不同含水率与围压下伊犁高温冻土三轴力学试验特性研究

朱赛楠, 赵慧, 魏云杰, 郑剑锋, 王文沛, 张楠. 2023. 不同含水率与围压下伊犁高温冻土三轴力学试验特性研究. 西北地质, 56(5): 140-150. doi: 10.12401/j.nwg.2023006
引用本文: 朱赛楠, 赵慧, 魏云杰, 郑剑锋, 王文沛, 张楠. 2023. 不同含水率与围压下伊犁高温冻土三轴力学试验特性研究. 西北地质, 56(5): 140-150. doi: 10.12401/j.nwg.2023006
ZHU Sainan, ZHAO Hui, WEI Yunjie, ZHENG Jianfeng, WANG Wenpei, ZHANG Nan. 2023. Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang. Northwestern Geology, 56(5): 140-150. doi: 10.12401/j.nwg.2023006
Citation: ZHU Sainan, ZHAO Hui, WEI Yunjie, ZHENG Jianfeng, WANG Wenpei, ZHANG Nan. 2023. Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang. Northwestern Geology, 56(5): 140-150. doi: 10.12401/j.nwg.2023006

不同含水率与围压下伊犁高温冻土三轴力学试验特性研究

  • 基金项目: 国家重点研发计划课题“重大崩滑灾害隐患精准识别与风险评价研究”(2021YFC3000404),“复合链生灾害监测与人工智能预测技术”(2022YFC3004302),中国地质调查局项目“重大高位远程地质灾害防治技术集成应用”(DD20179609、DD20190637、DD20221748)联合资助。
详细信息
    作者简介: 朱赛楠(1984−),男,博士,高级工程师,主要从事工程地质与地质灾害等方面的研究。E−mail:6057817@qq.com
    通讯作者: 赵慧(1981−),女,高级工程师,主要从事地质灾害与防治方面的工作。E−mail:330169675@qq.com
  • 中图分类号: P642.3

Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang

More Information
  • 为了探究含水率与围压变化对高温冻土物理力学性质的影响,以新疆伊犁河谷高温冻结黄土为研究对象,开展了黄土的矿物成分、物理性质,以及不同含水率和围压条件下冻土的三轴压缩试验。结果表明:伊犁黄土的粉粒与黏粒粒组含量占比较高,对冻融作用的反应敏感。低含水率时表现为应变软化现象,破坏形态以脆性剪切破坏为主,饱和含水率时表现为应变硬化现象,破坏形态以塑性鼓胀变形破坏为主,软化系数随含水率增大而逐渐减小。随着含水率增大,峰残内摩擦角逐渐降低,峰残黏聚力逐渐增大,变形模量逐渐增大。随着围压增大,弹性模量和损伤演化特征参数均逐渐降低,引入的损伤力学本构模型能够较好地描述高温冻土在不同含水率和围压影响下的应力应变全过程。研究成果可为伊犁河谷冻融滑坡成灾机理研究提供力学参数与理论依据支撑。

  • 加载中
  • 图 1  伊犁黄土矿物衍射图谱图

    Figure 1. 

    图 2  伊犁黄土矿物成分含量图

    Figure 2. 

    图 3  伊犁黄土颗粒粒径分布曲线图

    Figure 3. 

    图 4  MTS-810三轴材料试验机

    Figure 4. 

    图 5  高温冻土三轴压缩试验设计方案图

    Figure 5. 

    图 6  不同含水率高温冻土的应力应变曲线图

    Figure 6. 

    图 7  含水率与峰值应变和残余应变的关系图

    Figure 7. 

    图 8  围压与峰值应变和残余应变的关系图

    Figure 8. 

    图 9  含水率与峰值应力和残余应力的关系图

    Figure 9. 

    图 10  围压与峰值应力和残余应力的关系图

    Figure 10. 

    图 11  不同含水率高温冻土的峰后平均变形模量曲线图

    Figure 11. 

    图 12  不同含水率高温冻土的应力相对软化系数曲线

    Figure 12. 

    图 13  含水率与内摩擦角的关系图

    Figure 13. 

    图 14  含水率与黏聚力的关系图

    Figure 14. 

    图 15  不同含水率伊犁高温冻土的破坏形态图

    Figure 15. 

    图 16  试验数据与模型拟合曲线对比图

    Figure 16. 

    表 1  伊犁黄土的基本物理性质统计表

    Table 1.  Basic physical properties of Yili loess

    序号干密度
    (g/cm3
    孔隙比液限
    (%)
    塑限
    (%)
    塑性指数压缩模量
    Es1-2(MPa)
    渗透系数
    (cm/s)
    11.550.50726.7318.288.4517.51.40×10−5
    21.550.50924.5917.047.5616.81.30×10−5
    31.550.51229.0519.629.4317.91.31×10−5
    41.560.50323.8815.987.9018.11.15×10−5
    51.540.49523.9616.557.4117.71.22×10−5
    下载: 导出CSV

    表 2  不同含水率与围压下的应力与应变统计表

    Table 2.  Stress and strain under different water content and confining pressure

    含水率
    w(%)
    围压
    σ3(MPa)
    峰值
    应力
    σp(MPa)
    峰值
    应变
    εp(%)
    残余
    应力
    σr(MPa)
    残余
    应变
    εr(%)
    10.10.0500.5681.5000.5428.500
    0.1250.7243.5000.6978.751
    0.1750.8604.6710.83013.429
    16.20.0500.8555.4920.82112.979
    0.1251.04411.0650.96818.055
    0.1751.09812.2321.04619.802
    28.20.0501.448
    0.1251.486
    0.1751.506
    下载: 导出CSV

    表 3  不同含水率的剪切强度参数表

    Table 3.  Shear strength parameters of different water content

    含水率
    w(%)
    峰值内
    摩擦角
    φp(°)
    峰值
    黏聚力
    cp(MPa)
    残余内
    摩擦角
    φr(°)
    残余
    黏聚力
    cr(MPa)
    10.132.50.12237.00.076
    16.230.20.21928.40.218
    28.210.90.588
    下载: 导出CSV

    表 4  损伤本构模型参数表

    Table 4.  Damage constitutive model parameters

    含水率w(%)围压σ3(MPa)(MPa)(%)R2
    10.10.05037.871.5000.1420.948
    0.12520.693.5000.1230.970
    0.17518.414.6710.1220.964
    16.20.05015.575.4920.1320.928
    0.1259.4411.0650.1230.904
    0.1758.9812.2320.1220.912
    28.20.05010.9513.2270.1010.959
    0.1259.3615.8740.0940.970
    0.1757.6219.7620.0930.963
    下载: 导出CSV
  • [1]

    曹文贵, 赵衡, 张永杰, 等. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. 岩土力学, 2011, 32(3): 647-654 doi: 10.3969/j.issn.1000-7598.2011.03.002

    CAO Wengui, ZHAO Heng, ZHANG Yongjie, et al. Strain softening and hardening damage constitutive model for rock considering effect of volume change and its parameters determination method[J]. Rock and Soil Mechanics, 2011, 32(3): 647-654. doi: 10.3969/j.issn.1000-7598.2011.03.002

    [2]

    崔托维奇. 冻土力学[M]. 北京: 科学出版社, 1985

    Tsytovich H A. The mechanics of frozen ground [M]. Beijing: Science Press, 1985.

    [3]

    葛修润, 任建喜, 蒲毅彬, 等. 岩石细观损伤扩展规律的CT实时试验[J]. 中国科学E辑: 技术科学, 2000, 30(2): 104-111

    GE Xiurun, REN Jianxi, PU Yibin, et al. Real-Time CT test of meso-damage propagation law of rock [J]. Science in China, 2000, 30(2): 104-111.

    [4]

    赖远明, 李双洋, 高志华, 等. 高温冻结粘土单轴随机损伤本构模型及强度分布规律[J]. 冰川冻土, 2007, 29(6): 969-976 doi: 10.3969/j.issn.1000-0240.2007.06.017

    LAI Yuanming, LI Shuangyang, GAO Zhihua, et al. Stochastic damage constitutive model for warm frozen soil under uniaxial compression and its strength distribution[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 969-976. doi: 10.3969/j.issn.1000-0240.2007.06.017

    [5]

    赖远明, 张耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12): 3665-3670 doi: 10.3969/j.issn.1000-7598.2009.12.018

    LAI Yuanming, ZHANG Yao, ZHANG Shujuan, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12): 3665-3670. doi: 10.3969/j.issn.1000-7598.2009.12.018

    [6]

    刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129

    LIU Shiwei, ZHANG Jianming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129.

    [7]

    马芹永, 郁培阳, 袁璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 593-600 doi: 10.13722/j.cnki.jrme.2017.0711

    MA Qinyong, YU Peiyang, YUAN Pu. Experimental study on creep properties of deep siltstone under cyclic wetting and drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 593-600. doi: 10.13722/j.cnki.jrme.2017.0711

    [8]

    马巍, 吴紫汪, 常小晓, 盛煜. 剪应力强度和平均法向应力对冻土变形的相互影响[J]. 自然科学进展, 1998, 8(1): 77-81 doi: 10.3321/j.issn:1002-008X.1998.01.014

    MA Wei, WU Ziwang, CHANG Xiaoxiao, et al. The influence of shear stress strength and mean normal stress on the frozen soils deformation [J]. Progress in Nature Science, 1998, 8(1): 77-81. doi: 10.3321/j.issn:1002-008X.1998.01.014

    [9]

    马巍, 吴紫汪, 盛煜. 冻土的蠕变及蠕变强度[J]. 冰川冻土, 1994, 16(2): 113-118

    MA Wei, WU Ziwang SHENG Yu. Creep and creep strength of frozen soil[J]. Journal of Glaciolgy and Geocryology, 1994, 16(2): 113-118.

    [10]

    马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 17(5): 7-11 doi: 10.3321/j.issn:1000-4548.1995.05.002

    MA Wei, WU Ziwang SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 7-11. doi: 10.3321/j.issn:1000-4548.1995.05.002

    [11]

    马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640.

    [12]

    宁建国, 朱志武. 含损伤的冻土本构模型及耦合问题数值分析[J]. 力学学报, 2007, 39(1): 70-76 doi: 10.3321/j.issn:0459-1879.2007.01.009

    NING Jianguo, ZHU Zhiwu. Constitutive model of frozen soil with damage and numerical simulation of the coupled problem[J]. Chinese Joumal of Theoretical and Applied Mechanics, 2007, 39(1): 70-76. doi: 10.3321/j.issn:0459-1879.2007.01.009

    [13]

    任建喜, 葛修润. 单轴压缩岩石损伤演化细观机理及其本构模型研究[J]. 岩石力学与工程学报, 2001, 20(4): 425-431 doi: 10.3321/j.issn:1000-6915.2001.04.001

    REN Jianxi, GE Xiurun. Study of rock meso-damage evolution law and its constitutive model under uniaxial compression loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 425-431. doi: 10.3321/j.issn:1000-6915.2001.04.001

    [14]

    宋友桂, 史正涛. 伊犁盆地黄土分布与组成特征[J]. 地理科学, 2010, 30(2): 267-272 doi: 10.13249/j.cnki.sgs.2010.02.011

    SONG Yougui, SHI Zhengtao. Distribution and compositions of loess sediments in Yili Basin, central Asia[J]. Scientia Geographica Sinica, 2010, 30(2): 267-272. doi: 10.13249/j.cnki.sgs.2010.02.011

    [15]

    苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375

    SU Kai, ZHANG Jianming, LIU Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375.

    [16]

    王海芝, 王颂, 周剑, 等. 樟木堆积体斜坡动力稳定性与极限承载力评价[J]. 西北地质, 2022, 55(1): 262-273 doi: 10.19751/j.cnki.61-1149/p.2022.01.023

    WANG Haizhi, WANG Song, ZHOU Jian, et al. Dynamic stability analysis and ultimate bearing capacity evaluation of Zhangmu landslide deposit[J]. Northwestern Geology, 2022, 55(1): 262-273. doi: 10.19751/j.cnki.61-1149/p.2022.01.023

    [17]

    维亚洛夫 C C. 冻土流变学[M]. 北京: 中国铁道出版社, 2005

    VAYALOV C C. Rhelogy of Frozen Soil [M]. Beijing: China Railway Publishing House, 2005.

    [18]

    吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191.

    [19]

    徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7): 1297-1312 doi: 10.3321/j.issn:1000-6915.2007.07.001

    XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001

    [20]

    颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428 doi: 10.16285/j.rsm.2017.1839

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428. doi: 10.16285/j.rsm.2017.1839

    [21]

    尹光华, 王兰民, 袁中夏, 等. 新疆伊犁黄土的物性指标、动力学特性与滑坡[J]. 干旱区地理, 2009, 32(6): 899-905

    YIN Guanghua, WANG Lanmin, YUAN Zhongxia, et al. Physical index, dynamic property and landslide of Ili loess[J]. Arid Land Geography, 2009, 32(6): 899-905.

    [22]

    叶玮, 矢吹真代, 赵兴有. 中国西风区与季风区黄土沉积特征对比研究[J]. 干旱区地理, 2005, 28(6): 789-794 doi: 10.3321/j.issn:1000-6060.2005.06.013

    YE Wei, SADAYO Yabuki, ZHAO Xinyou. Comparison of the sedimentary features of loess between the westerly and monsoon regions in China[J]. Arid Land Geography, 2005, 28(6): 789-794. doi: 10.3321/j.issn:1000-6060.2005.06.013

    [23]

    张艳玲, 陈亮, 闫金凯, 等. 基于DAN-W模型的高速远程滑坡灾变过程分析[J]. 西北地质, 2021, 54(1): 204-211 doi: 10.19751/j.cnki.61-1149/p.2021.01.018

    ZHANG Yanling, CHEN Liang, YAN Jinkai, et al. Study on the catastrophic process of rapid and long Run-out landslides based on DAN-W[J]. Northwestern Geology, 2021, 54(1): 204-211. doi: 10.19751/j.cnki.61-1149/p.2021.01.018

    [24]

    张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476

    ZHANG Huimei, YANG Gengshe. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476.

    [25]

    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.

    [26]

    朱赛楠, 李滨, 冯振. 三峡库区侏罗系泥岩CT损伤特性试验研究[J]. 水文地质工程地质, 2016, 43(1): 72-78 doi: 10.16030/j.cnki.issn.1000-3665.2016.01.11

    ZHU Sainan, LI Bin, FENG Zhen. Research on CT damage characteristics of the Jurassic mudstones in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 72-78. doi: 10.16030/j.cnki.issn.1000-3665.2016.01.11

    [27]

    朱赛楠, 殷跃平, 王文沛, 等. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 2019, 40(2): 339-349 doi: 10.3975/cagsb.2018.061904

    ZHU Sainan, YIN Yueping, WANG Wenpei, et al. Mechanism of freeze-thaw loess landslide in Yili River valley, Xinjiang[J]. Acta Geoscientica Sinica, 2019, 40(2): 339-349. doi: 10.3975/cagsb.2018.061904

    [28]

    朱元林, 张家懿. 冻土的弹性变形及压缩变形[J]. 冰川冻土, 1982, 4(3): 29-39

    ZHU Yuanlin, ZHANG Jiayi. Elastic and compressive deformation of frozen soils[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 29-39.

    [29]

    CHAMBERLAIN E J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1/2/3/4): 73-92.

    [30]

    Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media[R]. Office of Scientific and Technical Information (OSTI), 1975.

    [31]

    JESSBERGER H L. A state-of-the-art report. Ground freezing: mechanical properties, processes and design[J]. Engineering Geology, 1981, 18(1/2/3/4): 5-30.

    [32]

    OTHMAN M A, BENSON C H. Effect of freeze–thaw on the hydraulic conductivity and morphology of compacted clay[J]. Canadian Geotechnical Journal, 1993, 30(2): 236-246. doi: 10.1139/t93-020

    [33]

    TING J M, TORRENCE MARTIN R, LADD C C. Mechanisms of strength for frozen sand[J]. Journal of Geotechnical Engineering, 1983, 109(10): 1286-1302. doi: 10.1061/(ASCE)0733-9410(1983)109:10(1286)

    [34]

    ZHENG Bo. Investigation for the deformation of embankment underlain by warm and ice-rich permafrost[J]. Cold Regions Science and Technology, 2010, 60(2): 161-168. doi: 10.1016/j.coldregions.2009.08.012

  • 加载中

(16)

(4)

计量
  • 文章访问数:  1218
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2022-05-17
修回日期:  2022-11-23
录用日期:  2023-02-10
刊出日期:  2023-10-20

目录