Research on optimization of welding process for support chassis of large drilling equipment
-
摘要: 大型支承底盘作为大型钻探设备的支承平台,通常由大量钢板通过焊接装配而成,焊接残余应力和残余变形会对底盘的强度和刚度产生一定的影响。本文运用有限元分析方法,选取高斯移动热源,针对大型支承底盘中具有代表性的T形焊接接头建立了有限元模型,分别采用4种不同的焊接顺序和焊接速度,分析了其对焊接应力和变形的影响,得到了优化的焊接顺序和焊接速度。在此基础上,对底盘的整体焊接方案做出优化,对比分析了优化前后的焊接应力和变形,结果表明:优化后残余应力减少了约7%,最大变形减少了约26%。研究成果可为焊接工艺的制定提供参考。Abstract: The support chassis of large drilling equipment, serving as the support platform, is commonly assembled by welding numerous steel plates together. The residual stresses and deformations caused by welding have a certain impact on the strength and stiffness of the chassis. In this study, the finite element analysis method is applied. A finite element model is established for a representative T-type welded joint in the large support chassis, using a Gaussian moving heat source. Four different welding sequences and welding speeds are adopted to analyze their effects on welding stresses and deformations. Optimized welding sequences and welding speeds are obtained. Based on this, an overall welding scheme for the chassis is optimized. A comparative analysis is conducted on the welding stresses and deformations before and after optimization. The results show that the residual stress is reduced by approximately 7% and the maximum deformation is reduced by approximately 26% after optimization. The research results can provide reference for the formulation of welding processes.
-
-
[1] 薛倩冰,刘凡柏,张金昌,等.特深孔地质岩心钻探技术装备集成及示范[J].钻探工程,2023,50(2):8-16.
XUE Qianbing, LIU Fanbai, ZHANG Jinchang, et al. Integration and demonstration of geological core drilling technology and equipment for ultra-deep hole[J]. Drilling Engineering, 2023,50(2):8-16.
[2] 朱恒银,王强,刘兵,等.5000 m新型能源勘探智能钻探装备与技术研究[J].钻探工程,2022,49(1):110-119.
ZHU Hengyin, WANG Qiang, LIU Bing, et al. Research on 5000m new energy exploration intelligent drilling equipment and technology[J]. Drilling Engineering, 2022,49(1):110-119.
[3] 李婧.大型船体焊接变形仿真技术研究及其应用[D].上海:上海交通大学,2011.LI Jing, Study of large hull welding deformation simulation technology and its application[D]. Shanghai: Shanghai Jiao Tong University, 2011.
[4] 陈泳,冯和永,李巍,等.特种车体大型结构件焊接的三维有限元分析及工艺优化[J].新技术新工艺,2016(1):5-7.
CHEN Yong, FENG Heyong, LI Wei, et al. Special car body welding large structural three-dimensional finite element analysis and process optimization[J]. New Technology & New Process,2016(1):5-7.
[5] 管超,杨珏,张永明,等.基于有限元分析的大型结构件焊接热过程仿真研究[J].矿山机械,2016,44(2):86-93.
GUAN Chao, YANG Jue, ZHANG Yongming, et al. Simulation and research on thermal process of welding of large-scale structural components based on FEA[J]. Mining & Processing Equipment, 2016,44(2):86-93.
[6] 黄月双.大型航空结构件焊接变形分析及数值模拟[D].成都:电子科技大学,2019.HUANG Yueshuang. Welding deformation analysis and numerical simulation of large aeronautical structural parts[D]. Chengdu: University of Electronic Science and Technology of China,2019.
[7] 王刚.面向大型结构件的焊接残余应力及变形预估[D].柳州:广西科技大学,2022.WANG Gang. Prediction of welding residual stress and variant for large structural parts[D]. Liuzhou: Guangxi University of Science and Technology, 2022.
[8] 成大先,等.机械设计手册[M].北京:化学工业出版社,2017.CHENG Daxian, et al. Handbook of Mechanical Design[M].Beijing: Chemical Industry Press, 2017.
[9] 陈芙蓉,解瑞军,张可荣,等.数值计算模拟工艺参数对电子束焊接残余应力的影响[J].焊接学报,2006(2):55-58,115-116.
CHEN Furong, XIE Ruijun, ZHANG Kerong, et al. Effect of simulated welding parameter on residual stress of vacuum electron beam welding[J]. Transactions of the China welding institution, 2006(2):55-58,115-116.
[10] Yi Pan, D.Lados. Friction stir welding in wrought and cast aluminum alloys: Weld quality evaluation and effects of processing parameters on microstructure and mechanical properties[J].Metallurgical and Materials Transactions A, 2017,48(4):1708-1726.
[11] 李志强.不同焊接工艺参数对焊缝组织的影响[J].焊接技术,2019,48(12):20-23,5.
LI Zhiqiang. Effects of different welding process parameters on weld microstructure[J].Welding Technology, 2019,48(12):20-23,5.
[12] Yusuf Ozcatalbas, Ibrahim Vural H. Determination of optimum welding sequence and distortion forces in steel lattice beams[J]. Journal of Materials Processing Tech, 2008,209(1).
[13] 洪小龙,黄本生,李天宁,等.几种常见焊接工艺热源模型的研究进展[J].材料热处理学报,2023,44(5):25-38.
HONG Xiaolong, HUANG Bensheng, LI Tianning, et al. Research progress of heat source models for several common welding processes[J]. Transactions of Materials and Heat Treatment, 2023,44(5):25-38.
[14] 张晓程,付迎,俄馨,等.焊接移动高斯热源数字化仿真和残余应力的分析[J].热处理技术与装备,2023,44(2):54-58.
ZHANG Xiaocheng, FU Ying, XinE, et al. Digital simulation of moving gaussian heat source for welding and residual stress analysis[J]. Heat Treatment Technology and Equipment,2023,44(2):54-58.
[15] 曾志,王立君.数值模拟技术在焊接中的应用[J].航空制造技术,2008(8):44-47.
ZENG Zhi, WANG Lijun. Application of numerical aeronautical manufacturing technology[J]. Aeronautical Manufacturing Technology, 2008(8):44-47.
[16] Zhang C, An S, Wang W, et al. A novel meshing method based on adaptive size function and moving mesh for electromagnetic finite element analysis[J]. Symmetry, 2021,13(2):254-254.
[17] 仇亚萍,黄俐军,冯立飞.基于ANSYS的有限元网格划分方法[J].机械管理开发,2007(6):76-77.
QIU Yaping, HUANG Lijun, FENG Lifei. FEA meshing method based on ANSYS[J]. Mechanical Management and Development, 2007(6):76-77.
[18] Quan Shi, Tang Jue, Chu Man-sheng. Numerical simulation of slag layer and its distribution on hot surface of copper stave based on ANSYS birth-death element technology[J]. Journal of Iron and Steel Research International, 2021,28(5):507-519.
[19] 柯佳娜.基于ANSYS钢结构焊接温度场与应力场的数值模拟[D].青岛:青岛科技大学,2012.KE Jiana. Steel welding temperature field and stress field simulation based on ANSYS[J]. Qingdao: Qingdao University of Science & Technology, 2012
[20] 张西坤,宋秋锋,申寿长,等.进口爆破钻机配套钻塔的研制[J].钻探工程,2021,48(6):80-85.
ZHANG Xikun, SONG Qiufeng, SHEN Shouchang, et al.Development of the drilling mast for the imported blast hole drill[J]. Drilling Engineering, 2021,48(6):80-85.
[21] 申超男,陈相飞,王江超.固定热源长度对T形接头焊接变形及残余应力精确预测的影响[J].船舶工程,2022,44(11):132-139.
SHEN Chaonan, CHEN Xiangfei, WANG Jiangchao. Influence of length of fixed heat source on prediction accuracy of welding distortion and residual stress in T-joint[J]. Ship Engineering, 2022,44(11):132-139.
[22] 王红英,李志军.焊接工艺参数对镁合金CO2激光焊焊缝表面成形的影响[J].焊接学报,2006(2):64-68,116.
WANG Hongying, LI Zhijun. Effects of welding parameters on CO2 laser welding of magnesium alloys[J]. Transactions of the China Welding Institution, 2006(2):64-68,116.
-
计量
- 文章访问数: 72
- PDF下载数: 6
- 施引文献: 0