地质出版社有限公司 中国地质科学院勘探技术研究所主办

冷媒温度和渗流速度对富水砂层冻结温度场的影响规律研究

温良涛. 2024. 冷媒温度和渗流速度对富水砂层冻结温度场的影响规律研究. 钻探工程, 51(2): 60-67. doi: 10.12143/j.ztgc.2024.02.009
引用本文: 温良涛. 2024. 冷媒温度和渗流速度对富水砂层冻结温度场的影响规律研究. 钻探工程, 51(2): 60-67. doi: 10.12143/j.ztgc.2024.02.009
WEN Liangtao. 2024. Law research on the effect of cold media tempreture and seepage velocity on the frozen tempreture field of the water-rich sand strata. DRILLING ENGINEERING, 51(2): 60-67. doi: 10.12143/j.ztgc.2024.02.009
Citation: WEN Liangtao. 2024. Law research on the effect of cold media tempreture and seepage velocity on the frozen tempreture field of the water-rich sand strata. DRILLING ENGINEERING, 51(2): 60-67. doi: 10.12143/j.ztgc.2024.02.009

冷媒温度和渗流速度对富水砂层冻结温度场的影响规律研究

详细信息
    作者简介: 温良涛,男,1988年生,工程师,土木工程专业,从事隧道及轨道交通工程施工技术工作,天津市河西区微山路与东江道交口天津地铁11号线一期工程项目经理部,373023963@qq.com
  • 中图分类号: U455.49; |U231.3

Law research on the effect of cold media tempreture and seepage velocity on the frozen tempreture field of the water-rich sand strata

  • 针对天津地区地铁隧道施工中存在富水砂层等复杂水文地质条件下的冻结问题,通过室内模型试验和数值模拟的结合,研究了冷媒温度和渗流速度对砂土冻结温度场、交圈时间和冻结壁发展的影响。研究结果表明:随着冷媒温度降低,冻结管附近的温度梯度越陡,冻结壁也变得更厚。渗流存在时,渗流水将冷量从上游带到下游,阻碍了冻结壁在上游方向的发展,同时在一定程度上推动了冻结壁在下游方向的发展,导致冻结壁厚度不均匀。最终,冻结壁的形状从静水时的圆形发展为心形。在实际工程中,采用注浆等手段减缓渗流速度,并降低冷媒温度,可缩短交圈时间,确保冻结进程顺利进行。
  • 加载中
  • [1]

    陈瑞杰,程国栋,李述训,等.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000(1):43-47.

    CHEN Ruijie, CHENG Guodong, LI Shuxun, et al. Development and prospect of research on application of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000(1):43-47.

    [2]

    刘典基.冻结技术在地铁联络通道施工中的应用[J].西部探矿工程,2004(12):110-111.

    LIU Dianji. Application of freezing technology in the construction of subway connection tunnels[J]. Western Exploration Engineering, 2004(12):110-111.

    [3]

    李方政.人工地层冻结的环境效应及其工程对策[J].公路交通科技,2004(3):67-70.

    LI Fangzheng. Study on the environmental effect and engineering measures for freezing method[J]. Journal of Highway and Transportation Research and Development, 2004(3):67-70.

    [4]

    程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000(02):17-22,64.

    CHENG Hua. Present situation and prospects of artificial frozen ground technology in city underground engineering[J]. Journal of Huainan Institute of Technology, 2000(2):17-22,64.

    [5]

    翁家杰,陈明雄.冻结技术在城市地下工程中的应用[J].煤炭科学技术,1997(7):51-53.

    WENG Jiajie, CHEN Mingxiong. The application of freezing technology in urban underground engineering[J]. Coal Science and Technology, 1997(7):51-53.

    [6]

    马玉峰,苏立凡,徐兵壮,等.地铁隧道联络通道和泵站的水平冻结施工[J].建井技术,2000(3):39-41.

    MA Yufeng, SU Lifan, XU Bingzhuang, et al. Horizontal freezing construction of subway tunnel connection passages and pump stations[J]. Mine Construction Technology, 2000(3):39-41.

    [7]

    李敏,杜红普,李竹,等.开、闭条件下冻结温度场的差异性研究[J].现代隧道技术,2017,54(6):63-69.

    LI Min, DU Hongpu, LI Zhu, et al. Differences of freezing temperature field under opening and closing conditions[J]. Modern Tunneling Technology, 2017,54(6):63-69.

    [8]

    李宏安,王定峰.冻结法在南京地铁隧道流砂地层中的应用[J].探矿工程(岩土钻掘工程),2005,32(3):60-62.

    LI Hong’an, WANG Dingfeng. Application of freezing in quicksand within nanjing subway tunnel[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2005,32(3):60-62.

    [9]

    袁云辉,杨平.冻结加固盾构端头土体温度场数值分析[J].地下空间与工程学报,2010,6(5):1053-1059.

    YUAN Yunhui, YANG Ping. Numerical analysis of soil thermal field in freezing reinforcement of shield arriving[J]. Chinese Journal of Underground Space and Engineering, 2010,6(5):1053-1059.

    [10]

    特鲁巴克.冻结凿井法[M].北京:煤炭工业出版社,1958.Trubakov. Freezing Drilling Method[M]. Beijing: Coal Industry Press, 1958.

    [11]

    胡向东,陈锦,汪洋,等.环形单圈管冻结稳态温度场解析解[J].岩土力学,2013,34(3):874-880.

    HU Xiangdong, CHEN Jin, WANG Yang, et al. Analytical solution of steady-state temperature field for single-ring pipe freezing[J]. Rock and Soil Mechanics, 2013,34(3):874-880.

    [12]

    戚波,赵大军,潘殿琦,等.冷冻管直径对冻土冻结影响规律的试验研究[J].探矿工程(岩土钻掘工程),2015,42(8):75-79.

    QI Bo, ZHAO Dajun, PAN Dianqi, et al. Experimental study on the influence law between frozen soil and freezing tube diameter[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015,42(8):75-79.

    [13]

    胡俊,张皖湘,李艳荣.X形冻结管温度场变化规律研究[J].探矿工程(岩土钻掘工程),2016,43(3):69-74.

    HU Jun, ZHANG Wanxiang, LI Yanrong. Study on the change rule of temperature field of X-shaped freezing tube[J].Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(3):69-74.

    [14]

    王志良,申林方,谢建斌.人工冻结法单管冻结引起周围土体温度场变化的研究[J].现代隧道技术,2014,51(1):110-116.

    WANG Zhiliang, SHEN Linfang, XIE Jianbin. On temperature field variation of the surrounding soil mass caused by artificial single pipeline freezing[J]. Modern Tunnel Technology,2014,51(1):110-116.

    [15]

    蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国矿业大学学报,2009,38(4):463-466.

    JIANG Binsong, WANG Jinge, ZHOU Guoqing. Analytical calculation of temperature field for single-pipe freezing[J]. Journal of China Coal Society, 2009,38(4):463-466.

    [16]

    靳巍巍,陈有亮.隧道冻结法施工三维有限元温度场及性状分析[J].地下空间与工程学报,2007(5):918-922.

    JIN Weiwei, CHEN Youliang. Three-dimensional temperature field and behavior analysis of tunnels constructed by artificial freezing method[J]. Journal of Underground Space and Engineering, 2007(5):918-922.

    [17]

    翟国兵,赵大军,张金宝,等.制冷液温度对地下冷冻墙制冷效果影响的有限元分析[J].探矿工程(岩土钻掘工程),2015,42(6):53-58.

    ZHAI Guobing, ZHAO Dajun, ZHANG Jinbao, et al. Finite element analysis on the influence of cooling liquid temperature on the refrigeration effect of underground frozen wall[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(6):53-58.

    [18]

    周扬,周国庆.考虑未冻水单管冻结温度场解析解[J].煤炭学报,2012,37(10):1649-1653.

    ZHOU Yang, ZHOU Guoqing. Analytical solution for temperature field around a single freezing pipe considering unfrozen water[J]. Journal of China Coal Society, 2012,37(10):1649-1653.

    [19]

    陈军浩,刘桐宇,李栋伟.人工三圈管冻结模型试验及冻结方案研究[J].煤炭科学技术,2017,45(12):94-100.

    CHEN Junhao, LIU Tongyu, LI Dongwei. Study on artificial three-tube freezing model test and freeze program[J]. Coal Science and Technology, 2017,45(12):94-100.

    [20]

    胡俊,杨平.大直径杯型冻土壁温度场数值分析[J].岩土力学,2015,36(2):523-531.

    HU Jun, YANG Ping. Numerical analysis of temperature field within large-diameter cup-shaped frozen soil wall[J]. Rock and Soil Mechanics, 2015,36(2):523-531.

    [21]

    Anagnostou G, Sres A, Pimentel E. Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions[J]. Géotechnique, 2012,62(3):227-241.

    [22]

    Vitel M, Rouabhi A, Tijani M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016,73:1-15.

    [23]

    齐玉萌.地下水渗流作用下人工冻土冻结特性研究[D].天津:天津大学,2019.QI Yumeng. Study on characteristics of artificial frozen soil under seepage-flow condition[D]. Tianjin: Tianjin University,2019.

    [24]

    孙杰龙,任建喜,李盛斌,等.不同低温温度下砂土物理力学特性试验研究[J].延安大学学报(自然科学版),2019,38(3):38-44.

    SUN Jielong, REN Jianxi, LI Shengbin, et al. Experimental study on the physical mechanics characteristics of sand under different frozen temperatures[J]. Journal of Yan’an University: Natural Science Edition, 2019,38(3):38-44.

  • 加载中
计量
  • 文章访问数:  32
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-08-25
修回日期:  2023-12-06

目录