地质出版社有限公司 中国地质科学院勘探技术研究所主办

耐高温多元插层膨胀石墨材料及其应用研究

吴雪鹏. 2023. 耐高温多元插层膨胀石墨材料及其应用研究. 钻探工程, 50(3): 66-73. doi: 10.12143/j.ztgc.2023.03.009
引用本文: 吴雪鹏. 2023. 耐高温多元插层膨胀石墨材料及其应用研究. 钻探工程, 50(3): 66-73. doi: 10.12143/j.ztgc.2023.03.009
WU Xuepeng. 2023. Introduction and application of high temperature resistant multi-component intercalated expanded graphite material. DRILLING ENGINEERING, 50(3): 66-73. doi: 10.12143/j.ztgc.2023.03.009
Citation: WU Xuepeng. 2023. Introduction and application of high temperature resistant multi-component intercalated expanded graphite material. DRILLING ENGINEERING, 50(3): 66-73. doi: 10.12143/j.ztgc.2023.03.009

耐高温多元插层膨胀石墨材料及其应用研究

  • 基金项目:

    中国石化课题“智能响应材料”(编号:P20033)

详细信息
    作者简介: 吴雪鹏,男,汉族,1988年生,高级工程师,油气田开发工程专业,博士,从事油田化学剂研究工作,北京市昌平区沙河镇百沙路中国石化科学技术研究中心主楼1111室,wuxp.sripe@sinopec.com。

Introduction and application of high temperature resistant multi-component intercalated expanded graphite material

  • 随着深井、超深井勘探开发力度的不断加大,深层高温、高压等苛刻条件对钻井液提出了更高的要求。针对常规井筒强化材料较难满足深层、特深层钻井过程中的高温、高压等难题,研究了一种在150 ℃条件下即可膨胀的石墨材料,探索其在高温钻井液中的封堵、降滤失等特性。膨胀石墨是一种具有耐高温(500 ℃)、高膨胀性能、自润滑性的柔性膨胀材料,现有膨胀石墨起始膨胀温度通常都高于300 ℃,无法在井底温度条件下发生膨胀。本文采用多元氧化插层法制备了低于300 ℃即可膨胀的石墨材料,将其起始膨胀温度由300 ℃降至150 ℃,研究了该膨胀石墨多元氧化插层膨胀机理,进一步考察了其在高温钻井液中的封堵、降滤失性能。
  • 加载中
  • [1]

    张颙,何春蕾,杜波,等.中国油气价格改革的比较研究——加快实现天然气价格市场化的政策设计[J].天然气技术与经济,2022,16(3):1-10.

    ZHANG Yong, HE Chunlei, DU Bo, et al. Comparative study on China’s oil and gas price reforms—Policy design to speed up marketization of gas price[J]. Natural Gas Technology and Economy, 2022,16(3):1-10.

    [2]

    [2] 窦立荣,温志新,王建君,等.2021年世界油气勘探形势分析与思考[J].石油勘探与开发,2022,49(5):1033-1044.

    DOU Lirong, WEN Zhixin, WANG Jianjun, et al. Analysis of the world oil and gas exploration situation in 2021[J]. Petroleum Exploration and Development, 2022,49(5):1033-1044.

    [3]

    [3] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003,426(6964):344-352.

    [4]

    [4] Pang Zhanxi, Liu Huiqing, Zhu Ling. A laboratory study of enhancing heavy oil recovery with steam flooding by adding nitrogen foams[J]. Journal of Petroleum Science and Engineering, 2015,128(4):184-193.

    [5]

    [5] 刘艳吉,程欣宇,李政,等.壳聚糖包覆三聚磷酸钠微胶囊——可膨胀石墨协同阻燃天然/杜仲并用胶[J].精细化工,2022,39(6):1250-1256.

    LIU Yanji, CHEN Xinyu, LI Zheng, et al. Chitosan coated sodium triphosphate microcapsules—Expandable graphite synergistic flame retardant natural rubber/eucommia ulmodies gum[J]. Fine Chemicals, 2022,39(6):1250-1256.

    [6]

    [6] Zhao D. W., Wang J., Gates I. D. Thermal recovery strategies for thin heavy oil reservoirs[J]. Fuel, 2014,117:431-441.

    [7]

    [7] Cao Yanbin, Liu Dongqing, Zhang Zhongping, et al. Steam channeling control in the steam flooding of super heavy oil reservoirs, Shengli Oilfield[J]. Petroleum Exploration and Development, 2012,39(6):785-790.

    [8]

    [8] Zhao Guang, Dai Caili, Zhan Mingwei, et al. The use of environmental scanning electron microscopy for imaging the microstructure of gels for profile control and water shutoff treatments[J]. Journal of Applied Polymer Science, 2014,131(4),39946.

    [9]

    [9] Liu Dexin, Shi Xiaofei, Zhong Xun, et al. Properties and plugging behaviors of smectite-superfine cement dispersion using as water shutoff in heavy oil reservoir[J]. Applied Clay Science, 2017,147(10):160-167.

    [10]

    [10] Wang Pan, You Qing, Han Li, et al. Experimental study on the stabilization mechanisms of CO2 foams by hydrophilic silica nanoparticles[J]. Energy & Fuels, 2018,32(3):3709-3715.

    [11]

    [11] Modesti M., Lorenzetti A., Simioni F., et al. Expandable graphite as an intumescent flame retardant in polyisocyanuratepolyurethane foams[J]. Polymer Degradation and Stability, 2002,77(2):195-202.

    [12]

    [12] Xu Congbin, Jiao Chunlei, Yao Ruihua, et al. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution[J]. Environmental Pollution, 2017,233(4):194-200.

    [13]

    [13] 陈朝然,刘宝昌,刘时琦.纳米氧化物颗粒对水基钻井液润滑性能影响的试验研究[J].探矿工程(岩土钻掘工程),2016,43(3):27-32.

    CHEN Chaoran, LIU Baochang, LIU Shiqi. Effect of nano oxide particles addition on lubricating properties of water-based drilling fluid[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2016,43(3):27-32.

    [14]

    [14] 李玉洋,章学来,Munyalo Jotham Muthoka,等.正辛酸-癸酸/膨胀石墨低温复合相变材料的制备及热物性研究[J].化工新型材料,2019,47(8):39-43,48.

    LI Yuyang, ZHANG Xuelai, Munyalo Jotham Muthoka, et al. Preparation and thermophysical property of low temperature composite phase change material OA-CA/EG[J]. New Chemical Materials, 2019,47(8):39-43,48.

    [15]

    [15] 孙金声,雷少飞,白英睿,等.油气钻采领域功能胶粘材料研究进展及前景[J].石油勘探与开发,2023,50(1):183-189.

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospect of functional adhesive materials in the field of oil and gas drilling and production[J]. Petroleum Exploration and Development, 2023,50(1):183-189.

    [16]

    [16] 田啊林,黄雪莉,胡子昭,等.无硫高膨胀体积膨胀石墨的制备[J].无机盐工业,2019,51(10):43-47.

    TIAN Aling, HUANG Xueli, HU Zhizhao, et al. Preparation of sulfur-fee expanded graphite with large expanded volume[J]. Inorganic Chemicals Industry, 2019,51(10):43-47.

    [17]

    [17] 常钊,陈宝明,罗丹.相变储能材料研究进展[J].煤气与热力,2021,41(4):21-27,98-99.

    CHANG Zhao, CHEN Baoming, LUO Dan. Research progress on phase change energy storage materials[J]. Gas & Heat, 2021,41(4):21-27,98-99.

    [18]

    [18] GB 16783.1—2014,石油天然气工业钻井液现场测试第一部分:水基钻井液[S].GB16783.1—2014, Field testing of drilling fluids for the oil and gas industry—Part 1: water-based drilling fluild[S].

  • 加载中
计量
  • 文章访问数:  582
  • PDF下载数:  293
  • 施引文献:  0
出版历程
收稿日期:  2022-10-15
修回日期:  2023-04-09

目录