Investigation of shale hydraulic fracturing propagation laws based on extended finite element analysis
-
摘要: 水力压裂是开采地下页岩气资源的有效技术手段,探究页岩水力压裂裂缝的扩展规律,可为页岩气的高效开采提供科学的指导依据。通过运用大型有限元软件ABAQUS中的扩展有限元模块,针对不同地应力差工况条件下均质页岩中初始裂缝的位置、方位角、数量和含层理页岩中层理的构造方向、内部倾角、岩性对水力裂缝扩展的影响进行探究。结果表明:对于垂向扩展的水力裂缝,水平主应力增大使裂缝更不易扩展,裂缝扩展长度减小、起裂压力增大;在注液体积流量相同时,向初始裂缝两端同时起裂所形成的水力裂缝长度大于仅向一侧起裂;当初始裂缝处于页岩中部且呈45°方向时,裂缝会向最大水平主应力方向偏转,且偏转程度随最大水平主应力的增大而增大;分时多簇压裂时,裂缝间的扩展会相互干扰,且会较大地影响裂缝扩展的形态和起裂压力,但对裂缝注液点裂缝宽度的影响较小;对于含水平和竖直构造层理的页岩,改变层理内部倾角,水力裂缝会出现不同程度偏转,且其偏转程度随着层理内部倾角的增大而减小;对于含45°方向构造层理的页岩,水力裂缝在层理分别为砂岩、煤岩和泥岩中的偏转程度依次增大,且裂缝偏移比随着最大水平主应力的增大而增大。Abstract: Hydraulic fracturing is an effective technical method to exploit subsurface shale gas resources. To investigate the law of fracture propagation in shale hydraulic fracturing can provide proper guidance for high-efficient exploitation of shale gas. By using the extended finite element module of ABAQUS which is a large finite element software to investigate the influence of the position, azimuth and number of the initial fractures in homogeneous shale, and the structural direction, internal dip angle and lithology of the bedding shale on hydraulic fracture propagation at different ground stress deviations. The results show that for vertical hydraulic fractures, with the increase of the horizontal principal stress, the fracture is more difficult to propagate, the fracture propagation length decreases, and the initiation pressure increases. At the same injection volume, the length of hydraulic fractures formed by simultaneous initiation at both ends of the initial fracture is larger than that formed only on one side. When the initial fracture is located in the middle of shale with a direction of 45°, the fracture will deflect to the direction of the maximum horizontal principal stress, and the degree of deflection increases with the maximum horizontal principal stress. In the process of time-sharing multi-cluster fracturing, the propagation of fractures will interfere with each other, and it will greatly affect the attitude of fracture propagation and initiation pressure, but it has little influence on the fracture width at the injection point. For shale with horizontal and vertical bedding structures, hydraulic fracture deflection will be deflected to different degrees when the internal dip angle of bedding is changed, and the deflection degree of hydraulic fractures decreases with the increase of the internal dip angle of bedding. For shale with structural bedding in the direction of 45°, the deflection degree of hydraulic fractures increases successively in sandstone, coal rock and mudstone, and the fracture migration ratio increases with the maximum horizontal principal stress.
-
Key words:
- shale gas /
- hydraulic fracturing /
- XFEM /
- ground stress deviation /
- bedding /
- laws of fracture propagation
-
-
[1] 石晓闪,刘大安,崔振东,等.页岩气开采压裂技术分析与思考[J].天然气勘探与开发,2015,38(3):62-69.
SHI Xiaoshan, LIU Daan, CUI Zhendong, et al. Fracturing technology for shale gas[J]. Natural Gas Exploration and Development, 2015,38(3):62-69.
[2] [2] 蒋国盛,王荣璟.页岩气勘探开发关键技术综述[J].探矿工程(岩土钻掘工程),2013,40(1):3-8.
JIANG Guosheng, WANG Rongjing. Review of key technology for shale gas exploration and development[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(1):3-8.
[3] [3] 邹才能,杨智,朱如凯,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6):979-1007.
ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015,89(6):979-1007.
[4] [4] 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG Dazhong, WANG Yuman, LI Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016,36(1):19-32.
[5] [5] 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021,41(1):1-14.
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021,41(1):1-14.
[6] [6] 赵全民,张金成,刘劲歌.中国页岩气革命现状与发展建议[J].探矿工程(岩土钻掘工程),2019,46(8):1-9.
ZHAO Quanmin, ZHANG Jincheng, LIU Jinge. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019,46(8):1-9.
[7] [7] 李元灵,杨甘生,朱朝发,等.页岩气开采压裂液技术进展[J].探矿工程(岩土钻掘工程),2014,41(10):13-16.
LI Yuanling, YANG Gansheng, ZHU Chaofa, et al. Development of the fracturing fluid applied in shale gas extraction[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014,41(10):13-16.
[8] [8] 唐颖,唐玄,王广源,等.页岩气开发水力压裂技术综述[J].地质通报,2011,30(2-3):393-399.
TANG Ying, TANG Xuan, WANG Guangyuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011,30(2-3):393-399.
[9] [9] 陈勉.页岩气储层水力裂缝转向扩展机制[J].中国石油大学学报(自然科学版),2013,37(5):88-94.
CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013,37(5):88-94.
[10] [10] 王聪,陈晨,孙友宏,等.农安油页岩水力压裂模拟及实验研究[J].探矿工程(岩土钻掘工程),2015,42(11):7-11.
WANG Cong, CHEN Chen, SUN Youhong, et al. Simulation of oil shale hydraulic fracturing in Nong’an and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015,42(11):7-11.
[11] [11] 侯振坤,杨春和,王磊,等.大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J].岩土工程,2016,37(2):407-414.
HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016,37(2):407-414.
[12] [12] 周彤,王海波,李凤霞,等.层理发育的页岩气储集层压裂裂缝扩展模拟[J].石油勘探与开发,2020,47(5):1039-1051.
ZHOU Tong, WANG Haibo, LI Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5):1039-1051.
[13] [13] Jafari A, Vahab M, Khalili N. Fully coupled XFEM formulation for hydraulic fracturing simulation based on a generalized fluid leak-off model[J]. Computer Methods in Applied Mechanics and Engineering, 2021,373:1-20.
[14] [14] 白凯华.基于ABAQUS的低渗透储层水力压裂模拟研究[D].西安:西安石油大学,2019.BAI Kaihua. Numerical simulation of hydraulic fracturing in low permeability reservoir based on ABAQUS[D]. Xi’an: Xi’an Shiyou University, 2019.
[15] [15] 冀洪杰.考虑储层初始温度和层理特性影响的页岩水力压裂规律研究[D].阜新:辽宁工程技术大学,2019.JI Hongjie. Research on the hydraulic fracturing of the shale considering the influence of initial temperature of the reserves and the stratification characteristics[D]. Fuxin: Liaoning Technical University, 2019.
[16] [16] 杨硕.页岩气储层水力压裂原理与数值模拟研究[D].上海:上海工程技术大学,2015.YANG Shuo. Theory of hydraulic fracturing and research of the numerical simulation on shale gas reservoirs[D]. Shanghai: Shanghai University of Engineering and Technology, 2015.
[17] [17] 姜浒,陈勉,张广清,等.定向射孔对水力裂缝起裂与延伸的影响[J].岩石力学与工程学报,2009,28(7):1321-1326.
JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(7):1321-1326.
-
计量
- 文章访问数: 341
- PDF下载数: 61
- 施引文献: 0