixing fraction of geothermal groundwater
样品编号 87Sr/86Sr Sr/(μg·L-1) 热水混合比例 冷水混合比例 H1 0.708876 4890 96% 4% H3 0.709299 1580 13% 87% H4 0.708916 4100 76% 24% H5 0.708901 4020 74% 26% H6 0.708997 4740 92% 8% 表 6 地下热水中14C年龄校正结果
Table 6. The 14C age of the geothermal water samples based on correction model
样品编号 13C /‰ 14C /pMC 未校正前年龄/aBP Pearson (13C分馏)校正/a BP H1 -3.8 11.06 18203 6474 H2 -2.03 8 20880 3709 H3 -2.99 35.49 8564 M H4 -5.09 25.15 11411 2046 H5 -5.69 24.28 11702 3417 H6 -4.43 13.11 16797 6206 注:pMC为大气中现代碳的百分含量之比 -
[1] Ahmad M, Akram W, Hussain S D, et al. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan: an isotopic evidence[J]. Applied Radiation and Isotopes, 2001, 55: 731-736. doi: 10.1016/S0969-8043(01)00119-1
[2] Bakari S S, Aagaard P, Vogt R D, et al. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania[J]. J Geochem Explor., 2013: 130: 1-14. doi: 10.1016/j.gexplo.2013.02.008
[3] Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. CRC, Boca Raton, FL, 1997: 1-328.
[4] Fournier R O, Trues dell A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. doi: 10.1016/0016-7037(73)90060-4
[5] Fournier R. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1): 41-50.
[6] Faure G. Principles of isotope geology[C]//Wiley, Chichester, UK Négrel P, Petelet-Giraud E, Widory D. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterization. Hydrol. Earth Syst. Sci. 2004, 8(5): 959-972.
[7] Giggenbach W, Gonfiantini R, Jangi B, et al. Isotopic and chemical composition of Parbati valley geothermal discharges, north-west Himalaya, India[J]. Geothermics, 1983, 12(2): 199-222.
[8] Giggenbach W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3
[9] Guo Q, Pang Z, Wang Y, Tian J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Appl Geochem., 2017, 81: 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007. doi: 10.1016/j.apgeochem.2017.03.007
[10] Lu L H, Pang Z H, Kong Y L, et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 2018, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6
[11] 黄思静, 刘树根, 李国蓉, 等. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J]. 成都理工大学学报(自然科学版), 2004, 31(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200401001.htm
[12] 江苏地调局地调所. 全椒县幅、江浦县幅区域地质调查报告[R]. 1993.
[13] 江苏省地质工程勘察院. 南京汤泉地热资源调查评价报告[R]. 2009.
[14] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
[15] 柯柏林, 林天懿, 李文, 等. 北京西山谷积山背斜地热系统成因模式及远景区预测[J]. 地质通报, 2019, 38(8): 1378-1385. http://dzhtb.cgs.cn/cn/article/id/20190814
[16] 庞忠和, 王全九, 宋献方. 同位素水文学[M]. 北京: 科学出版社, 2011: 162-177.
[17] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 117-132.
[18] 汪洋, 汪集旸, 邓晋福, 等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展, 2001, 16(3): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200103002.htm
[19] 汪洋, 张旭虎, 蒲丛林等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报, 2022, 41(9): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202209017.htm
[20] 杨峰田, 庞忠和, 王彩会, 等. 苏北盆地老子山地热田成因模式[J]. 吉林大学学报(地球科学版), 2012, 42(2): 468-475. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202024.htm
[21] 闫佰忠, 肖长来, 梁秀娟, 等. 长白山玄武岩区盆地型地热水特征及成因模式[J]. 地质论评, 2018, 64(5): 1201-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201805013.htm
[22] 于津生, 虞福基, 刘德平. 中国东部大气降水氢、氧同位素组成[J]. 地球化学, 1987, 3(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198701002.htm
[23] 赵剑畏, 许家法, 王光亚. 江苏地温水温场特征及地热异常分布规律与控制条件探讨[J]. 江苏地质, 1997, 21(1): 21-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ701.005.htm
[24] 张卫民. 水文地球化学方法在赣南横径地区地热水成因分析中的应用[J]. 水文地质工程地质, 2001, 28(4): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200104012.htm
[25] 张萌, 蔺文静, 刘昭, 等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 382-392. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403015.htm
[26] 张朝锋, 郭文, 王晓鹏. 中国地热资源类型和特征探讨[J]. 地下水, 2018, 40(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201804001.htm
-