Research and practice of cementing slurry technology for Well GR1 in Shanxi high temperature hot dry rock
-
摘要: 固井质量对干热岩后期开发利用具有重要意义。针对山西大同盆地干热岩勘查井GR1井温度高、高温固井水泥浆技术体系不完善等问题,通过研究勘查区地质特征,提出了高温固井水泥浆技术体系开发思路。研究表明:干热岩高温固井水泥浆水胶比控制为0.45,优选添加剂高温降失水剂CG82L、高温缓凝剂H40L、高温稳定剂CF40L、消泡剂GX-1、硅粉及HV-PAC,形成一套适用于山西干热岩井的高温固井水泥浆技术体系。该水泥浆体系在GR1井成功应用,现场固井质量良好,研究成果为今后同类型高温固井工作提供了宝贵经验和技术支撑。Abstract: Cementing quality plays an important role in the later development and utilization of hot dry rock. In view of the problems of high temperature and the incomplete technical system of high temperature cement in hot dry rock exploration Well GR1 in Datong Basin, this paper presents the approach to the development of the high temperature cement slurry technology system through investigation of the geological characteristics of the exploration area and the cementing experience on hot dry rock wells at home and abroad. The results show that the high temperature cementing slurry system which is suitable for Shanxi high temperature dry hot rock wells can be created with the water-gel ratio of high-temperature cementing slurry for hot dry rock wells at 0.45, and the preferred additive of high temperature water loss reducer CG82L, high temperature retarder H40L, high temperature stabilizer CF40L, defoaming agent GX-1, and silicon powder and HV-PAC. The cement slurry system has been successfully applied in Shanxi high temperature hot dry rock Well GR1, and the field cementing quality was good. The research results provide valuable experience and technical support for the same type of high-temperature cementing work in the future.
-
-
[1] 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.
XU Tianfu, ZHANG Yuanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012,30(32):42-45.
[2] [2] 王平,师鹏峰.大同地区干热岩勘查高温高压自喷井综合治理工艺[J].钻探工程,2021,48(S1):258-263.
WANG Ping, SHI Pengfeng. Comprehensive treatment technology for high temperature and high pressure blowing wells in hot dry rock exploration in Datong[J]. Drilling Engineering, 2021,48(S1):258-263.
[3] [3] 胡晋军,和国磊,耿志山,等.天津CGSD-01地热调查井固井技术[J].探矿工程(岩土钻掘工程),2020,47(1):26-30.
HU Jinjun, HE Guolei, GENG Zhishan, et al. Cementing technology for Tianjin CGSD-01 geothermal survey well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(1):26-30.
[4] [4] 张丰琰,李立鑫.地热井固井水泥石传热性能研究现状及展望[J].钻探工程,2021,48(12):54-64.
ZHANG Fengyan, LI Lixin. Research status and prospect of thermal transfer performance of cement in geothermal wells[J]. Drilling Engineering, 2021,48(12):54-64.
[5] [5] 丁树修.高温地热井水泥水化硬化的研究[J].硅酸盐学报,1996(4):389-399.
DING Shuxiu. Study on hydration and hardening of cement in high temperature geothermal well[J]. Journal of Silicate, 1996(4): 389-399.
[6] [6] 姚晓,葛荘,汪晓静,等.加砂油井水泥石高温力学性能衰退机制研究进展[J].石油钻探技术,2018,46(1):17-23.
YAO Xiao, GE Peng, WANG Xiaojing, et al. Research progress on degradation mechanism of mechanical properties of sand-containing cement paste at high temperature[J]. Petroleum Drilling Techniques, 2018,46(1):17-23.
[7] [7] 韦梅华.从地震的活动性探讨山西干热岩分布[J].华北自然资源,2020(2):9-12.
WEI Meihua. Discussion on the distribution of dry hot rocks in Shanxi province from the seismicity[J]. Natural Resources in North China, 2020(2):9-12.
[8] [8] 甘浩男,王贵玲,蔺文静,等.增强型地热系统环境地质影响现状研究与对策建议[J].地质力学学报,2020,26(2):211-220.
GAN Haonan, WANG Guiling, LIN Wenjing, et al. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Eomechanics, 2020,26(2):211-220.
[9] [9] 牟月倩.高温高压固井技术研究[J].西部探矿工程,2006,18(4):104-105.
MOU Yueqian. Research on high temperature and high pressure cementing technology[J]. West-China Exploration Engineering, 2006,18(4):104-105.
[10] [10] 张清玉,邹建龙,谭文礼,等.高温深井固井技术研究进展[J].石油天然气学报,2005,27(1):219-220,7.
ZHANG Qingyu, ZOU Jianlong, TAN Wenli, et al. Progress of high temperature deep well completion techniques[J]. Journal of Oil and Gas, 2005,27(1):219-220,7.
[11] [11] 符军放.掺硅粉高水灰比水泥石高温强度衰退现象分析[J].钻井液与完井液,2017,34(1):112-1l5.FU Junfang. Analysis of high temperature strength retrogression of high water/cement ratio set cement with silica powder[J]. Drilling Fluid&Completion Fluid, 2017,34(1):112-115.
[12] [12] Boden D.R. Geologic Fundamentals of Geothermal Energy[M]. Boca Raton Florida, USA: CRC Press, 2016.
[13] [13] 路飞飞,李斐,田娜娟,等.复合加砂抗高温防衰退水泥浆体系[J].钻井液与完井液,2017,34(4):85-89.
LU Feifei, LI Fei, TIAN Najuan, et al. High temperature anti strength retrogression cement slurry with compounded silica powder[J]. Drilling Fluid & Completion Fluid, 2017,34(4):85-89.
[14] [14] Cuenot N, Faucher J P, Fritsch D, et al. The European EGS Project at Soultz-sous-Forêts: From extensive exploration to power production[C]//IEEE.
2008 IEEE Power and Energy Society General Meeting . Pittsburgh: IEEE, 2008:1-8.[15] [15] Tester J W., Anderson B J., Batchelor A S., et al. The future of geothermal energy-impact of enhanced geothermal systems(EGS)on the United States in the 21th century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.
-
计量
- 文章访问数: 245
- PDF下载数: 53
- 施引文献: 0