基于同位素和水化学的北京平谷盆地地下水循环研究

王新娟, 许苗娟, 韩旭, 董佩, 孙颖. 2023. 基于同位素和水化学的北京平谷盆地地下水循环研究. 西北地质, 56(5): 127-139. doi: 10.12401/j.nwg.2022037
引用本文: 王新娟, 许苗娟, 韩旭, 董佩, 孙颖. 2023. 基于同位素和水化学的北京平谷盆地地下水循环研究. 西北地质, 56(5): 127-139. doi: 10.12401/j.nwg.2022037
WANG Xinjuan, XU Miaojuan, HAN Xu, DONG Pei, SUN Ying. 2023. Study on Groundwater Cycle in Beijing Pinggu Basin Based on Isotopes and Hydrochemistry. Northwestern Geology, 56(5): 127-139. doi: 10.12401/j.nwg.2022037
Citation: WANG Xinjuan, XU Miaojuan, HAN Xu, DONG Pei, SUN Ying. 2023. Study on Groundwater Cycle in Beijing Pinggu Basin Based on Isotopes and Hydrochemistry. Northwestern Geology, 56(5): 127-139. doi: 10.12401/j.nwg.2022037

基于同位素和水化学的北京平谷盆地地下水循环研究

  • 基金项目: 北京市规划和国土资源规划委员会第三轮北京市地下水资源调查评价项目(BJJF-2016-862)。
详细信息
    作者简介: 王新娟(1973−),女,博士,正高级工程师,主要从事地下水资源和水环境评价工作。E−mail:xinjuanwang@126.com
  • 中图分类号: P641.3

Study on Groundwater Cycle in Beijing Pinggu Basin Based on Isotopes and Hydrochemistry

  • 通过在区域开展地下水同位素、水化学取样分析,研究了平谷泃河和洳河冲洪积扇地下水循环演化特征。分析结果显示:本次所取水样pH值为7.6~8.1,为中性水;阳离子含量均以Ca2+、Mg2+为主,占70%以上,阴离子含量以HCO3为主,占82%以上,所取水样地下水水化学类型均为HCO3•Ca•Mg 型。研究区浅层第四系松散孔隙水δ2H值和δ18O值分别为64.9‰、9.08‰,深层第四系松散孔隙水δ2H值和δ18O值分别为67.6‰、δ18O值,基岩岩溶水δ2H值和δ18O值分别为64.5‰、9.36‰。基岩岩溶水稳定同位素含量均值与浅层地下水比较接近;浅层第四系松散孔隙水14C含量为46.7%~93.1%,深层水第四系松散孔隙水14C含量为40.23%~61.13%,基岩岩溶水14C含量为46.79%~89.2%,与浅层第四系松散孔隙水比较接近。通过分析研究掌握了北京平谷盆地地下水的循环演化规律,盆地第四系孔隙水和隐伏基岩岩溶水的水力联系,研究成果能够为平谷盆地地下水水文地质概念模型的建立、水文地质参数的初步确定、地下水资源计算评价提供技术支撑。

  • 加载中
  • 图 1  平谷区地理位置图

    Figure 1. 

    图 2  北京平谷盆地水文地质图

    Figure 2. 

    图 3  洳河和泃河水化学Piper图

    Figure 3. 

    图 4  泃河A–B剖面主要阴阳离子含量变化情况图

    Figure 4. 

    图 5  洳河C–D剖面主要阴阳离子变化情况图

    Figure 5. 

    图 6  泃河和洳河地下水δ2H和δ18O组成

    Figure 6. 

    图 7  泃河剖面δ2H和δ18O变化情况图

    Figure 7. 

    图 8  洳河剖面δ2H和δ18O变化情况图

    Figure 8. 

    图 9  泃河、洳河14C含量在垂向变化情况图

    Figure 9. 

    图 10  平谷区2017年6月潜水含水层流场图

    Figure 10. 

    图 11  王都庄、中桥水源地地区地下水位动态曲线图

    Figure 11. 

    图 12  泃河冲洪积扇地下水循环模式剖面示意图

    Figure 12. 

    图 13  洳河冲洪积扇地下水循环模式剖面示意图

    Figure 13. 

    表 1  同位素取样情况表

    Table 1.  Isotope sampling situation table

    样点编号地理位置取水层位取水深度(m)水位埋深(m) Δ2H (‰) Δ18O(‰) 14C
    P01 靠山集村吃水井 蓟县雾迷山 16~142 38 −64 −9.09 46.79
    P02 平谷金海湖镇政府院内 蓟县雾迷山 30~136 / −63.6 −9.51 79.97
    P05 南独乐河镇新农村 蓟县雾迷山 ≥150 / −67 −10.23 75.22
    P03 望马台村东 第四系浅层 60~78 15 −61.6 −8.71 86.7
    P04 望马台村东北 蓟县雾迷山 ≥70 12 −62.5 −8.8 87.2
    P06 平谷张辛庄村供水井 蓟县雾迷山 80~100 35 −63.6 −9.96 85.98
    P07 王都庄水源地 第四系浅层 30~40 34 −62 −8.5 /
    P08 东高村镇西高村西 第四系浅层 20~50 22.4 −62.8 −8.65 /
    P09 东高村镇西高村西 蓟县雾迷山 ≥117 24.6 −66.7 −9.41 53.7
    P10 西鹿角村路东 第四系浅层 20~43 20 −67.2 −9.5 92.21
    P11 西鹿角村路东 第四系浅层 66~96 30 −67 −10.18 57.21
    P12 西鹿角村路东 第四系深层 127~166 30 −67 −10.4 41.65
    P13 西鹿角村路西 第四系深层 216~284 37.5 −69 −10.14 40.23
    P14 平谷马昌营镇薄各庄村南S204路西花园 第四系浅层 18~43 10 −62.1 −8.66 93.61
    P15 平谷马昌营镇薄各庄村南S204路西花园 第四系浅层 72~98 36.5 −65.8 −8.91 53.77
    P16 平谷马昌营镇薄各庄村南S204路西花园 第四系深层 128~160 37 −67 −10.06 61.13
    P17 马坊村 第四系浅层 80~100 32 −68 −9.4 46.79
    P1 翟各庄村东 长城高于庄 ≥6 24 −65.7 −9.23 /
    P2 中桥水源地水源井 长城高于庄 ≥163 15 −65.9 −9.38 77.85
    P3 中桥水源地水源井 第四系浅层 40~149 30 −64.3 −9.08 76.31
    P4 中桥水源地第四系井 第四系浅层 50~80 28.5 −64.9 −9.15 /
    P5 中桥水源地中桥村西 第四系深层 40~130 28 −67.3 −10.15 /
    P6 后芮村 第四系浅层 80~148 14 −68 −9.2 60.51
    Q 小东沟泉 泉水 / / −61.9 −8.67 /
    下载: 导出CSV

    表 2  水化学测试成果表

    Table 2.  Hydrochemistry test results

    样点
    编号

    (mg/L)

    (mg/L)

    (mg/L)

    (mg/L)
    重碳酸盐
    (mg/L)
    氯化物
    (mg/L)
    硫酸盐
    (mg/L)
    溶解性总固体
    (mg/L)
    pH值水化学
    类型
    P011.949.0566.132.925316.816.84897.72HCO3•Ca•Mg
    P022.2117.570.53631732.225.43957.5HCO3•Ca•Mg
    P031.8913.662.732.826526.832.43537.79HCO3•Ca•Mg
    P041.333.695226.22397.0914.33797.8HCO3•Ca•Mg
    P051.046.1944.62323556.753397.8HCO3•Ca•Mg
    P061.1714.953.727.718723.917.33927.53HCO3•Ca•Mg
    P071.174.0441.123.719918.813.8317.17.9HCO3•Ca•Mg
    P081.5321.397.33541329.441.76317.38HCO3•Ca•Mg
    P092.819.246.626.42772.969.13667.77HCO3•Ca•Mg
    P101.289.4152.320.72815.710.63818.02HCO3•Ca•Mg
    P110.6621.566.523.33285.34.44647.99HCO3•Ca•Mg
    P121.8412.945.721.12508.712.43597.96HCO3•Ca•Mg
    P132.3120.834.723.82274.612.93468.1HCO3•Ca•Mg
    P140.5326.669.729.44008.210.55467.56HCO3•Ca•Mg
    P150.958.3661.726.13205.95.64357.62HCO3•Ca•Mg
    p160.5626.367.928.13976.911.15427.64HCO3•Ca•Mg
    P171.2311.446.720.92475.212.3350.27.73HCO3•Ca•Mg
    P11.489.1655.921.425115.536.83847.94HCO3•Ca•Mg
    P21.4310.265.426.225316.122.54557.7HCO3•Ca•Mg
    P32.611050.522.72477.117.23847.6HCO3•Ca•Mg
    P41.496.8755.72528111.99.82627.69HCO3•Ca•Mg
    P51.518.67431.626816.723.45267.73HCO3•Ca•Mg
    P61.026.5147.522.82476.18.8349.87.94HCO3•Ca•Mg
    Q12.9351.2272456.1712.53787.88HCO3•Ca•Mg
    下载: 导出CSV

    表 3  典型点第四系地下水和基岩岩溶水2H和18O值表

    Table 3.  2H and 18O values of quaternary groundwater and bedrock karst water at typical points

    位置Δ2H (‰VSMOW)δ18O (‰VSMOW)
    望马台村东第四系井−61.6−8.7
    望马台村东北基岩井−62.5−8.8
    中桥水源地第四系井−64.9−9.2
    中桥水源地水源井基岩井−65.9−9.4
    东高村镇西高村西第四系井−66.4−9.41
    东高村镇西高村西基岩井−62.8−8.65
    下载: 导出CSV
  • [1]

    陈宗宇, 齐继祥, 张兆吉,等. 北方典型盆地同位素水文地质学方法应用[M] . 北京: 科学出版社, 2010

    CHEN Zongyu, QI Jixiang, ZHANG Zhaoji, et al., Application of Isotope Hydrogeology in Typical Northern Basin[M]. Beijing: Science press 2010

    [2]

    马致远, 环境同位素方法在平凉市岩溶地下水研究中的应用[J]. 地质论评, 2004, 50(4): 433-439

    Ma Zhi yuan, Application of the Environmental Isotope Technique to the Study of Karst Groundwater in Pingliang City, Geological Review, 2004 50(4): 433-439.

    [3]

    马致远, 党书生, 翟美静等, 蓝田汤峪地区地热流体同位素水文地球化学特征及其指示意义[J]. 西北地质, 2017, 50(2), 214-223

    Ma Zhiyuan, Dang Shusheng, Zhai Jingmei, et al, The characteristics of Isotopes and Hydrogeochemistry for Geothermal Water in the Tangyu Town in Lantian county[J]. Northwester geology, 2017, 50(2), 214-223.

    [4]

    宋献芳, 李发东, 于静洁等, 基于氢氧同位素与水化学的潮白河流域地下水循环特征[J] . 地理研究, 2007, 26(1): 12-21.

    Song Xian fang, Li Fa dong, Yu Jing jie, et al, Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin, Geography research, 2007 26(1)12-21.

    [5]

    汪集旸, 陈建生, 陆宝宏等. 同位素水文学的若干回顾与展望[J]. 河海大学学报, 2015, 43(5): 406-413

    Wang Ji yang , Chen Jian sheng , Lu Bao hong et al. Review and prospect of isotope hydrology[J]. Journal of Hohai University( Natural Sciences), 2015, 43(5): 406-413

    [6]

    王洁青, 周训, 李晓露, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分[J]. 现代地质, 2017, 31(4): 822-831

    Wang Jie qing, Zhou Xun, Li Xiao lu, et al Hydrochemical Characteristics and Genesis of Yangchimi Hot Spring in Lanping Basin, Yunnan Province, Geoscience, 2017.31(4): 822-831

    [7]

    于静洁, 宋献方, 刘相超等. 基于δ2H和δ18O及水化学的永定河流域 地下水循环特征解析[J]. 自然资源学报, 2017, 22(3): 416-423

    Yu Jing jie, Song Xian fang, liu Xiang chao, et al, A Study of Groundwater Cycle in Yongding River Basin by Using δD, δ18O and Hydrochemical Data, Journal of natural resources, 2017 22(3): 416-423

    [8]

    张人权, 梁杏, 靳孟贵, 等. 水文地质学基础(第六版)[M]. 北京: 地质出版社, 2011: 53–54

    ZHANG Renquan, LIANG Xing, JIN Menggui, et al. General Hydrogeology (The sixth edition) [M]. Beijing: Geological Publishing House. 2011: 53–54

    [9]

    张雅, 苏春丽, 马燕华等. 水化学和环境同位素对济南东源饮用水源地地下水演化过程的指示[J]. 环境科学, 2019: 40(6), 2667-2774

    Zhang Ya, Su Chun li, Ma Yan hua, et al Indicators of Groundwater Evolution Processes Based on Hydrochemistry and Environmental Isotopes: A Case Study of the Dongyuan Drinking Water Source Area in Jinan City, Environmental science, 2019 40(6), 2667-2774

    [10]

    周训, 金晓媚, 梁四海, 等. 地下水科学专论(第二版. 彩色版)[M]. 北京: 地质出版社, 2017.

    ZHOU Xun, JIN Xiaomei, LIANG Sihai, et al, Monograph of groundwater science (Second Edition. Color Edition)[M]. Beijing: Geological Publishing House, 2017.

    [11]

    Aggarwal P K, Gat J R, Froehlich K F, et al. Isotopes in the water cycle: past, present and future of a developing science[M]. Berlin: Springer Netherlands, 2005.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  1385
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2022-05-16
修回日期:  2022-09-21
刊出日期:  2023-10-20

目录