Influences of Quaternary sedimentary facies on soil organic carbon pool in Juhe watershed, Hebei Province
-
摘要:
成土母质是影响土壤有机碳储量的重要因素之一。以河北省三河市泃河流域为研究对象,根据全新统沉积环境特征,将研究区成土母质划分为冲洪积相沉积母质、冲积相沉积母质和湖沼积相淤积母质,探讨不同成土母质区土壤的有机碳密度变化及其影响机制。单因素方差分析显示,不同成土母质中土壤有机碳密度存在显著差异,呈冲积相<冲洪积相<湖沼积相变化趋势。对比不同成土母质的土壤质地、养分特征及理化性质,表明土壤通过影响植被的生长发育、土壤动植物、微生物活性、有机碳固存机制等,对土壤有机碳储量发挥直接或间接作用。研究区由冲积相→冲洪积相→湖沼积相,沉积环境发生显著变化,土壤粘粒组分增多,促进与土壤有机碳有关的有机-无机复合体的形成,降低微生物对土壤有机碳的分解;土壤含水率和养分含量增加,利于植被生长,提升土壤微生物活性,其代谢产物及死亡残体作为土壤有机碳的碳源,提高了土壤有机碳储量。该研究成果为流域土壤有机碳的保护利用提供技术支撑。
Abstract:The effects of parent materials on soil organic carbon (SOC) should not be ignored.This paper took Juhe watershed in Sanhe County, Hebei Province as the research object to discuss the difference of soil organic carbon density (SOCD) in different soils and influencing mechanism by their parent materials.According to the sedimentary environment of Holocene, the parent materials in the area were divided into alluvial-proluvial facies sediments (APFS), alluvial facies sediments (AFS) and lacustrine facies sediments (LFS).It was shown that there were significant variations of SOCD between soils developed in various parent materials via one-way analysis of variance, following the order AFS < APFS < LFS.Furthermore, the texture, nutrient elements concentrations, as well as physicochemical properties of soil, were comparatively analyzed, indicating that the influences of parent material on SOC were reflected on the influences of physicochemical property of soil on vegetation growth and development, the activity of soil flora, fauna and microorganism, and on the sequestration of organic carbon.From AFS, to APFS and to LFS, soil clay fraction gradually increased, which protect SOC from being decomposed by microorganisms since SOC were subjected to be coordinated with clay minerals into organo-mineral complex.On the other hand, LFS and APFS were characterized by more abundant water and nutrients than AFS, which contributed to vegetation growth and then input of SOC.In addition, microbial activity was strengthened, whose metabolites and residues after death are crucial source of SOC, increasing the storage of SOC.Our results could provide technological supports for the conservation and utilization of SOC in the Juhe watershed.
-
Key words:
- sedimentary facies /
- clay fraction /
- soil organic carbon /
- Hebei plain /
- parent materials
-
-
表 1 河北泃河流域不同沉积相土壤有机碳密度特征统计
Table 1. Statistical parameters of SOCD in different sedimentary facies of Juhe watershed, Hebei Province
沉积相 中位值(25%~75%)/
(kg·m-2)平均值/
(kg·m-2)标准偏差 变异系数
/%显著性(P值) 冲洪积相 3.80 (3.19~4.44) 3.80 0.869 22.9 0.774 冲积相 3.33 (2.94~3.89) 3.42 0.708 20.7 0.096 湖沼积相 4.37 (3.58~5.15) 4.47 0.964 21.6 0.440 表 2 河北泃河流域方差齐性检验结果
Table 2. Homogeneity test for variance of SOCD in Juhe watershed, Hebei Province
Levene统计 自由度1 自由度2 显著性(P值) 1.503 2 167 0.225 表 3 河北泃河流域单因素方差分析结果
Table 3. One-way analysis for variance of SOCD in Juhe watershed, Hebei Province
方差来源 平方和 自由度 均方 F值 显著性(P值) 组间 1176.8 2 588.4 8.36 0.000 组内 11750.5 167 70.4 总计 12927.3 169 表 4 河北泃河流域LSD多重比较分析结果
Table 4. LSD Multiple comparison of SOCD in different sedimentary facies of Juhe watershed, Hebei Province
沉积相 冲洪积 冲积物 湖沼积 冲洪积相 0.382* -0.670* 冲积相 -0.382* -1.05* 湖沼积相 0.670* 1.05* 注:* 表示在显著性水平P值为0.05的情况下,组别之间存在显著差异 表 5 河北泃河流域不同沉积相土壤理化特征
Table 5. Soil physical and chemical characteristics in different sedimentary facies of Juhe watershed, Hebei Province
土壤理化性质 沉积相 中位值(25%~75%) 平均值 标准偏差 变异系数 显著性(P值) 含水率/
%冲洪积相 21.4(18.9~23) 21.0 3.44 16.4% 0.502 冲积相 20.8(18.8~21.8) 20.1 2.62 13.1% 0.007 湖沼积相 27.4(22.5~29.6) 26.1 4.62 17.7% 0.732 容重
/(g·cm-3)冲洪积相 1.48(1.37~1.55) 1.47 0.135 9.20% 0.774 冲积相 1.44(1.30~1.55) 1.43 0.177 12.4% 0.767 湖沼积相 1.52(1.44~1.57) 1.48 0.100 6.76% 0.131 Ln(CEC)
/(cmol(+)·kg-1)冲洪积相 3.02(2.89~3.19) 3.04 0.253 8.33% 0.481 冲积相 3.05(2.92~3.15) 3.06 0.187 6.10% 0.512 湖沼积相 3.48(3.3~3.58) 3.42 0.229 6.69% 0.031 表 6 河北泃河流域不同沉积相养分元素特征统计
Table 6. Statistical parameters of nutrient elements concentrations in different sedimentary facies of Juhe watershed, Hebei Province
养分元素 沉积相 中位值(25%~75%) 平均值 标准偏差 变异系数 显著性(P值) TN/10-6 冲洪积相 1075(949.25~1258) 1085 235 21.7% 0.786 冲积相 987(866~1143) 1023 206 20.1% 0.41 湖沼积相 1352(1065~1569) 1334 292 21.9% 0.916 TP/10-6 冲洪积相 927(829~1080) 945.1 180.3 19.1% 0.605 冲积相 885(753~1002) 876.4 182.8 20.9% 0.871 湖沼积相 1109(984~1249) 1111 173 15.6% 0.676 102/TK 冲洪积相 46.4(44~48.3) 46.1 2.88 6.25% 0.214 冲积相 48.1(44.8~49.3) 47.3 2.75 5.82% 0.161 湖沼积相 45(43.6~46.4) 45.0 1.89 4.19% 0.998 碱解氮/10-6 冲洪积相 76.6(66.5~88.2) 76.6 17.5 22.9% 0.556 冲积相 69.9(63.1~81.1) 71.6 13.5 18.8% 0.964 湖沼积相 95.2(68.8~113) 93.4 24.0 25.7% 0.377 Ln(有效磷)
/10-6冲洪积相 3.31(2.75~3.94) 3.34 0.925 27.7% 0.775 冲积相 3.18(2.48~3.63) 3.05 0.818 26.8% 0.798 湖沼积相 3.18(2.7~3.8) 3.23 0.733 22.7% 0.754 106/速效钾 冲洪积相 8000(5989~9805) 8101 3036 37.5% 0.025 冲积相 8265(6536~10411) 8117 2683 33.1% 0.272 湖沼积相 5780(4466~7114) 6324 2663 42.1% 0.018 SOC/% 冲洪积相 1.03(0.89~1.21) 1.04 0.225 21.7% 0.658 冲积相 0.96(0.85~1.05) 0.961 0.186 19.3% 0.239 湖沼积相 1.19(0.965~1.39) 1.21 0.268 22.1% 0.434 表 7 河北泃河流域主成分分析旋转因子载荷矩阵
Table 7. Rotating factor loads matrix of principal components analysis in Juhe watershed, Hebei Province
养分元素 PCA1 PCA2 PCA3 TN 0.886 0.384 -0.111 TP 0.746 0.217 0.236 TK -0.103 0.279 0.884 Cu 0.308 0.714 -0.008 Zn 0.352 0.889 0.077 Ni 0.156 0.937 0.077 有机质 0.856 0.383 -0.124 水解氮 0.905 0.267 -0.047 有效磷 0.582 -0.312 0.624 速效钾 0.730 0.226 0.129 缓效钾 0.282 0.851 0.125 累计方差解释率 37.3% 69.4% 81.3% 表 8 河北泃河流域不同沉积相土壤中微量元素含量统计
Table 8. Statistical parameters of soil trace elements concentrations in different sedimentary facies of Juhe watershed, Hebei Province
微量元素 冲洪积相中位值
(25%~75%)
/10-6冲积相中位值
(25%~75%)
/10-6湖沼积相中位值
(25%~75%)
/10-6Cu 22.7(19.8~27) 21.9(20.2~23.1) 30.6(27.9~35.4) Pb 26.9(25.3~28.9) 26.4(25.5~28.8) 30.2(28.3~31.5) Zn 75.4(67.6~87.6) 71.5(68.1~76.8) 99(91.7~112.5) Ni 29.2(26.4~32.9) 27.9(25.1~30.1) 38.8(33.6~41.5) Cr 60.6(54.4~65.9) 57.2(52.7~62.3) 69.7(65.6~75.8) Cd 0.18(0.16~0.2) 0.16(0.15~0.19) 0.24(0.23~0.275) As 10.2(9.3~11.5) 9.73(8.93~11.1) 13(11.4~14.1) -
[1] Angst G, Messinger J, Greiner M, et al. Soil Organic Carbon Stocks in Topsoil and Subsoil Controlled by Parent Material, Carbon Input in the Rhizosphere, and Microbial-derived Compounds[J]. Soil Biology and Biochemistry, 2018, 122(1): 19-30.
[2] Berger T, Berger P. Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles[J]. Plant and Soil, 2012, 358(1): 349-369.
[3] Chow A T, Tanji K K, Gao S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology & Biochemistry, 2006, 38(3): 477-488.
[4] Deng L, Wang K B, Li J P, et al. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China[J]. Ecological Engineering, 2016, 94(1): 525-531.
[5] Drenovsky R E, Vo D, Graham K J, et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology, 2004, 48(3): 424-430. doi: 10.1007/s00248-003-1063-2
[6] Farrar D M, Coleman J D. The Correlation of Surface Area with Other Properties of Nineteen British Clay Soils[J]. European Journal of Soil Science, 1967, 18(1): 118-124. doi: 10.1111/j.1365-2389.1967.tb01493.x
[7] Garten C T, Classen A E, Norby R J. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment[J]. Plant and Soil, 2009, 319(1): 85-94.
[8] Gartzia-Bengoetxea N, Virto I, Arias-Gonzalez A, et al. Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country[J]. Geoderma, 2020, 358: 113998. doi: 10.1016/j.geoderma.2019.113998
[9] Humphrey V, Berg A, Ciais P, et al. Soil moisture-atmosphere feedback dominates land carbon uptake variability[J]. Nature, 2021, 592(7852): 65-69. doi: 10.1038/s41586-021-03325-5
[10] Klink S, Keller A B, Wild A J, et al. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues[J]. Soil Biology and Biochemistry, 2022, 168: 108634. doi: 10.1016/j.soilbio.2022.108634
[11] Knowles J, Blanken P, Williams M. Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow[J]. Biogeochemistry, 2015, 125(2): 185-202. doi: 10.1007/s10533-015-0122-3
[12] Li M M, Zhang X C, Pang G W, et al. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau[J]. Catena, 2013, 101: 11-16. doi: 10.1016/j.catena.2012.09.012
[13] Mao X L, Van Zwieten L, Zhang M K, et al. Soil parent material controls organic matter stocks and retention patterns in subtropical China[J]. Journal of Soils and Sediments, 2020, 20(5): 2426-2438. doi: 10.1007/s11368-020-02578-3
[14] Marschner B, Brodowski S, Dreves A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils?(Review)[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 91-110. doi: 10.1002/jpln.200700049
[15] McNally S R, Beare M H, Curtin D, et al. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand[J]. Global Change Biology, 2017, 23(11): 4544-4555. doi: 10.1111/gcb.13720
[16] Newcomb C J, Qafoku N P, Grate J W, et al. Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding[J]. Nature Communications, 2017, 8(1): 396-403. doi: 10.1038/s41467-017-00407-9
[17] Oades J M. The retention of organic matter in soils[J]. Biogeochemistry, 1988, 5(1): 35-70. doi: 10.1007/BF02180317
[18] Pichler V, Gömöryová E, Leuschner C, et al. Parent Material Effect on Soil Organic Carbon Concentration under Primeval European Beech Forests at a Regional Scale[J]. Forests, 2021, 12(4): 1-12.
[19] Rasmussen C, Heckman K, Wieder W R, et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(3): 297-306. doi: 10.1007/s10533-018-0424-3
[20] Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27-49.
[21] Schleuß P, Heitkamp F, Leuschne C, et al. Higher subsoil carbon storage in species-rich than species-poor temperate forests[J]. Environmental Research Letters, 2014, 9(1): 1-10.
[22] Solly E F, Weber V, Zimmermann S, et al. A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils[J]. Frontiers in Forests and Global Change, 2020, 3: 1-12. doi: 10.3389/ffgc.2020.00001
[23] Throckmorton H M, Bird J A, Monte N, et al. The soil matrix increases microbial C stabilization in temperate and tropical forest soils[J]. Biogeochemistry, 2015, 122(1): 35-45. doi: 10.1007/s10533-014-0027-6
[24] Vormstein S, Kaiser M, Piepho H, et al. Aggregate formation and organo-mineral association affect characteristics of soil organic matter across soil horizons and parent materials in temperate broadleaf forest[J]. Biogeochemistry, 2020, 148(2): 169-189. doi: 10.1007/s10533-020-00652-z
[25] Wang S Q, Tian H Q, Liu J Y, et al. Pattern and change of soil organic carbon storage in China: 1960s-1980s[J]. Tellus Series B-chemical and Physical Meteorology, 2003, 55(2): 416-427.
[26] Wang X J, Jia Z K, Liang L Y, et al. Maize straw effects on soil aggregation and other properties in arid land[J]. Soil & Tillage Research, 2015, 153: 131-136. doi: 10.11689/j.issn.2095-2961.2015.03.006
[27] Wang Y S, Hu Y Q, Ji B M, et al. An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Semiarid Grassland[J]. Advances in Atmospheric Sciences, 2003, 20(1): 119-127. doi: 10.1007/BF03342056
[28] Wang Y, Liu X S, Chen F F, et al. Seasonal dynamics of soil microbial biomass C and N of Keteleeria fortunei var. cyclolepis forests with different ages[J]. Journal of Forestry Research, 2020, 31(6): 2377-2384. doi: 10.1007/s11676-019-01058-w
[29] Yang S Y, Jansen B, Kalbitz K, et al. Lithology controlled soil organic carbon stabilization in an alpine grassland of the Peruvian Andes[J]. Environmental Earth Sciences, 2020, 79(2): 1-15.
[30] Zhang Y, Zhao Y C, Shi X Z, et al. Variation of soil organic carbon estimates in mountain regions: A casestudy from Southwest China[J]. Geoderma, 2008, 146(3): 449-456.
[31] Zinn Y L, Lal R, Bigham J M, et al. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy[J]. Soil Science Society of America Journal, 2008, 71(4): 1204-1214.
[32] 蔡奎. 河北平原区土壤有机碳储量变化控制因素及趋势分析[D]. 石家庄经济学院硕士学位论文, 2012.
[33] 蔡祖聪, 马毅杰. 土壤有机质与土壤阳离子交换量的关系[J]. 土壤学进展, 1988, (3): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ198803001.htm
[34] 程积民, 万惠娥, 胡相明, 等. 半干旱区封禁草地凋落物的积累与分解[J]. 生态学报, 2006, (4): 1207-1212. doi: 10.3321/j.issn:1000-0933.2006.04.031
[35] 董林林. 宁夏灌淤时间序列的土壤碳库量演变研究[D]. 南京师范大学博士学位论文, 2012.
[36] 冯锦, 崔东, 孙国军, 等. 新疆土壤有机碳与土壤理化性质的相关性[J]. 草业科学, 2017, 34(4): 692-697. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201704004.htm
[37] 贾俊仙, 蔚耀洲, 张健, 等. 土壤水分对半干旱区石灰性土壤有机碳矿化的影响[J]. 灌溉排水学报, 2017, 36(9): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201709012.htm
[38] 解宏图. 东北黑土有机碳、全氮空间分布及其特性研究[D]. 中国科学院沈阳应用生态研究所博士学位论文, 2005.
[39] 孔祥斌, 胡莹洁, 李月, 等. 北京市耕地表层土壤有机碳分布及其影响因素[J]. 资源科学, 2019, 41(12): 2307-2315. doi: 10.18402/resci.2019.12.14
[40] 李承绪. 河北土壤[M]. 石家庄: 河北科学技术出版社, 1990: 20-25.
[41] 李玲, 肖和艾, 吴金水. 红壤旱地和稻田土壤中有机底物的分解与转化研究[J]. 土壤学报, 2007, 44(4): 669-674. doi: 10.3321/j.issn:0564-3929.2007.04.013
[42] 李平, 王冬梅, 丁聪, 等. 黄土高寒区小流域土壤饱和导水率和土壤密度的分布特征[J]. 中国水土保持科学, 2019, 17(4): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201904002.htm
[43] 李随民, 栾文楼, 宋泽峰, 等. 河北省南部平原区土壤有机碳储量估算[J]. 中国地质, 2010, 37(2): 525-529. doi: 10.3969/j.issn.1000-3657.2010.02.027
[44] 李雯. 不同种植年限毛竹林土壤有机碳库组成及其化学结构的比较[D]. 浙江农林大学硕士学位论文, 2021.
[45] 李忠佩. 瘠薄红壤中有机物质的分解特征[J]. 生态学报, 2002, (8): 1224-1230. doi: 10.3321/j.issn:1000-0933.2002.08.008
[46] 刘纯利, 田文平, 刘宇辉. 农田土壤阳离子交换量与理化性质的相关性探析[J]. 种子科技, 2021, 39(10): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKJ202110016.htm
[47] 刘华兵, 李谦维, 高俊琴, 等. 红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响[J]. 环境科学学报, 2022, 42(1): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202201010.htm
[48] 刘久臣, 魏吉鑫, 张明, 等. 江西赣州市石城县天然富锌土地资源特征与开发利用[J]. 地质通报, 2021, 40(2/3): 442-450. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2021020325&flag=1
[49] 刘智荣, 沈军, 黄静宜, 等. 河北三河晚更新世地层粒度特征分析[J]. 地质学报, 2016, 90(5): 997-1005.
[50] 栾文楼, 宋泽峰, 李随民, 等. 河北平原土壤有机碳含量的变化[J]. 地质学报, 2011, 85(9): 1528-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109013.htm
[51] 骆珊, 张德明, 卢定彪, 等. 乌蒙山区毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报, 2021, 40(9): 1570-1583. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210916&flag=1
[52] 马丽, 王青, 沈凇涛, 等. 岷江上游杂谷脑流域耕作区壤土和粉壤土的理化性质及肥力异质性[J]. 干旱区资源与环境, 2018, 32(11): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201811023.htm
[53] 庞圣江, 杨保国, 刘士玲, 等. 桂西北喀斯特山区4种森林表土土壤有机碳含量及其养分分布特征[J]. 中南林业科技大学学报, 2018, 38(4): 60-64, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201804012.htm
[54] 任凤玲. 不同施肥下我国典型农田土壤有机碳固定特征及驱动因素[D]. 中国农业科学院博士学位论文, 2021.
[55] 师焕芝, 李福春, 孙旭辉, 等. 洛川黄土-古土壤中有机碳的分布特征及其与粘土矿物的相关性[J]. 中国地质, 2011, 38(5): 1355-1362. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105023.htm
[56] 石光耀, 潘志龙, 张欢, 等. 河北平原三河S9孔岩心特征及第四纪地层划分研究[J]. 现代地质, 2021, 35(5): 1332-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202105016.htm
[57] 宋佳龄, 盛浩, 周萍, 等. 亚热带稻田土壤碳氮磷生态化学计量学特征[J]. 环境科学, 2020, 41(1): 403-411. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001049.htm
[58] 宋科. 河口冲积新成土土壤有机碳空间分布、形态分布及其与土地利用和环境条件的关系[D]. 南京农业大学博士学位论文, 2017.
[59] 孙飞达, 路慧, 胡亚茜, 等. 若尔盖高寒退化草地土壤有机碳储量空间分异特征[J]. 中国草地学报, 2016, 38(6): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCD201606012.htm
[60] 孙中林, 吴金水, 葛体达, 等. 土壤质地和水分对水稻土有机碳矿化的影响[J]. 环境科学, 2009, 30(1): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200901038.htm
[61] 童成立, 张文菊, 王洪庆, 等. 三江平原湿地沉积物有机碳与水分的关系[J]. 环境科学, 2005, 26(6): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200506007.htm
[62] 王文艳, 张丽萍, 刘俏. 黄土高原小流域土壤阳离子交换量分布特征及影响因子[J]. 水土保持学报, 2012, 26(5): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201205024.htm
[63] 王筱彤. 胶州湾滨海湿地土壤溶解性无机碳分布特征及碳汇机理[D]. 青岛大学硕士学位论文, 2019.
[64] 奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3): 573-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201003016.htm
[65] 夏昕. 长期施肥对红壤旱地和水田有机碳形态结构及微生物群落的影响[D]. 南京农业大学硕士学位论文, 2015.
[66] 徐嘉晖, 孙颖, 高雷, 等. 土壤有机碳稳定性影响因素的研究进展[J]. 中国生态农业学报, 2018, 26(2): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201802008.htm
[67] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875-2882. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200511011.htm
[68] 杨泽, 刘国栋, 戴慧敏, 等. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力[J]. 地质通报, 2021, 40(10): 1773-1782. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20211019&flag=1
[69] 姚晓峰, 杨建锋, 左力艳, 等. 地表基质的内涵辨析与调查实践[J]. 地质通报, 2022, 41(12): 2097-2105. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20221202&flag=1
[70] 叶思源, 丁玉荣, 丁喜桂, 等. 辽河三角洲不同湿地类型土壤团聚体与颗粒有机质组成及其对土壤碳库的稳定性指示意义[J]. 地质学报, 2013, 87(Supp. ): 272-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2013S1126.htm
[71] 于沙沙, 窦森, 黄健, 等. 吉林省耕层土壤有机碳储量及影响因素[J]. 农业环境科学学报, 2014, 33(10): 1973-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201410019.htm
[72] 张秀芝, 赵相雷, 李波, 等. 基于区域土壤元素地球化学的河北平原土壤质地类型划分[J]. 第四纪研究, 2017, 37(1): 25-35.
[73] 张秀芝, 赵相雷, 李宏亮, 等. 河北平原土壤有机碳储量及固碳机制研究[J]. 地学前缘, 2011, 18(6): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201106008.htm
[74] 赵林林, 吴志祥, 孙瑞, 等. 不同龄级橡胶林土壤有机碳组分及其影响因素[J]. 南方农业学报, 2021, 52(6): 1595-1603. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY202106021.htm
[75] 赵萌, 方晰, 田大伦. 第2代杉木人工林地土壤微生物数量与土壤因子的关系[J]. 林业科学, 2007, 43(6): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200706001.htm
[76] 赵之重. 青海省土壤阳离子交换量与有机质和机械组成关系的研究[J]. 青海农林科技, 2004, (4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-QHNK200404002.htm
[77] 钟聪, 杨忠芳, 胡宝清, 等. 河北平原区土壤有机碳及其对气候变化的响应[J]. 农业现代化研究, 2016, 37(4): 809-816. https://www.cnki.com.cn/Article/CJFDTOTAL-NXDH201604027.htm
[78] 周黎, 冯伟, 易军, 等. 江汉平原典型农业灌排单元土壤有机碳密度分布特征[J]. 水土保持学报, 2021, 35(6): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202106029.htm
-