地质出版社有限公司 中国地质科学院勘探技术研究所主办

山西干热岩GR1井高温固井技术研究与实践

郤一臻, 赵福金, 荆京, 祁国华, 张勃. 2022. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程, 49(6): 42-47. doi: 10.12143/j.ztgc.2022.06.006
引用本文: 郤一臻, 赵福金, 荆京, 祁国华, 张勃. 2022. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程, 49(6): 42-47. doi: 10.12143/j.ztgc.2022.06.006
XI Yizhen, ZHAO Fujin, JING Jing, QI Guohua and ZHANG Bo, . 2022. Research and practice of cementing slurry technology for Well GR1 in Shanxi high temperature hot dry rock. DRILLING ENGINEERING, 49(6): 42-47. doi: 10.12143/j.ztgc.2022.06.006
Citation: XI Yizhen, ZHAO Fujin, JING Jing, QI Guohua and ZHANG Bo, . 2022. Research and practice of cementing slurry technology for Well GR1 in Shanxi high temperature hot dry rock. DRILLING ENGINEERING, 49(6): 42-47. doi: 10.12143/j.ztgc.2022.06.006

山西干热岩GR1井高温固井技术研究与实践

  • 基金项目:

    山西省级地质勘查基金项目“山西省阳高县-天镇县一带干热岩地热资源预可行性勘查”(编号:SXZDF20170820)

详细信息
    作者简介: 郤一臻,男,汉族,1989年生,工程师,地质工程专业,长期从事钻探技术研究与应用工作,山西省太原市和平南路160号,839563740@qq.com
  • 中图分类号: P634;TE256

Research and practice of cementing slurry technology for Well GR1 in Shanxi high temperature hot dry rock

  • 固井质量对干热岩后期开发利用具有重要意义。针对山西大同盆地干热岩勘查井GR1井温度高、高温固井水泥浆技术体系不完善等问题,通过研究勘查区地质特征,提出了高温固井水泥浆技术体系开发思路。研究表明:干热岩高温固井水泥浆水胶比控制为0.45,优选添加剂高温降失水剂CG82L、高温缓凝剂H40L、高温稳定剂CF40L、消泡剂GX-1、硅粉及HV-PAC,形成一套适用于山西干热岩井的高温固井水泥浆技术体系。该水泥浆体系在GR1井成功应用,现场固井质量良好,研究成果为今后同类型高温固井工作提供了宝贵经验和技术支撑。
  • 加载中
  • [1]

    许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.

    XU Tianfu, ZHANG Yuanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012,30(32):42-45.

    [2]

    [2] 王平,师鹏峰.大同地区干热岩勘查高温高压自喷井综合治理工艺[J].钻探工程,2021,48(S1):258-263.

    WANG Ping, SHI Pengfeng. Comprehensive treatment technology for high temperature and high pressure blowing wells in hot dry rock exploration in Datong[J]. Drilling Engineering, 2021,48(S1):258-263.

    [3]

    [3] 胡晋军,和国磊,耿志山,等.天津CGSD-01地热调查井固井技术[J].探矿工程(岩土钻掘工程),2020,47(1):26-30.

    HU Jinjun, HE Guolei, GENG Zhishan, et al. Cementing technology for Tianjin CGSD-01 geothermal survey well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(1):26-30.

    [4]

    [4] 张丰琰,李立鑫.地热井固井水泥石传热性能研究现状及展望[J].钻探工程,2021,48(12):54-64.

    ZHANG Fengyan, LI Lixin. Research status and prospect of thermal transfer performance of cement in geothermal wells[J]. Drilling Engineering, 2021,48(12):54-64.

    [5]

    [5] 丁树修.高温地热井水泥水化硬化的研究[J].硅酸盐学报,1996(4):389-399.

    DING Shuxiu. Study on hydration and hardening of cement in high temperature geothermal well[J]. Journal of Silicate, 1996(4): 389-399.

    [6]

    [6] 姚晓,葛荘,汪晓静,等.加砂油井水泥石高温力学性能衰退机制研究进展[J].石油钻探技术,2018,46(1):17-23.

    YAO Xiao, GE Peng, WANG Xiaojing, et al. Research progress on degradation mechanism of mechanical properties of sand-containing cement paste at high temperature[J]. Petroleum Drilling Techniques, 2018,46(1):17-23.

    [7]

    [7] 韦梅华.从地震的活动性探讨山西干热岩分布[J].华北自然资源,2020(2):9-12.

    WEI Meihua. Discussion on the distribution of dry hot rocks in Shanxi province from the seismicity[J]. Natural Resources in North China, 2020(2):9-12.

    [8]

    [8] 甘浩男,王贵玲,蔺文静,等.增强型地热系统环境地质影响现状研究与对策建议[J].地质力学学报,2020,26(2):211-220.

    GAN Haonan, WANG Guiling, LIN Wenjing, et al. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Eomechanics, 2020,26(2):211-220.

    [9]

    [9] 牟月倩.高温高压固井技术研究[J].西部探矿工程,2006,18(4):104-105.

    MOU Yueqian. Research on high temperature and high pressure cementing technology[J]. West-China Exploration Engineering, 2006,18(4):104-105.

    [10]

    [10] 张清玉,邹建龙,谭文礼,等.高温深井固井技术研究进展[J].石油天然气学报,2005,27(1):219-220,7.

    ZHANG Qingyu, ZOU Jianlong, TAN Wenli, et al. Progress of high temperature deep well completion techniques[J]. Journal of Oil and Gas, 2005,27(1):219-220,7.

    [11]

    [11] 符军放.掺硅粉高水灰比水泥石高温强度衰退现象分析[J].钻井液与完井液,2017,34(1):112-1l5.FU Junfang. Analysis of high temperature strength retrogression of high water/cement ratio set cement with silica powder[J]. Drilling Fluid&Completion Fluid, 2017,34(1):112-115.

    [12]

    [12] Boden D.R. Geologic Fundamentals of Geothermal Energy[M]. Boca Raton Florida, USA: CRC Press, 2016.

    [13]

    [13] 路飞飞,李斐,田娜娟,等.复合加砂抗高温防衰退水泥浆体系[J].钻井液与完井液,2017,34(4):85-89.

    LU Feifei, LI Fei, TIAN Najuan, et al. High temperature anti strength retrogression cement slurry with compounded silica powder[J]. Drilling Fluid & Completion Fluid, 2017,34(4):85-89.

    [14]

    [14] Cuenot N, Faucher J P, Fritsch D, et al. The European EGS Project at Soultz-sous-Forêts: From extensive exploration to power production[C]//IEEE.2008 IEEE Power and Energy Society General Meeting. Pittsburgh: IEEE, 2008:1-8.

    [15]

    [15] Tester J W., Anderson B J., Batchelor A S., et al. The future of geothermal energy-impact of enhanced geothermal systems(EGS)on the United States in the 21th century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.

  • 加载中
计量
  • 文章访问数:  245
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2022-01-03
修回日期:  2022-05-05

目录