Sand control and water drainage by ultrasonic atomization for gas recovery from hydrate reservoirs
-
摘要: 天然气水合物储层具浅埋藏、弱固结、低渗透、高泥质、非均质等特点,钻采过程中易出现严重的出砂问题,是制约天然气水合物安全高效开采的“瓶颈”之一。现有的天然气水合物储层防砂技术主要来源于常规油气开采中常用的防砂方法,防砂精度控制和稳产增产矛盾突出。为此,本文提出了一种天然气水合物储层超声雾化防砂排水采气方法,配合挡砂介质在有效防住10 μm以上砂的同时,将水雾化成5 μm左右的小水滴产出,降低水的携砂能力并加速水气产出,进而实现连续排水产气。基于该方法搭建了简易实验模拟评价装置,进行了初步的模拟实验。实验结果表明该方法具有一定的可行性,水气可以通过雾化片的锥孔不断产出。但是由于储层砂中还存在大量直径小于雾化片锥孔直径的泥质成分,雾化装置还需针对泥质成分的存在做进一步优化,否则泥质成分将堵塞在雾化片锥孔附近降低雾化片的振荡频率,造成排水产气的中止。这些初步的工作可以为天然气水合物储层防砂增产提供新的思路。Abstract: Hydrate reservoirs have the characteristics of weak consolidation, high clay content and low permeability, which is prone to lead to serious problems of wellbore and reservoir instability, low gas production and sand production during drilling and production. Sand production is a bottleneck which restricts the safe and efficient exploitation of hydrate. The existing sand control technology of NGH reservoir mainly comes from the sand control methods commonly used in conventional petroleum exploitation, and the contradiction between sand control precision and permeability enhancement is prominent. This paper proposes a gas recovery method with ultrasonic atomization for sand control and water drainage for hydrate reservoirs, which can effectively block sand greater than 10 microns,and produce water in the form of mist with small droplets of about 5 microns, so as to realize continuous production of water and gas. Preliminary simulation experiments were carried out based on an experimental simulation evaluation device. Results show that the method is feasible and water mist can be produced continuously through the cone holes of the atomizing plate. However, the atomization device needs to be further optimized due to the presence of mud contents; otherwise the mud contents will seriously affect atomization. The preliminary work can provide a new idea for sand control and gas recovery enhancement in hydrate reservoirs.
-
Key words:
- hydrate /
- sand control /
- drainage /
- gas production /
- ultrasonic atomization
-
-
[1] Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature (London), 2003,426(6964):353-359.
[2] [2] Koh C A, Sloan E D, Sum A K, et al. Fundamentals and applications of gas hydrates[J]. Annu Rev Chem Biomol Eng, 2011, 2:237-257.
[3] [3] 宁伏龙,窦晓峰,孙嘉鑫,等.水合物开采储层出砂数值模拟研究进展[J].石油科学通报,2020,5(2):182-203.
NING Fulong, DOU Xiaofeng, SUN Jiaxin, et al. Progress in numerical simulation of sand production from hydrate reservoirs[J]. Petroleum Science Bulletin, 2020,5(2):182-203.
[4] [4] Song Y, Yang L, Zhao J, et al. The status of natural gas hydrate research in china: A review[J]. Renewable and Sustainable Energy Reviews, 2014,31:778-791.
[5] [5] Li X-S, Xu C-G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016,172:286-322.
[6] [6] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016,162:1633-1652.
[7] [7] Collett T, Bahk J-J, Baker R, et al. Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2014,60(2):319-329.
[8] [8] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy Environ Sci, 2011,4(4):1206-1215.
[9] [9] 李文龙,高德利,杨进,等.海域含天然气水合物地层钻完井面临的挑战及展望[J].石油钻采工艺,2019,41(6):681-689.
LI Wenlong, GAO Deli, YANG Jin, et al. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas[J]. Oil Drilling & Production Technology, 2019,41(6):681-689.
[10] [10] 李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质,2017,37(5):34-34.
LI Yanlong. The trial exploitation of natural gas hydrate has been successfully completed and a historic breakthrough has been made[J]. Marine Geology & Quaternary Geology, 2017, 37(5):34-34.
[11] [11] 叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568.
YE Jianliang,QIN Xuwen,XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568.
[12] [12] 李彦龙,刘昌岭,廖华林,等.泥质粉砂沉积物-天然气水合物混合体系的力学特性[J].天然气工业,2020,40(8):126-135.
LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates[J]. Natural Gas Industry, 2020,40(8):126-135.
[13] [13] 宁伏龙,方翔宇,李彦龙,等.天然气水合物开采储层出砂研究进展与思考[J].地质科技通报,2020,39(1):137-148.
NING Fulong, FANG Xiangyu, LI Yanlong, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020,39(1):137-148.
[14] [14] Ning F, Yu Y, Kjelstrup S, et al. Mechanical properties of clathrate hydrates: Status and perspectives[J]. Energy & Environmental Science, 2012,5(5):6779-6795.
[15] [15] 韦昌富,颜荣涛,田慧会,等.天然气水合物开采的土力学问题:现状与挑战[J].天然气工业,2020,40(8):116-132.
WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges[J]. Natural Gas Industry, 2020,40(8):116-132.
[16] [16] 窦晓峰,宁伏龙,李彦龙,等.基于连续-离散介质耦合的水合物储层出砂数值模拟[J].石油学报,2020,41(5):121-134.
DOU Xiaofeng, NING Fulong, LI Yanlong, et al. Continuum-discrete coupling method for numerical simulation of sand production from hydrate reservoirs:A lab-scale case study[J]. Acta Petrolei Sinica, 2020,41(5):121-134.
[17] [17] Li Y, Wu N, Ning F, et al. Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation[J]. Energy, 2020,206:118030-118040.
[18] [18] 董长银,钟奕昕,武延鑫,等.水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J].中国石油大学学报(自然科学版),2018,42(6):84-92.DONG Changyin, ZHONG Yixin, WU Yanxin, et al. Experimental study on sand retention mechanisms and feasibility evaluation of sand control for gas hydrate reservoirs with highly clayey fine sands[J]. Journal of China University of Petroleum ( dition of Natural Science) ,2018,42(6):79-87.
[19] [19] 董长银,周玉刚,陈强,等.流体黏速物性对砾石层堵塞影响机制及充填防砂井工作制度优化实验[J].石油勘探与开发,2019,46(6):1178-1186.
DONG Changyin, ZHOU Yugang, CHEN Qiang, et al. Effects of fluid flow rate and viscosity on gravel-pack plugging and the optimization of sand-control wells production[J]. Petroleum Exploration and Development, 2019,46(6):1178-1186.
[20] [20] 董长银,闫切海,李彦龙,等.天然气水合物储层颗粒级尺度微观出砂数值模拟[J].中国石油大学学报(自然科学版),2019,43(6):77-87.DONG Changyin, YAN Qiehai, LI Yanlong, et al. Numerical simulation of sand production based on a grain scale microcosmic model for natural gas hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019,43(6):77-87.
[21] [21] Sloan E D. Introductory overview: Hydrate knowledge development[J]. American Mineralogist, 2004,89(8-9):1155-1161.
[22] [22] 王韧,宁伏龙,刘天乐,等.游离甲烷气在井筒内形成水合物的动态模拟[J].石油学报,2017,38(8):963-972.
WANG Ren, NING Fulong, LIU Tianle, et al. Dynamic simulation of hydrate formed from free methane gas in borehole[J]. Acta Petrolei Sinica, 2017,38(8):963-972.
[23] [23] Wang R, Liu T, Ning F, et al. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study[J]. Journal of Energy Chemistry, 2019,30:90-100.
[24] [24] Fang B, Ning F, Ou W, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study[J]. Fuel, 2019,258:116106.1-116106.9.
[25] [25] 蔡玉飞.振动微锥孔式雾化器原理及冷却应用研究[D].南京:南京航空航天大学,2015:14-15.
CAI Yufei. The principle and cooling application of the atomizer with vibrating micro tapered apertures[D]. Nanjin: Nanjing University of Aeronautics and Astronautics , 2015:14-15.
[26] [26] 朱庭旺,任晓明,庄文健,等.微网雾化器的电路设计与试验[J].上海电机学院学报,2020,23(6):340-345.
ZHU Tingwang, REN Xiaoming, ZHUANG Wenjian, et al. Circuit design and test of micro-mesh atomizer[J]. Journal of Shang Hai Dianji University, 2020,23(6):340-345.
-
计量
- 文章访问数: 1137
- PDF下载数: 69
- 施引文献: 0