辽宁省本溪县红旗沟地区成矿条件分析及找矿靶区预测

尤洪喜, 石绍山, 魏明辉, 秦涛, 杨佳林. 2024. 辽宁省本溪县红旗沟地区成矿条件分析及找矿靶区预测. 西北地质, 57(4): 206-217. doi: 10.12401/j.nwg.2022040
引用本文: 尤洪喜, 石绍山, 魏明辉, 秦涛, 杨佳林. 2024. 辽宁省本溪县红旗沟地区成矿条件分析及找矿靶区预测. 西北地质, 57(4): 206-217. doi: 10.12401/j.nwg.2022040
YOU Hongxi, SHI Shaoshan, WEI Minghui, QIN Tao, YANG Jialin. 2024. Analysis of Ore-forming Conditions and Prediction of Prospecting Targets in Hongqigou Area, Benxi County, Liaoning Province. Northwestern Geology, 57(4): 206-217. doi: 10.12401/j.nwg.2022040
Citation: YOU Hongxi, SHI Shaoshan, WEI Minghui, QIN Tao, YANG Jialin. 2024. Analysis of Ore-forming Conditions and Prediction of Prospecting Targets in Hongqigou Area, Benxi County, Liaoning Province. Northwestern Geology, 57(4): 206-217. doi: 10.12401/j.nwg.2022040

辽宁省本溪县红旗沟地区成矿条件分析及找矿靶区预测

  • 基金项目: 中国地质调查局项目“东北地区区域基础地质调查”(DD20221632)和“松辽盆地西缘嫩江—红彦地区区域地质调查”(DD20221632-01)联合资助。
详细信息
    作者简介: 尤洪喜(1968−),男,高级工程师,主要从事矿产地质勘查、区域地质调查工作。E−mail:2415763784@qq.com
    通讯作者: 石绍山(1977−),男,高级工程师,主要从事勘查地质普查及地球化学相关工作。E−mail:38650957@qq.com。
  • 中图分类号: P632

Analysis of Ore-forming Conditions and Prediction of Prospecting Targets in Hongqigou Area, Benxi County, Liaoning Province

More Information
  • 通过对辽宁省本溪县红旗沟地区区域典型矿床成矿相关岩体的成矿属性及构造、围岩等成矿条件对比分析,认为研究区内热液石英脉型金(铜)矿床、矽卡岩型、斑岩型铜金钼多金属矿床、与基性岩有关的铜金钴镍金属矿床的极具找矿潜力。运用有利成矿条件信息的赋值统计方法,对研究区进行金铜钼等找矿靶区预测工作。

  • 加载中
  • 图 1  研究区构造位置图(a)和区域地质图(b)

    Figure 1. 

    图 2  岩体成因类型Na2O-K2O图解(a)(据Collins et al.,1982)和成矿专属性判别Rb/Sr-SiO2图解(b)(据Blevin et al.,1995

    Figure 2. 

    图 3  石英脉型金矿靶区预测图(a)、矽卡岩型铜金矿靶区预测图(b)和斑岩型铜钼金矿靶区预测图(c)

    Figure 3. 

    图 4  预测靶区分布地质图

    Figure 4. 

    表 1  典型矿床特征及有利成矿条件统计表

    Table 1.  Statistical table of typical deposit characteristics and favorable metallogenic conditions

    典型矿床名称成矿及
    伴生元素
    成因类型岩浆岩控矿构造容矿构造赋矿围岩矿源层化探异常航磁异常
    黄柏峪铜钼矿床 主Cu、Mo; 矽卡岩型 1.γπJ2 1.EW∧NE断裂;
    2.向斜构造
    1.岩体与围岩接触带;2.EW向断裂蚀变带 1.Qbn泥灰岩、Єj灰岩、Om灰岩;2.矽卡岩 1.Ar2;2.γPt1 发育1∶20万水系沉积CuPbZnAgAs综合异常
    马鹿沟铜多金属
    矿床
    主Cu、Mo、Au、 W、 Tfe;伴生V、Ga、In、Ge、Np 矽卡岩型 1.ξγK1;2.κγπK1 1.EW∧SN∧NE∧NW向断裂;2.倒转背斜构造 1.岩体与围岩接触带;2.近SN向层间裂隙 1.Єz灰岩、Om;2.矽卡岩 1.ξγK1;2.κγK1 发育1∶20万水系沉积物铜铅锌钼组合异常
    套袖峪铜铅锌多金属矿床 主Cu、Pb、Zn、Sn、S,伴生银、 镉、铟等 矽卡岩型 1.ηγK1(隐伏);2.δK1 1.EW∧SN∧NW断裂;2.背斜构造 1.NW向及SN向的次级断裂;2.层间裂隙、节理 1.Qbn泥灰岩、Єj角砾状灰岩 1.ηγK1、2.δK1 发育1∶20万水系沉积物铜铅锌钼组合异常
    白水金
    矿床
    主Au 热液石英脉+破碎蚀变岩型 1.ηγK1;2.δK1 1.EW∧SN∧NW断裂 1.EW向断层破碎带;2.SN向张性节理裂隙 1.Qbd石英岩、角砾岩;2.Pt12大理岩,片岩 1.ηγK1、2.δK1 发育1∶20万水系沉积物AuCuPb异常
    红旗沟
    金矿床
    主Au,伴生Cu、Pb、Ag 热液石英脉型 1.γδJ2 1.NNE∧NNW断裂 1.SN向节理;2.NW向节理;3.NE向节理 1.(γδJ2 1.γδJ2 发育1∶20万水系沉积物金铜钼组合异常 有正
    异常
    沙金沟
    铜金矿
    主Cu、Au;伴生Ag、Zn、Bi、Sr 热液石英脉型 1.δK1;2.γPt1;3.δ、χ 1.NW∧EW向2. 组断裂构造交接处 1.NNW向张性裂隙;2.NE向张性裂隙 1.Qbd石英岩;2.Qbn页岩、泥灰岩 1.γPt1;2.δK1 发育1∶20万水系沉积物金铜钼组合异常 有正
    异常
    下载: 导出CSV

    表 2  岩体全岩地球化学数据(主量元素:%;稀土和微量元素: 10−6

    Table 2.  Whole-rock geochemical data of rock mass (Major elements: %; REE and Trace elements: 10−6)

    岩体名称代号样号岩性Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnO
    柳树底下岩体
    γπJ2
    QP37S1花岗斑岩0.480.2910.0580.50.076.650.110.120.12
    QP37S3花岗斑岩0.420.6112.4775.520.117.950.040.280.28
    马鹿沟ξγK1Pm105XWG13正长花岗岩4.360.713.8869.90.124.180.720.470.091
    Pm105XWG14正长花岗岩4.780.614.7468.760.134.610.660.450.094
    荫士王沟
    κγπ K1
    Pm506XWG2碱长花岗斑岩4.860.7515.3268.440.114.390.490.380.09
    Pm506XWG3碱长花岗斑岩3.740.2612.9275.520.014.530.030.100.06
    北大山ηγK1QP43S1二长花岗岩5.240.065.2474.960.065.470.060.0080.008
    QP43S3二长花岗岩4.640.874.6470.460.084.590.080.0390.039
    QP39S1二长花岗岩4.70.984.771.020.154.890.150.0360.036
    红旗沟γδJ2C-G6花岗闪长岩4.760.3416.6369.410.062.323.000.170.08
    QP34S2花岗闪长岩5.611.2217.6065.040.252.403.210.330.06
    QP34S2-3花岗闪长岩5.311.0317.3666.820.232.883.650.300.06
    沙金沟γPt1PM511G1片二长花岗岩3.850.5412.9775.80.024.050.170.080.03
    QP30D2二长花岗岩3.460.3713.5473.840.074.141.280.110.03
    白石砬子δK1PM007G1δK1角闪石闪长岩2.846.081746.950.050.6912.61.5250.124
    PM007G2δK1角闪石闪长岩3.883.0017.1952.670.53.616.841.7260.102
    柳树底下岩体
    γπJ2
    QP37S1花岗斑岩0.341.721.72968.82.655.755.3821.77145.7
    QP37S3花岗斑岩0.341.871.87890.93.797.007.7083.78218.4
    马鹿沟ξγK1Pm105XWG13正长花岗岩2.771.80.9609.395.2412.5241.3073.72139.05
    Pm105XWG14正长花岗岩2.651.560.8905.963.5712.2034.2803.64148.5
    荫士王沟
    κγπ K1
    Pm506XWG2碱长花岗斑岩4.072.210.91737.614.328.5333.9504.01143.15
    Pm506XWG3碱长花岗斑岩2.251.010.52169.291.863.1958.3620.17220.15
    北大山ηγK1QP43S1二长花岗岩1.070.141.07485.91.586.2120.6902.52216.2
    QP43S3二长花岗岩1.070.971.07917.83.7912.4928.1306.01250.1
    QP39S1二长花岗岩0.931.90.9311274.905.500.0505.20121.9
    红旗沟γδJ2C-G6花岗闪长岩2.621.580.3510531.724.388.0503.8555.3
    QP34S2花岗闪长岩1.451.292.06873.24.614.926.0132.6240.1
    QP34S2-3花岗闪长岩1.281.260.35878.35.407.185.7163.3329.9
    沙金沟γPt1PM511G1片二长花岗岩2.021.310.37515.641.347.135.6204.35105.44
    QP30D2二长花岗岩0.731.331.041209.215.800.606.5001.00123.9
    白石砬子δK1PM007G1δK1角闪石闪长岩10.7766.761.18160118.0027.0621.70032.5277.6
    PM007G2δK1角闪石闪长岩9.7745.250.571091.727.3456.7401.80199
    岩体名称代号样号岩性SrVZrHfTaLiThURb/Sr数据来源
    柳树底下岩体γπJ2QP37S1花岗斑岩150.734.58105.44.044.044.041.150.721.03
    QP37S3花岗斑岩152.354.9353.62.552.552.551.660.930.70
    马鹿沟
    ξγK1
    Pm105XWG13正长花岗岩186.120.98382.110.011.8920.2615.832.290.75
    Pm105XWG14正长花岗岩188.321.26329.110.561.2516.5214.082.220.79
    荫士王沟
    κγπ K1
    Pm506XWG2碱长花岗斑岩229.123.32303.58.621.9117.275.4052.100.62
    Pm506XWG3碱长花岗斑岩23.14.37226.69.464.117.537.0134.529.52
    北大山
    ηγK1
    QP43S1二长花岗岩201.610.8764.53.103.1415.9027.793.991.07
    QP43S3二长花岗岩446.320.55160.16.144.3346.5822.433.940.56
    QP39S1二长花岗岩540.624.1889.63.110.830.323.821.180.23
    红旗沟
    γδJ2
    C-G6花岗闪长岩1015.49.031243.250.4519.230.780.780.05
    QP34S2花岗闪长岩1162.069.50119.14.531.359.981.740.560.03
    QP34S2-3花岗闪长岩1212.060.886.40.551.317.340.840.470.02
    沙金沟γPt1PM511G1片二长花岗岩104.59.2781.782.220.624.1211.916.581.01
    QP30D2二长花岗岩488.813.70138.712.508.1420.0010.22.000.25
    白石砬子
    δK1
    PM007G1δK1角闪石闪长岩988.1146.672344.351.4415.764.171.450.08
    PM007G2δK1角闪石闪长岩28.25.012576.904.4913.669.542.747.06
    注:①.数据来源于辽宁地质勘查院(2014);②.数据来源于沈阳地质调查中心(2015)。
    下载: 导出CSV

    表 3  成矿要素权重赋值表

    Table 3.  Weight assignment table of ore-forming elements

    要素名称要素属性热液型金铜矿床相关要素权重赋值矽卡岩型铜金矿床相关要素权重赋值斑岩型铜钼金矿床相关要素权重赋值
    a1岩体γδJ2111
    a2岩体δK1111
    a3岩体ξγK1010.5
    a4岩体ηγK10.510.5
    b14组以上断裂交汇处0.511
    b22~3组断裂交汇处10.50.5
    b3褶皱、派生张裂、环状放射状裂隙10.51
    c1元古代片麻状花岗岩γPt10.500.5
    c2钓鱼台组石英岩100.5
    c3南芬组泥灰岩0.50.50.5
    c4寒武系奥陶系灰岩010.5
    c5岩体γδJ2、岩体δK1101
    h11∶20万水系铜异常110.5
    h21∶20万水系金异常110.5
    h31∶20万水系钼异常00.50.5
    总权重101010
    下载: 导出CSV

    表 4  三种类型矿床预测区网格权值统计表

    Table 4.  Statistical table of grid weights of predicted target areas of three types of ore deposits

    石英脉型金铜矿床预测区网格加权值矽卡岩型铜金床矿预测区网格加权值斑岩型铜钼金矿床预测区网格加权值
    x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8
    y10 2.5 3.5 4.5 6 5.5 3.5 1 1 y10 1.5 2.5 3.5 4 4 3.5 2 1.5 y10 2 3 3.5 4.5 4.5 3 1 1.5
    y9 2.5 4.5 4.5 4.5 5.5 3.5 2 2 y9 2 2.5 2.5 3 4.5 3.5 2 3 y9 2.5 3.5 3.5 3.5 4 3 2 2.5
    y8 5 5 3.5 7 6 8 3.5 2 y8 3 3 2.5 5 5 6 5 2 y8 4.5 4.5 3 6 5.5 7 4 2
    y7 2 3 5.5 8 5.5 7 2.5 1 y7 1.5 2 3.5 6 5.5 5.5 3.5 1.5 y7 2.5 3.5 5 7 5.5 6.5 3 1.5
    y6 4 3 5.5 5.5 7.5 6.5 1.5 1 y6 1.5 1.5 4.5 5.5 7.5 5.5 3 2 y6 3.5 3 5.5 5.5 8 6 2 1
    y5 2.5 4.5 3.5 4.5 4.5 3.5 1.5 1 y5 1.5 2.5 2.5 4 5 5 3.5 2 y5 2 4 3.5 5 4.5 4.5 2.5 1
    y4 0.5 2.5 3 3 2.5 1.5 1.5 0 y4 1 1.5 3 4 4.5 4 3.5 1 y4 0.5 2 3.5 3.5 3 3.5 3 0.5
    y3 1.5 3.5 4 1.5 2 1 1 0 y3 1.5 3 2.5 2 2.5 1.5 2.5 1 y3 1 3 3.5 1.5 1.5 1.5 2 0.5
    y2 3 5.5 6 3.5 1.5 0 1 1 y2 2.5 5.5 4.5 3.5 2 1 1.5 1.5 y2 2.5 4.5 4.5 3 1.5 0.5 1.5 1.5
    y1 3 3.5 5 6 2 0 0 0 y1 3 2.5 4 5.5 2 1 1 1 y1 2.5 2.5 3.5 5 2 0.5 0.5 0.5
    下载: 导出CSV
  • [1]

    毕献武, 胡瑞忠, 叶造军, 等. A型花岗岩类与铜成矿关系研究——以马厂箐铜矿为例[J]. 中国科学(D辑), 1999, 29(6): 490-495

    BI Xianwu, HU Ruizhong, YE Zaojun, et al. Study on the relationship between A-type granitoids and copper mineralization: A case study of Machangqing Copper Mine[J]. Science in China (Series D), 1999, 29(6): 490-495.

    [2]

    董立军. 辽宁省本溪县陈英-兰河峪铜多金属矿找矿潜力分析[J]. 有色矿冶, 2017, 33(1): 9-12 doi: 10.3969/j.issn.1007-967X.2017.01.003

    DONG Lijun. Analysis on the Ore Prospecting Potential of Copper Multi-metal Resources of Chenying-Lanheyu District in Benxi, Liaoning[J]. Non-Ferrous Mining and Metallurgy, 2017, 33(1): 9-12. doi: 10.3969/j.issn.1007-967X.2017.01.003

    [3]

    贺高品, 叶慧文. 辽东-吉南地区早元古代两种类型变质作用及其构造意义[J]. 岩石学报, 1988, 14(2): 152-162

    HE Gaopin, YE Huiwen. Two types of Early Proterozoic metamorphism and its tectonic significance in Eastern Liaoning and Southern Jilin Area[J]. Acta PetrologicaSinica, 1988, 14(2): 152-162.

    [4]

    K-51-XXIX(宽甸)幅矿产图说明书1∶20000[R]. 辽宁省地质局区域地质测量队二分队, 1967.

    [5]

    李强, 张捷, 廖勇, 等. 辽东裂谷的基本特征及含矿建造划分[J]. 有色矿冶, 2007, 23(4): 9-12 doi: 10.3969/j.issn.1007-967X.2007.04.004

    LI Qiang, ZHANG Jie, LIAO Yong, et al. Basic features of Liaodong rife and categorization of its Ore-bearing formation [J]. Non-Ferrous Mining and Metallurgy, 2007, 23(4): 9-12. doi: 10.3969/j.issn.1007-967X.2007.04.004

    [6]

    李安石. 辽宁省侵入岩与成矿[M]. 北京: 地质出版社, 1993

    LI Anshi. Intrusive rocks and mineralization in Liaoning Province[M]. Beijing: Geological Publishing House, 1993.

    [7]

    路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 460-464

    LU Yuanfa. GeoKit: A geochemical toolkit for Microsoft Excel[J]. Geochemistry, 2004, 33(5): 460-464.

    [8]

    刘绍平. 数学地质方法及应用[M]. 北京: 石油工业出版社, 2011

    LIU Shaoping. LIU Shaoping.The methods and applications on mathematical geology[M]. Beijing: Petroleum Industry Press, 2011.

    [9]

    刘志宏. 黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D]. 长春: 吉林大学, 2009.

    LIU Zhihong. Geological characteristics and origin of deposit in Cuihongshan W, Mo, Zn Polymetatic Deposit [D]. Changchun: Jilin University, 2009.

    [10]

    刘泽增. 本溪白水金矿成矿区带地质特征及远景[J]. 有色矿冶, 2012, 28(5): 1-3

    LIU Zezeng. Geological Characteristics and Mining Prospect of Baishui Gold Mine Belt in Benxi City[J]. Non-ferrous Mining and Metallurgy, 2012, 28(5): 1-3.

    [11]

    梁帅, 翟富荣, 杨占兴, 等. 辽东二棚甸子-万宝地区铜多金属矿床控矿条件分析及成矿预测[J]. 矿床地质, 2013, 32(2): 415-426 doi: 10.3969/j.issn.0258-7106.2013.02.015

    LIANG Shuai, ZHAI Furong, YANG Zhanxing, et al. Ore-controlling conditions and metallogenic prognosis of copper polymetallic deposits in Erpengdianzi-Wanbao area of eastern Liaoning Province[J]. Mineral Deposits, 2013, 32(2): 415-426. doi: 10.3969/j.issn.0258-7106.2013.02.015

    [12]

    辽宁地质勘查院. 辽宁1∶5万桥头镇幅、本溪市幅、南芬幅、铁山街幅区域地质调查报告[R]. 2014.

    [13]

    石绍山, 尤洪喜, 成龙, 等. 辽宁本溪地区关门山岩体地球化学特征及构造环境[J]. 地质与资源, 2014, 34(5): 441-445

    SHI Shaoshan, YOU Hongxi, CHENG Long, et al. Geochemistry and tectonic environment of the Guanmenshan intrusive rocks in Benxi area, Liaoning Province [J]. Geology and Eesources, 2014, 34(5): 441-445.

    [14]

    沈阳地质调查中心. 辽宁1∶5万本溪县、草河掌、田师傅、南孤山子幅区域地质调查告[R]. 2015.

    [15]

    孙宁, 孔凡乾, 韦龙明, 等. 广东市麻布岗地区银多金属矿床地质特征及找矿方向[J]. 有色金属(矿山部分), 2015, 67(1): 43-46

    SUN Ning, KONG Fanqian, WEI Longming, et al. Geological characteristics and exploration potential of Mabugang Ag-Polymetallic Deposits, Guangdong Province[J]. Non-Ferrous Metals (Mining Section), 2015, 67(1): 43-46.

    [16]

    吴迪. 本溪黄柏峪铜钼矿床成矿地质条件浅析[J]. 有色矿冶, 2005, 21(3): 8-11 doi: 10.3969/j.issn.1007-967X.2005.03.003

    WU di. The Ore-forming Condition of the Cu-Mo Deposit in Huangbaiyu Area of Benxi[J]. Non-Ferrous Mining and Metallurgy, 2005, 21(3): 8-11. doi: 10.3969/j.issn.1007-967X.2005.03.003

    [17]

    王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10): 1399-1403 doi: 10.3969/j.issn.1671-2552.2010.10.002

    WANG Shicheng. The new development of theory and method of synthetic information mineral resources prognosis[J]. Geological Bulletin of China, 2010, 29(10): 1399-1403. doi: 10.3969/j.issn.1671-2552.2010.10.002

    [18]

    叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 2014.

    YE Tianzhu, LV Zhicheng, PANG Zhenshan, et al. Theory and method of prospecting prediction in exploration area (General) [M]. Beijing: Geological Publishing House, 2014.

    [19]

    杨永胜. 大兴安岭中北段与金铜钼矿有关岩浆岩成矿专属性及红彦地区成矿预测[D]. 武汉: 中国地质大学武汉, 2017

    YANG Yongsheng. Metallogenic Specialization of Gold, Copper and Molybdenum Mineralized Magmatic Rocks in the Middle-Northern Great Xing'an Range and Metallogenic Prediction in Hongyan Area[D]. Wuhan: China University of Geosciences , 2017.

    [20]

    杨佳佳, 林楠. 基于证据加权模型的综合信息成矿预测[J]. 地质学报, 2016, 90(10): 2908-2918

    YANG Jiajia, LIN Nan. Comprehensive Information Prospecting Based on the Weighted Evidence Model[J]. Acta GeologicaSinica, 2016, 90(10): 2908-2918.

    [21]

    朱国宝. 辽宁东部地区中侏罗世黄柏峪岩体地球化学特征及其构造环境[J]. 资源信息与工程, 2019, 34(5): 20-22 doi: 10.3969/j.issn.2095-5391.2019.05.006

    ZHU Guobao. Geochemical characteristics and tectonic environment of the Middle Jurassic Huangbaiyu Pluton in eastern Liaoning[J]. Resource Information and Engineering, 2019, 34(5): 20-22. doi: 10.3969/j.issn.2095-5391.2019.05.006

    [22]

    赵鹏大, 孟宪国. 地质异常与矿产预测[J]. 地球科学, 1993, 18(01): 39-47 doi: 10.3321/j.issn:1000-2383.1993.01.001

    ZHAO Pengda, MENG Xianguo. Geological anomaly and mineral prediction[J]. Earth Science, 1993, 18(01): 39-47. doi: 10.3321/j.issn:1000-2383.1993.01.001

    [23]

    Blevin P L, Chappell B W. Chemistry, origin and evolution of mineralized granites in the Lachlan Fold Belt, Australia; the metallogeny of I- and S-type granites[J]. Economic Geology, 1995, 90(6): 1604-1619. doi: 10.2113/gsecongeo.90.6.1604

    [24]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80, 189-200. doi: 10.1007/BF00374895

  • 加载中

(4)

(4)

计量
  • 文章访问数:  451
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2022-05-12
修回日期:  2022-09-04
刊出日期:  2024-08-20

目录