Rock property change and temperature distribution near blasting holes in carbon dioxide blasting reservoir treatment
-
摘要: 传统的地热井井身结构不适用于利用二氧化碳爆破技术进行干热岩储层建造,因此本文基于二氧化碳爆破致裂技术建造干热岩储层的新型井身结构工艺进行了进一步探究。结合该工艺水平井段(炮孔)钻进过程实际工况,对钻井后水平井段(炮孔)附近干热岩储层的物理力学性质变化规律及储层温度分布特征进行了岩石力学实验和数值模拟研究。研究结果表明钻井液降温产生的热应力作用是储层岩石性质发生变化、出现热损伤区的主要原因;冷却过程中炮孔附近储层呈现出“快速降温区-平缓降温区-未降温区”的区域性温度分布特征;储层初始温度和冷却时长对快速降温区温度分布以及热损伤区范围影响较大。本研究可以为二氧化碳爆破致裂干热岩储层建造提供理论指导。Abstract: The traditional geothermal well structure is not suitable for carbon dioxide blasting technology to build hot dry rock reservoir; Thus, this paper further explores a new well structure and related technology suitable for carbon dioxide blasting technology. With regard to the actual drilling conditions in the horizontal well section (blasting hole) of the new well structure, rock mechanics experiments and thermal-fluid-solid three-field coupling numerical simulation were conducted to study the variation law of physical and mechanical properties and reservoir temperature distribution characteristics of hot dry rock reservoirs near horizontal well sections (blasting hole) after drilling. The results show that the thermal stress produced by cooling of drilling fluid is the main cause for the change of reservoir rock properties and occurrence of the thermal damage zone. The regional temperature distribution exhibits the characteristics of “rapid cooling zone-steady cooling zone-uncooling zone” in reservoir near the borehole during cooling. The initial reservoir temperature and the cooling time have major influence on temperature distribution in the rapid cooling zone and on the thermal damage zone. This study can provide more accurate theoretical guidance for carbon dioxide blasting fractured hot dry rock reservoir.
-
-
[1] 李心玉,张文国.浅谈地热资源的类型与开发利用[J].西部资源,2016(2):91-93.
LI Xinyu, ZHANG Wenguo. Types and development of geothermal resources[J]. Westem Resources 2016(2):91-93.
[2] [2] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学(中国地质大学学报),2015,40(11):1858-1869.
LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Geosciences (Journal of China University of Geosciences), 2015,40(11):1858-1869.
[3] [3] 汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.
WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the Continental Area of China [J]. Science & Technology Review, 2012,30(32):25-31.
[4] [4] Huang Wenbo, Cao Wenjiong, Jiang Fangming. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy,2018,162.
[5] [5] Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy-impact of enhanced geothermal systems (EGS) on the United States in the 21st century [R]. Boston: Masschusetts Institute of Technology, 2006.
[6] [6] 王晓星,吴能友,苏正,等.增强型地热系统开发技术研究进展[J].地球物理学进展,2012,27(1):355-362.
WANG Xiaoxing, WU Nengyou, SU Zheng, et al. Progress of the enhanced geothermal systems(EGS) development technology [J]. Progress in Geophysics, 2012,27(1):355-362.
[7] [7] 卢予北,张晗,王攀科,等.河南省干热岩赋存地质环境及找矿方向[J].钻探工程,2021,48(2):1-7.
LU Yubei, ZHANG Han, WANG Panke, et al. Geological environment and prospecting fields of hot dry rocks in Henan province [J]. Drilling Engineering, 2021,48(2):1-7.
[8] [8] 许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152.
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect [J]. Journal of Jilin University (Earth Science Edition), 2016,46(4):1139-1152.
[9] [9] 孙小明.液态二氧化碳相变致裂穿层钻孔强化预抽瓦斯效果研究[D].焦作:河南理工大学,2014.SUN Xiaoming. Study on the effect of liquid carbon dioxide phase change cracking drilling to strengthen pre-drainage gas[D]. Jiaozuo: Henan Polytechnic University, 2014.
[10] [10] 张开加.松软煤层水力冲孔与二氧化碳爆破联合增透技术[J].煤炭工程,2018,50(7):53-55.
ZHANG Kaijia. Joint permeability-enhancement technology using hydraulic flushing and carbon dioxide blasting[J]. Coal Engineering, 2018,50(7):53-55.
[11] [11] 郭杨霖.液态二氧化碳相变致裂机理及应用效果分析[D].焦作:河南理工大学,2017.GUO Yanglin. Liquid carbon dioxide phase change cracking mechanism and application effect analysis[D]. Jiaozuo: Henan Polytechnic University, 2017.
[12] [12] 徐超,窦斌,田红,等.二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J].地质科技情报,2019,38(5):247-252.
XU Chao, DOU Bin, TIAN Hong, et al. Process of carbon dioxide blasting to build egs thermal reservoir[J]. Geological Science and Technology Information, 2019,38(5):247-252.
[13] [13] 夏杰勤,窦斌,徐超,等.干热岩热储建造的二氧化碳爆破致裂器优化设计[J].钻探工程,2021,48(1):75-80.
XIA Jieqin, DOU Bin, XU Chao, et al. Optimum design of CO2 fracture initiator for thermal reservoir construction in hot dry rock[J]. Drilling Engineering, 2021,48(1):75-80.
[14] [14] 谭现锋,马哲民,段隆臣,等.复合动力钻进工艺在干热岩钻井中的应用研究[J].钻探工程,2021,48(7):1-8.
TAN Xianfeng, MA Zhemin, DUAN Longchen, et al. Application of compound power drilling technology in hot dry rock drilling[J]. Drilling Engineering, 2021,48(7):1-8.
[15] [15] 单文军,陶士先,蒋睿,等.干热岩用耐高温钻井液关键技术及进展[J].探矿工程(岩土钻掘工程),2018,45(10):52-56.
SHAN Wenjun, TAO Shixian, JIANG Rui, et al. Key technology and progress in high temperature resistant drilling fluid for hot dry rock[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(10):52-56.
[16] [16] 过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
GUO Zengyuan. Physical mechanism and control of convection heat transfer: Synergy of velocity field and heat flux field[J]. Chinese Science Bulletin, 2000,45(19):2118-2122.
[17] [17] 何雅玲,陶文铨.强化单相对流换热的基本机制[J].机械工程学报,2009,45(3):27-38.
HE Yaling, TAO Wenquan. Fundamental mechanism of enhancing single-phase convective heat transfer[J]. Chinese Journal of Mechanical Engineering, 2009,45(3):27-38.
[18] [18] 唐世斌,唐春安,朱万成,等.热应力作用下的岩石破裂过程分析[J].岩石力学与工程学报,2006(10):2071-2078.
TANG Shibin, TANG Chunan, ZHU Wancheng, et al. Numerical investigation on rock failure process induced by thermal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(10):2071-2078.
[19] [19] 武晋文,陈淑萍.升温和降温对无约束花岗岩热破裂的影响[J].地下空间与工程学报,2019,15(1):108-115.
WU Jinwen, CHEN Shuping. Effect of heating and cooling on thermal cracking of granite under unconstrained conditions[J]. Chinese Journal of Underground Space and Engineering, 2019,15(1):108-115.
[20] [20] Zhou H Y, Li Y P, Feng T, et al. Effect of high temperature and confining pressure on the mechanical behavior of granite from Batang fault zone[C]//
IOP Conference Series: Earth and Environmental Science , 2021, 861.[21] [21] 郤保平,赵阳升.600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J].岩石力学与工程学报,2010,29(5):892-898.
XI Baopin, ZHAO Yangsheng. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010,29(5):892-898.
[22] [22] Guo Tiankui, Gong Facheng, Wang Xiaozhi, et al. Performance of enhanced geothermal system (EGS) in fractured geothermal reservoirs with CO2 as working fluid[J]. Applied Thermal Engineering, 2019,152.
-
计量
- 文章访问数: 776
- PDF下载数: 85
- 施引文献: 0