Temporal and Spatial Variation and Influencing Factors of Heavy Metals in the Water of the Chenjiagou River in a Certain Place
-
摘要:
河水重金属污染一直是环境污染防治领域的热点。秦岭某地石煤矿区陈家沟河水中重金属含量严重超标,但重金属来源不明,为污染治理带来困扰。为了查明陈家沟河水中重金属来源和时空变化情况,采集了2期河水、废弃石煤矿硐排水、废渣堆淋溶水等地表水样品,采用污染指数法、主成分分析法和Pearson相关性分析方法,研究河水中重金属污染程度、空间分布,并对河水中重金属来源进行了解析。研究表明,陈家沟源头河水(对照点)重金属含量可以达到地表水的Ⅰ类标准,中游受废弃石煤矿矿硐排水及废渣堆淋溶水的影响,河水中重金属含量显著升高,汇入干流前河水中重金属含量是对照点的3.5~312倍;河水中Cd、Cu、Zn、Ni、Mn等重金属元素同源,均来源于矿硐排水、废渣淋溶水。河水中重金属含量的空间分布与地质体、污染源分布以及河水pH、盐度等因素有关。研究结果可为陈家沟河水重金属污染防治提供科学依据。
Abstract:River water heavy metal pollution has always been a hot spot problem in the field of environmental pollution prevention and control. The heavy metal content in the water of the Chenjiagou river in a stone coal mining area in Qinling exceeded the standard seriously, but the source of heavy metals was unknown, which caused trouble for pollution control. In order to find out the source and temporal and spatial changes of heavy metals in the Chenjiagou river, surface water samples such as Phase II river water, waste stone coal mine drainage and waste residue pile leaching water were collected, and the pollution index method, principal component analysis and Pearson correlation analysis methods were used to study the degree and spatial distribution of heavy metal pollution in river water, and the sources of heavy metals in river water were analyzed. The results show that the heavy metal content of the river water at the source of Chenjiagou (control point) can reach the Class I standard of surface water, and the heavy metal content in the middle reaches is significantly increased by the drainage of waste stone coal mines and the leaching water of waste residue pile in the middle reach, and the heavy metal content in the river water before entering the main stream is 3.5~312 times that of the control point; the heavy metals such as Cd, Cu, Zn, Ni, and Mn in the river water are homologous, all from the mine drainage and waste residue leaching water in the upper reaches of the river. The spatial distribution of heavy metal content in river water is related to geological bodies, pollution source distribution, river pH, salinity and other factors. The research results provide a scientific basis for the prevention and control of heavy metal pollution in Chenjiagou river.
-
-
图 1 陈家沟地质简图(据周小康,2000修改)
Figure 1.
表 1 样品分析方法、检出限及检测仪器概况表
Table 1. Sample analysis methods, detection limits and monitoring instruments
分析对象 分析方法 检出限 检测仪器 pH 玻璃电极法现场 / pH计、PHSJ-4F As、Hg、Se 原子荧光光谱法(AFS) 0.1 μg/L、0.05 μg/L、0.1 μg/L 原子荧光光度计AFS-2202E Cd、Al、Cu、
Zn、Ni、Mn电感耦合等离子体质谱(ICP–MS) 0.06 μg/L、0.6 μg/L、0.09 μg/L、
0.8 μg/L、0.07 μg/L、0.06 μg/L电感耦合等离子质谱ICAP-RQ Cr6+ 二苯碳酰二肼分光光度法(COL) 0.004 mg/L 紫外可见分光光度计UV-1800 TFe 电感耦合等离子体光谱法(ICP–AES) 4.5 μg/L 电感耦合等离子光谱ICAP7400 表 2 河水环境质量标准表(mg/L)
Table 2. Water environmental quality standard Unit (mg/L)
pH Cd Cr Cu Zn Ni Mn Fe Al 《地表水环境质量标准》
(GB 3838–2002)Ⅱ类标准 6~9 0.005 0.05 1 1 Ⅲ类标准 6~9 0.005 0.05 1 1 Ⅳ类标准 6~9 0.005 0.05 2 2 Ⅴ类标准 6~9 0.01 0.1 2 2 《地表水环境质量标准》集中式生活饮用水
地表水源地标准(GB 3838–2002)0.02 0.1 0.3 生活饮用水卫生标准(GB 5749–2006) 0.2 表 3 河水重金属超标倍数及污染程度分级表
Table 3. The excessive multiple of heavy metals and the degree of pollution in river water
等级划分 单项污染超标倍数 污染程度 综合污染指数 污染程度 Ⅰ Pc≤0 无污染 Pz≤0.7 清洁(安全级) Ⅱ 0<Pc≤1 轻度污染 0.7<Pz≤1.0 尚清洁(警戒限) Ⅲ 1<Pc≤2 中度污染 1.0<Pz≤2.0 轻度污染 Ⅳ 2<Pc≤4 重度污染 2.0<Pz≤3.0 中度污染 Ⅴ Pc>4 极度污染 Pz>3.0 重度污染 表 4 陈家沟河水中不同点位重金属元素含量表(mg/L)
Table 4. Heavy metal content in Chenjiagou river water (mg/L)
编号 位置 pH Cd Cu Zn Ni Mn Fe Al S121 源头(对照点) 7.48 0.0011 0.003 0.046 0.011 0.035 0.02 0.081 S101 沿河道距源头82m 6.46 0.0006 0.001 0.023 0.004 0.001 0.02 0.045 S103 沿河道距源头369m 5.05 0.01 0.052 0.15 0.048 0.3 0.02 1.142 S124 与S103相距1376m 3.75 0.38 1.41 6.12 2.2 11.4 0.41 20.56 S126 与S124相距1143m 4.62 0.28 0.94 5.61 1.92 9.72 0.09 14.36 表 5 陈家沟矿山污染源中重金属元素含量表(mg/L)
Table 5. Heavy metal content in Chenjiagou pollution source (mg/L)
编号 位置 类型 pH Cd Cu Zn Ni Mn Fe Al S102 距河道51m 矿硐积水 4.04 0.16 1.42 1.06 0.4 0.94 0.08 9.76 S104 与S103相距470m 矿硐排水 5.8 0.096 0.022 6.03 1.8 14.8 0.02 0.39 S122 汇入河道处与S104相距104m 废渣淋溶水 3 0.9 11.2 22.4 12.4 50.6 15.37 185.6 S3 汇入河道处与S122相距243m 矿硐排水 3.47 2.5 4.68 27.8 7.86 54.1 19.57 - S123 距离主河道直线距离65m 矿硐排水 6 0.0037 0.004 2 1.0 2.6 0.04 0.443 表 6 河水中pH、重金属相关性分析 统计表(n=11)
Table 6. Correlation analysis of pH and heavy metals in river water (n=11)
pH Cd Cr Cu Zn Ni Mn Fe Al pH 1 Cd −0.603* 1 Cr −0.685* 0.550 1 Cu −0.768** 0.824** 0.744** 1 Zn −0.586 0.988** 0.447 0.797** 1 Ni −0.636* 0.980** 0.486 0.842** 0.991** 1 Mn −0.531 0.947** 0.326 0.724* 0.977** 0.969** 1 Fe −0.694* 0.510 0.552 0.632* 0.523 0.556 0.560 1 Al −0.492 0.741** 0.426 0.462 0.759** 0.733* 0.734* 0.568 1 注:* 表示p<0.05 水平显著;**表示 p<0.01水平显著。 表 7 河水中重金属主成分分析结果表
Table 7. Analysis results of heavy metal principal components in river water
元素 主成分 PC1 PC2 PC3 PC4 Cd 0.885 0.326 0.127 0.292 Cr 0.181 0.941 0.214 0.173 Cu 0.701 0.611 0.324 −0.081 Zn 0.915 0.204 0.173 0.298 Ni 0.910 0.250 0.211 0.245 Mn 0.916 0.050 0.268 0.278 Fe 0.268 0.290 0.893 0.213 Al 0.480 0.161 0.247 0.821 表 8 矿体及岩层中重金属元素平均含量统计表(mg/L)
Table 8. Average content of heavy metal elements in ore bodies and rock formations (mg/L)
指标 Cd Cr Cu Zn Ni Mn 陈家沟石煤矿体 0.9 169 34 86.3 64.6 230 南秦岭斑鸠关组平均值* 1.58 183 21.9 133 60 516 大陆上地壳* 0.098 35 25 71 20 600 注:*表示数据来自中国地质调查局西安地质调查中心(2021)。 表 9 陈家沟不同地表水中重金属平均含量统计表(mg/L)
Table 9. Average content of heavy metals in different surface waters of Chenjiagou (mg/L)
Cd Cu Zn Ni Mn Fe Al 废渣堆淋溶水(S122) 0.9 11.2 22.4 12.4 50.6 15.37 185.6 矿硐排水(n=4) 0.69 1.53 9.22 2.76 18.11 4.93 3.53 河水(n=5) 0.13 0.48 2.39 0.84 4.29 0.11 7.24 对照值(S121) 0.0011 0.003 0.046 0.011 0.035 0.02 0.081 表 10 金属氢氧化物沉淀的pH值及其溶度积统计表(25 ℃)
Table 10. pH value and solubility product of metal hydroxide precipitation (25°C)
氢氧化物 pH 溶度积 氢氧化物 pH 溶度积 Fe(OH)3 2.48 4×10−38 Cu(OH)2 5.4 1.6×10−19 Fe(OH)2 5.5 4.8×10−17 Mn(OH)2 9.0 4.1×10−14 Al(OH)3 4.1 1.9×10−33 Zn(OH)2 5.2 4.5×10−17 Cr(OH)3 5.3 7×10−31 Cd(OH)2 6.7 2.3×10−14 表 11 河水盐度与重金属元素含量的相关性统计表(n=8)
Table 11. Correlation between salinity of river water and heavy metal content (n=8)
Cd Cu Zn Ni Mn Fe 盐度 0.694 0.176 0.820* 0.843** 0.764* −0.287 注:* 表示p<0.05 水平显著;**表示 p<0.01水平显著。 -
[1] 陈雪, 汪小祥, 刘敬青. 小流域矿集区土壤重金属污染评价与来源综合解析[J]. 有色金属(矿山部分), 2022, 74(06): 74-81
CHEN Xue, WANG Xiaoxiang, LIU Jingqing. Assessment and sources comprehensive identification of soil heavy metal pollution in small-scale drainage catchment of mining areas[J]. Nonferrous Metals(Mining Section), 2022, 74(06): 74-81.
[2] 陈西民, 马合川, 魏东等. 安康石煤资源特征及勘查开发建议[J]. 陕西地质, 2010, 28(01): 1-5+81 doi: 10.3969/j.issn.1001-6996.2010.01.001
CHEN Ximing, MA Hechuan, WEI Dong, et al. An kang stone coal resource characteristics and exploration and development suggestions[J]. Geology of Shananxi, 2010, 28(01): 1-5+81. doi: 10.3969/j.issn.1001-6996.2010.01.001
[3] 曹佰迪, 李文明, 周一凡, 等. 鄱阳湖流域沉积物中重金属元素分布特征及生态风险浅析[J]. 西北地质, 2022, 55(4): 343−353.
CAO Baidi, LI Wenming, ZHOU Yifan, et al. Geochemical Characteristic and Fluxes of Trace Metal in Water System of the Poyang Lake[J]. Northwestern Geology, 2022, 55(4): 343−353.
[4] 崔炜, 张佳伟, 苏文让, 等. 石煤采矿区水流域重金属污染治理实践[A].《环境工程》编委会, 工业建筑杂志社有限公司. 《环境工程》2019年全国学术年会论文集[C]. 《工业建筑》杂志社有限公司, 2019: 6
CUI Wei, ZHANG Jiawei, SU Wenrang, et al. Prractice of Heavy Metal Pollution Control in Water Basin of Stone Coal Mining Area[A]. Editorial Board of Environmental Engineering, Industrial Architecture Magazine. Proceedings of the 2019 National Annual Conference of Environmental Engineering[C]. Industrial Construction Magazine Limited, 2019: 6.
[5] 崔雅红, 崔炜, 孟庆俊等. 陕西蒿坪石煤矿区重金属污染及生态风险评价[J]. 矿产保护与利用, 2021, 41(02): 157-162 doi: 10.13779/j.cnki.issn1001-0076.2021.02.022
CUI Yahong, CUI Wei, MENG Qinjun, et al. Heavy Metal Pollution and Ecological Risk Assessment in Haoping Stone Coal Mine Area of Shaanxi Province[J]. Conservation and Utilization of Mineral Resources, 2021, 41(02): 157-162. doi: 10.13779/j.cnki.issn1001-0076.2021.02.022
[6] 杜蕾, 朱晓丽, 安毅夫等. 石煤尾矿区土壤重金属污染风险评价[J]. 化学工程, 2018, 46(03): 6-9+15 doi: 10.3969/j.issn.1005-9954.2018.03.002
DU Lei, ZHU Xiao-li, AN Yi-fu, et al. Potential ecological risk assessment of soil heavy metalsin a stone-like coal tailing using TCLP and Hakanson method[J]. Chemical Engineering(China), 2018, 46(03): 6-9+15. doi: 10.3969/j.issn.1005-9954.2018.03.002
[7] 冯博鑫, 徐多勋, 张宏宇, 等. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 2023, 56(1): 284−292.
FENG Boxin, XU Duoxun, ZHANG Hongyu, et al. Geochemical Characteristic of Heavy Metal in Zhouzhi Area and Analysis of Their Causes Based on Minimum Data Set[J]. Northwestern Geology, 2023, 56(1): 284−292.
[8] 韩宝华, 胡永浩, 段星星, 等. 西北地区重金属元素累积现状及典型地区成因分析[J]. 西北地质, 2022, 55(3): 318−325.
HAN Baohua, HU Yonghao, DUAN Xingxing, et al. Accumulation Status of Heavy Metals in Northwest China and Analysis of Causes in Typical Areas[J]. Northwestern Geology, 2022, 55(3): 318−325.
[9] 郝向英, 赵慧, 刘卫. 黄河中游主要重金属污染物的迁移转化[J]. 内蒙古环境保护, 2000, 12(3): 27-28
HAO Xiang Ying, ZhAO Hui, LIU wei. Migration of the Main Heavy Metal in the Middle Reaches of the Yellow River[J]. Environment and Development, 2000, 12(3): 27-28.
[10] 何宇, 洪欣, 闭潇予, 等. 九洲江流域水环境重金属污染特征及来源解析[J]. 环境化学, 2021, 40(01): 240-253 doi: 10.7524/j.issn.0254-6108.2020062812
HE Yu, HONG Xin, BI Xiaoyu, et al. Characteristics and sources of heavy metal pollution in water environment of Jiuzhou River basin[J]. Environmental Chemistry, 2021, 40(01): 240-253. doi: 10.7524/j.issn.0254-6108.2020062812
[11] 纪冬丽, 曾琬晴, 张新波, 等. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学, 2019, 38( 9): 1955-1965 doi: 10.7524/j.issn.0254-6108.2018111201
JI Dongli, ZENG Wanqing, ZHANG Xinbo, et al. Ecological risk assessment and principal component analysis of heavy metals in suburban farmlandsoils of Tianjin[J]. Environmental Chemistry, 2019, 38( 9): 1955-1965( in Chinese). doi: 10.7524/j.issn.0254-6108.2018111201
[12] 蒋起保, 欧阳永棚, 章敬若, 等. 江西省贵溪市水系沉积物重金属污染及其潜在生态风险评价[J]. 西北地质, 2022, 55(3): 326−334.
JIANG Qibao, OUYANG Yongpeng, ZHANG Jingruo, et al. Evaluation of Heavy Metal Pollution and Its Potential Ecological Risk in Stream Sediments in Guixi City, Jiangxi Province[J]. Northwestern Geology, 2022, 55(3): 326−334.
[13] 贾志刚. 安康市蒿坪石煤矿带地质特征[J]. 价值工程, 2014, 33(30): 310-311 doi: 10.14018/j.cnki.cn13-1085/n.2014.30.171
JIA Zhigang. Geological Characteristics of the Stone Coal Belt in Haoping, Ankang City[J]. Value Engineering, 2014, 33(30): 310-311. doi: 10.14018/j.cnki.cn13-1085/n.2014.30.171
[14] 贾志刚, 吕婷婷. 安康市双龙一带斑鸠关组地质特征及其含石煤性分析[J]. 煤, 2014, 23(02): 52-53+76.
[15] 李莹, 叶际达, 张亮等. 石煤开发利用重金属污染现状调查研究[J]. 能源环境保护, 2005(02): 58-61 doi: 10.3969/j.issn.1006-8759.2005.02.018
LI Ying, YE Jida, ZHANG Liang, et al. The survey of status quo on heavy-metal contamination in the bone-coal mining and utilization[J]. Energy Environmental Protection, 2005(02): 58-61. doi: 10.3969/j.issn.1006-8759.2005.02.018
[16] 廖红为, 蒋忠诚, 周宏, 等.铅锌矿周边岩溶流域重金属污染及健康风险评价[J/OL].环境科学, 2023:1−15.
LIAO Hongwei,JIANG Zhongcheng,ZHOU Hong,et al.Heavy Metal Pollution and Health Risk Assessment in Karst Basin Around a Lead-Zinc Mine[J/OL]. Environmental Science, 2023:1−15.
[17] 刘瑞平, 徐友宁, 张江华等. 小秦岭金矿带枣香河重金属及氰化物分布特征及污染成因[J]. 黄金, 2012, 33(11): 59-64
LIU Ruiping, XU Youning, ZHANG Jianghua, et al. Distribution characteristics of heavy metals and cyanide in Zaoxiang River in Xiaoqinling gold mine belt and pollution causes, Gold, 2012, 33(11): 59-64.
[18] 刘志逊, 代鸿章, 刘佳等. 我国石煤资源勘查开发利用现状及建议[J]. 中国矿业, 2016, 25(S1): 18-21 doi: 10.3969/j.issn.1004-4051.2016.z1.005
LIU Zhixun, DAI Hongzhang, LIU Jia, et al. Status quo and suggestions for exploration, development and utilization of stone coal resources in China[J]. China Mining Magazine, 2016, 25(S1): 18-21. doi: 10.3969/j.issn.1004-4051.2016.z1.005
[19] 刘总堂, 李春海, 章钢娅. 运用主成分分析法研究云南湖库水体中重金属分布[J]. 环境科学研究, 2010, 23(04): 459-466 doi: 10.13198/j.res.2010.04.85.liuzt.012
LIU Zongtang, LI Chunhai, ZHANG Gangya. App lication of P rinc ipal Component Ana lysis to the D istributions o f Heavy Meta ls in the W ater of Lakes and Reservo irs in Yunnan P rov ince[J]. R Research of Environmental Sciences, 2010, 23(04): 459-466. doi: 10.13198/j.res.2010.04.85.liuzt.012
[20] 卢秋, 邓渠成, 卢苇等. 龙江河水体重金属污染状况及健康风险评价[J]. 广西科学, 2016, 23(05): 478-484
LU Qiu, DENG Qucheng, LU Wei, et al. Assessment on the Status and Health Risks of Heavy Metal Pollutions of Longjiang River[J]. Guangxi Sciences, 2016, 23(5): 478-484.
[21] 孟春芳, 何长海, 田珂宁等. 卫河水系新乡段水质时空分异及污染因子识别[J]. 安全与环境学报, 2019, 19(04): 1461-1467 doi: 10.13637/j.issn.1009-6094.2019.04.049
MENG Chunfang, HE Changhai, TIAN Kening, et al. Identification of water pollutants in Xinxiang section of Wei River Basin in terms of spatio-temporal features and pollution contributors[J]. Journal of Safety and Environment, 2019, 19(04): 1461-1467. doi: 10.13637/j.issn.1009-6094.2019.04.049
[22] 秦欢欢, 高柏, 黄碧贤等. 拉萨河流域河水重金属分布特征及污染风险评价[J]. 有色金属(冶炼部分), 2020(10): 79-86
QIN Huanhuan, GAO Bai, HUANG Bixian, et al. Distribution Characteristics and Pollution Risk Assessment of Heavy Metals in Lhasa River Basin[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 79-86.
[23] 邱小琮, 赵红雪, 尹娟等. 爱伊河水环境容量与水体自净能力研究[J]. 人民黄河, 2015, 37(01): 87-90 doi: 10.3969/j.issn.1000-1379.2015.01.022
QIU Xiaozong, ZHAO Hongxue, YIN Juan, et al. Study on the Water Environmental Capacity and the Water Self- Purification Ability of Aiyi River[J]. Yellow River, 2015, 37(01): 87-90. doi: 10.3969/j.issn.1000-1379.2015.01.022
[24] 舒旺, 王鹏, 肖汉玉等. 鄱阳湖流域乐安河水化学特征及影响因素[J]. 长江流域资源与环境, 2019, 28(03): 681-690
SHU Wang, WANG Peng, XIAO Han-yu, et al. Hydrochemical Characteristics and Influencing Factors in the Le’an River, Poyang Lake Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(03): 681-690.
[25] 宿文姬, 徐友宁, 凡生等. 广东大宝山矿区横石河沿岸水土重金属分布规律及其累积风险[J]. 地质通报, 2014, 33(08): 1231-1238 doi: 10.3969/j.issn.1671-2552.2014.08.019
SU Wenji, XU Youning, FAN Sheng, et al. The distribution regularity and accumulation risk of heavy metals in water and soil along the Hengshi River in the Dabaoshan mining area, Guangdong Province[J]. Geological bulletin of China, 2014, 33(08): 1231-1238. doi: 10.3969/j.issn.1671-2552.2014.08.019
[26] 孙玉宝, 张金水. 霍邱县石煤矿床地质特征及其开发利用前景初探[J]. 矿产保护与利用, 2007(02): 24-27 doi: 10.3969/j.issn.1001-0076.2007.02.007
SUN Yubao, ZHANG Jinshui. Geological Characteristics of the Stone Coal Deposits and its Prospects of the Development and Utilization in Huoqiu County [J]. Conservation and Utilization of Mineral Resources, 2007(02): 24-27. doi: 10.3969/j.issn.1001-0076.2007.02.007
[27] 汤爱坤. 调水调沙前后黄河口重金属的变化及其影响因素[D]. 青岛: 中国海洋大学, 2011
TANG Aikun. The influence Factors and Behavior Characteristics of Heavy Metals from River to Sea in Yellow River [D]. Qingdao: Ocean University of China, 2011.
[28] 汪泽秋. 湖南石煤资源的开发利用与保护[J]资源开发与保护, 1992(01): 63-64+81
WANG Zeqiu. Development, utilization and protection of Hunan stone coal resources[J]. Resources Development and Conservation, 1992(01): 63-64+81.
[29] 王国星. 陕南利用资源循环发展[J]. 西部大开发, 2012, No. 140(09): 90-91
WANG Guoxing. Southern Shaanxi uses resources for circular development[J]. Great Development of the Western Region, 2012, No. 140(09): 90-91.
[30] 王磊. 西秦岭火鸡山地区地球化学异常分形解析及成矿预测研[D]. 兰州: 西北师范大学, 2020
WANG Lei. Fractal Analysis and Metallogenic Prediction of Geochemical Anomalies in Huojishan Area, Western Qinling[D]. Lanzhou: Northwest Normal University, 2020.
[31] 王美华. 浙江常山江源石煤矿山周边耕地土壤重金属分布特征与生态风险评价[J]. 浙江国土资源, 2021(S1): 13-21 doi: 10.16724/j.cnki.cn33-1290/p.2021.s1.004
WANG Meihua. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Cultivated Soil Around Jiangyuan Stone Coal Mine in Changshan, Zhejiang[J]. Zhejinag Land & Resources, 2021(S1): 13-21. doi: 10.16724/j.cnki.cn33-1290/p.2021.s1.004
[32] 王宇. 铜陵某矿区小流域重金属污染及风险评价[D]. 合肥: 安徽农业大学, 2022
WANG Yu. Heavy Metal Pollution and Ecological Risk Assessment of a Small Watershed draining a mining area in Tongling[D]. Anhui Agricultural University, 2022.
[33] 王宇彤. 沉积物中重金属迁移释放规律研究[D]. 北京: 中国矿业大学, 2021
WANG Yutong. Study on the Migration and Release Rules of Heavy Metals in Sediments[D]. Beijing: China University of Mining and Technology, 2021.
[34] 吴海霞. SPSS在试卷相关性分析和再测信度计算中的应用[J]. 电脑知识与技术, 2008, 4(S2): 148-149 doi: 10.3969/j.issn.1009-3044.2008.z2.091
WU Haixia. SPSS Application in Examination Paper Correlation Analysis and Retest Reliability[J]. Computer Knowledge and Technology, 2008, 4(S2): 148-149. doi: 10.3969/j.issn.1009-3044.2008.z2.091
[35] 徐友宁.矿山环境地质与地质环境[J].西北地质,2005, 38(04): 108−112
XU Youning. Mine environmental geology and mine geological environment[J]. Northwestern Geology, 2005, 38(4): 108−112.
[36] 徐友宁, 陈社斌, 陈华清等. 大柳塔煤矿开发土壤重金属污染响应研究[J]. 中国矿业, 2007, No. 119(07): 47-50+54 doi: 10.3969/j.issn.1004-4051.2007.07.015
XU Youning, CHEN Shebin, CHEN Huaqing, et al. Study on soil heavy metals pollution in daliuta coal mine area[J]. China Mining Magazine, 2007, No. 119(07): 47-50+54. doi: 10.3969/j.issn.1004-4051.2007.07.015
[37] 许飞亚, 姬亚军, 王玲玲等. 信阳市浉河水体重金属污染监测与评价[J]. 山东化工, 2022, 51(12): 222-225+228 doi: 10.3969/j.issn.1008-021X.2022.12.068
XU Feiya, JI Yajun, WANG Lingling, et al. Monitoring and Evaluation of Heavy Metal Pollution of Shihe River in Xinyang City[J]. Shan Dong Chemical Industry, 2022, 51(12): 222-225+228. doi: 10.3969/j.issn.1008-021X.2022.12.068
[38] 杨学存, 马合川. 安康石煤特征及其综合利用[J]. 陕西煤炭, 2013, 32(01): 11-13 doi: 10.3969/j.issn.1671-749X.2013.01.004
YANG Xuecun, MA Hechuan. Characteristics of Ankang stone coal and its comprehensive utilization[J]. Shaanxi Coal, 2013, 32(01): 11-13. doi: 10.3969/j.issn.1671-749X.2013.01.004
[39] 叶宇航, 周润东, 于雪等. 水环境中微塑料对重金属的吸附及其影响因素[J]. 环境化学: 1-10 2023-02-24].
YE Yuhang, ZHOU Rundong, YU Xue, et al. Review on the adsorption of heavy metals with micro plastics in water environment and its influencing factors[J]. Environmental Chemistry, 2023, 42(3): 1-10.
[40] 俞茜. 普渡河污染源解析及浮游藻类变化特征[D]. 北京: 清华大学, 2015
YU Xi. Source Apportionment of Pollutants and Variation Analysis in Phytoplankton Compositions in the Pudu River[D].Beijing: Tsinghua University, 2015.
[41] 张嘉杰. 分析便携式水质分析仪器的应用前景[J]. 科技创新与应用, 2013, No. 51(11): 28
ZHANG Jiajie. Analyze the application prospect of portable water quality analysis instruments[J]. Technological Innovation and Application, 2013, No. 51(11): 28.
[42] 张丽红. 便携式水质分析仪器的应用前景[J]. 资源节约与环保, 2015, No. 162(05): 48 doi: 10.3969/j.issn.1673-2251.2015.05.048
ZHANG Lihong. Application prospect of portable water quality analysis instruments[J]. Resources Economization &Environmental Prolection, 2015, No. 162(05): 48. doi: 10.3969/j.issn.1673-2251.2015.05.048
[43] 中国地质调查局西安地质调查中心. 紫阳县蒿坪镇陈家沟废弃矿硐酸性水污染综合治理工程可行性研究报告[R]. 中国地质调查局西安地质调查中心, 2021.
[44] 周巧巧, 任勃, 李有志等. 中国河湖水体重金属污染趋势及来源解析[J]. 环境化学, 2020, 39(08): 2044-2054 doi: 10.7524/j.issn.0254-6108.2019060403
ZhOU Qiaoqiao, REN Bo, LI Youzhi, et al. Trends and sources of dissolved heavy metal pollution in water of rivers and lakes in China[J]. Environmental Chemistry, 2020, 39( 8): 2044-2054. doi: 10.7524/j.issn.0254-6108.2019060403
[45] 周闻达, 向武, 金丽, 等. 石煤矿山酸性废水自净化机理及防治对策[J]. 环境科学与技术, 2020, 43(08): 20-27 doi: 10.19672/j.cnki.1003-6504.2020.08.004
ZHOU Wenda, XIANG Wu, JIN Li, et al. The Self-purification Mechanism and Control Counter measures of Cadmium-rich Acid Mine Drainage of Stone Coal Mines[J]. Environmental Science & Technology, 2020, 43(08): 20-27. doi: 10.19672/j.cnki.1003-6504.2020.08.004
[46] 周小康. 紫阳县幅I49E021003 1/5万地质图说明书[R]. 陕西省地调院, 2000
[47] 朱泊丞, 施泽明, 王新宇等. 安宁河水体中重金属空间分布特征及来源识别[J]. 四川冶金, 2018, 40(04): 24-31 doi: 10.3969/j.issn.1001-5108.2018.04.006
ZHU Bocheng, SHI Zeming, WANG Xinyu, et al. Spatial distribution characteristics and source identification of heavy metals in Anning River[J]. Sichuan Metallurgy, 2018, 40(04): 24-31. doi: 10.3969/j.issn.1001-5108.2018.04.006
[48] 朱雪凝. 滏阳河邯郸段重金属风险评估及来源解析[D]. 邯郸: 河北工程大学, 2021
ZHU Xuening. Risk Assessment and Source Apportionment of Heavy Metals of the Fuyang River in Handan[D]. Handan: Hebei University of Engineering, 2021.
[49] Alves D D, Riegel R P, Klauck C R, et al. Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity[J]. Environmental Science and Pollution Research, 2020, 27(11): 12202-12214. doi: 10.1007/s11356-020-07791-8
[50] Chai N, Yi X, Xiao J, et al. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River[J]. Science of the Total Environment, 2021, 757: 143882-143892. doi: 10.1016/j.scitotenv.2020.143882
[51] Kumar B, Singh U K. Source apportionment of heavy metals and their ecological risk in a tropical river basin system[J]. Environmental Science and Pollution Research International, 2018, 25(25): 25443−25457.
[52] Liu CW, Lin KH, Kuo YM. Application of factor analysis in the assessment of ground water quality in a black foot disease area in Taiwan[J]. Science Total Environmental, 2003, 313, 77-89. doi: 10.1016/S0048-9697(02)00683-6
[53] Shil S, Singh K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system[J]. Ecological Indicators, 2019.
[54] Xiao J, Wang L, Deng L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau [J]. Science of the Total Environment, 2019, 650: 2004-2012. doi: 10.1016/j.scitotenv.2018.09.322
[55] Yang X H, WU P B, YIN A J, et al. Distribution and source analysis of heavy metals in soils and sediments of Yueqing Bay Basin, East China Sea[J]. Marine Pollution Bulletin, 2016, 115( 12): 489-497.
-