石煤矿区酸性废水稳定同位素特征及地质意义

王晓勇, 徐友宁, 赵振宏, 兀少波, 代俊宁. 2023. 石煤矿区酸性废水稳定同位素特征及地质意义. 西北地质, 56(4): 162-168. doi: 10.12401/j.nwg.2023130
引用本文: 王晓勇, 徐友宁, 赵振宏, 兀少波, 代俊宁. 2023. 石煤矿区酸性废水稳定同位素特征及地质意义. 西北地质, 56(4): 162-168. doi: 10.12401/j.nwg.2023130
WANG Xiaoyong, XU Youning, ZHAO Zhenhong, WU Shaobo, DAI Junning. 2023. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area. Northwestern Geology, 56(4): 162-168. doi: 10.12401/j.nwg.2023130
Citation: WANG Xiaoyong, XU Youning, ZHAO Zhenhong, WU Shaobo, DAI Junning. 2023. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area. Northwestern Geology, 56(4): 162-168. doi: 10.12401/j.nwg.2023130

石煤矿区酸性废水稳定同位素特征及地质意义

  • 基金项目: 陕西省生态环境厅项目“陕西省紫阳县矿产开发伴生硫铁矿水污染场地调查”资助。
详细信息
    作者简介: 王晓勇(1977−),男,硕士,高级工程师,从事生态水文地质及水文水资源研究。E−mail:wxiaoyong@mail.cgs.gov.cn
  • 中图分类号: P641

Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area

  • 紫阳石煤矿区水体硫酸盐浓度超标,污染日趋严重,识别硫酸盐的来源对于矿区水体硫酸盐污染防治和饮用水安全保障极为重要。笔者应用硫酸盐S、O同位素示踪矿区酸性废水对地下水的污染。紫阳石煤矿区酸性废水中硫酸根离子浓度高而pH值低,其硫酸盐S、O同位素显著富集轻同位素,表明石煤中黄铁矿开采后氧化是其产生的主要机制。通过IsoSource质量守恒模型,计算了石煤矿区酸性废水对地下水硫酸盐的贡献率约为36.5%。应用多种同位素综合识别酸性废水硫酸盐来源及其对地下水影响的定量研究提供了一种新方法,为矿山开发与生态环境保护修复提供了科学依据。

  • 加载中
  • 图 1  石煤矿山位置及采样点分布图

    Figure 1. 

    图 2  酸性废水pH及SO42浓度时空分布图

    Figure 2. 

    图 3  石煤矿区水体pH及SO42–浓度时空分布图

    Figure 3. 

    图 4  石煤矿区水体H–O同位素组成关系图

    Figure 4. 

    图 5  地下水硫酸盐氧化时空特征图

    Figure 5. 

    图 6  研究区水体硫酸盐同位素分布特征

    Figure 6. 

    表 1  紫阳石煤矿区水样化学组成及同位素组成

    Table 1.  The chemical and isotope composition of water samples in Ziyang stone coal mining area

    样品编号取样点位置样品类型pHSO42−(mg/L)δ18O (‰)δ34S (‰)δD (‰)δ18O (‰)
    ZK-1废渣坝地下水3.143870−3.1812.62−53.11−10.05
    D001米溪梁地表水2.32550−3.4214.14−61.05−9.88
    D002米溪梁地表水2.63336.72.8211.30−51.51−8.45
    D004米溪梁地表水36963−4.2114.55−61.07−9.92
    D005米溪梁地表水2.784450−3.738.21−60.80−9.85
    D006米溪梁地表水2.663560−4.487.50−60.51−9.74
    D007米溪梁地表水2.93920−4.0413.61−61.09−9.76
    D008米溪梁地表水3.9136500.9610.80−59.79−9.51
    D009米溪梁地表水3.533210−2.5411.97−61.33−9.69
    D010米溪梁地表水3.252650−3.349.39−60.90−9.59
    D011米溪梁矿坑水2.793117−3.1613.17−60.53−9.79
    D012米溪梁矿坑水3.33200−3.2513.13−59.60−9.65
    D013米溪梁矿坑水3.712160−2.3412.22−58.94−9.46
    D014米溪梁矿坑水3.52870−2.4412.14−58.63−9.39
    D015米溪梁矿坑水5.12020−3.338.68−59.60−9.55
    D016米溪梁矿坑水4.072940−2.9312.69−58.05−9.22
    D017米溪梁地下水3.72250−4.867.83−58.45−9.34
    D018米溪梁地下水4.192970−2.697.63−60.62−9.55
    D019米溪梁地下水3.414440−2.8111.42−60.21−9.42
    D021米溪梁矿坑水3.33710−3.347.23−58.54−9.68
    D022米溪梁矿坑水3.654110−2.877.08−58.70−9.67
    D023米溪梁矿坑水5.7235307.419.36−63.17−10.13
    D024米溪梁地下水5.63640−1.45−5.97−61.30−9.85
    D025大磨沟地表水6.0559.9−1.465.13−62.01−9.85
    下载: 导出CSV
    续表1
    样品编号取样点位置样品类型pHSO42−(mg/L)δ18O (‰)δ34S (‰)δD (‰)δ18O (‰)
    D026大磨沟矿坑水//−2.044.50−58.14−9.31
    D027小磨沟矿坑水4.262235.2812.62−60.96−9.80
    D028小磨沟地表水6.2425.8−3.1311.72−62.66−9.81
    D029小米溪沟地下水5.95254−0.11−2.20−61.57−9.97
    D030月池沟地表水4.161500−3.8913.04−59.60−9.72
    D031月池沟地表水//−0.8011.30−61.21−9.96
    D032小米溪沟地表水3.143870−3.1711.89−58.30−9.54
    D033小米溪沟地表水3.1833208.1711.84−60.79−9.87
    D037铁炉沟地表水6.34140−0.388.30−67.33−10.78
    D038铁炉沟地表水6.5269.7−3.807.40−63.44−10.05
    YS01蒿坪镇大气降水6.19319//−10.44−4.30
    YS02陈家沟雨水6.67305//−9.21−4.17
    YS03陈家沟雨水5.7114//−10.46−4.54
    YS04陈家沟雨水6.0949.1//−15.09−5.17
    YS05大米溪沟雨水3.34319//−20.76−5.97
    YS06大米溪沟雨水7.1929.7//−23.18−6.46
    YS07大米溪沟雨水4.81113//−23.78−6.42
    YS08大米溪沟雨水 ////−20.56−5.97
    下载: 导出CSV

    表 2  不同来源硫酸盐含量及同位素组成

    Table 2.  Sulphate content and isotopic composition of different sources

    类型备注
    降雨−3~+9+7~+17顾慰祖,2011
    邱述兰,2012
    肥料10.5±9.26.7±5.5Laura et al.,2004
    硫化物<+18<+5Qibo et al.,2016
    石膏(蒸发岩)+15~+25+15~+20顾慰祖等,2000
    下载: 导出CSV
  • [1]

    丁坤, 王瑞廷, 刘凯, 等. 南秦岭柞水-山阳矿集区龙头沟金矿床硫化物微量元素和硫同位素地球化学特征[J]. 地质与勘探, 2021, 57(5): 969-980.

    DING Kun, WANG Ruiting, LIU Kai, et al. Sulfide trace elements and sulfur isotope geochemistry of the Longtougou gold deposit, Zhashui - Shanyang ore district, South Qinling[J]. Geology and Exploration, 2021, 57( 5) : 0969 - 0980.

    [2]

    顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011

    GU Weizu. Isotope hydrology[M]. Beijing: Science Press, 2011

    [3]

    顾慰祖, 林曾平, 费光灿, 等. 环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(01): 14-20

    GU Weizu, LIN Zengping, FEI Guangchan, et al. The use of environmental sulphur isotopes in the study of the Cambrian-Ordovician aquifer system in the south of Datong[J]. Advances in Water Science, 2000, 11(01): 14-20.

    [4]

    胡德银, 张宏德, 王化锋等. 浅议安康石煤地质特征及“十二五”开发设想[J]. 科技信息, 2011, (23): 45-47 doi: 10.3969/j.issn.1001-9960.2011.23.030

    HU Deyin, ZHANG Hongde, WANG Huafeng, et al. Yee Shallow AnKang Stone Coal Geological Features and " Second Five " Development Vision[J], SCIENCE & TECHNOLOGY INFORMATION, 2011, (23): 45-47. doi: 10.3969/j.issn.1001-9960.2011.23.030

    [5]

    庞振甲, 成欢, 冀月飞. 陕西省略阳县陶家沟地区地质地球物理特征及找矿预测[J]. 西北地质, 2022, 55(1): 93-100

    PANG Zhenjia, CHENG Huan, JI Yuefei. Geophysical Characteristics and Prospecting Prediction of Taojiagou Area in Lueyang County, Shaanxi Province[J]. Northwestern Geology, 2022, 55(1): 93-100.

    [6]

    邱述兰. 利用多同位素($ \delta {}^{34}{\text{S}} $, $ \delta {}^{15}{\text{N}} $, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}} $和$ \delta {}^{13}{{\text{C}}_{DIC}} $)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染[D]. 重庆: 西南大学, 2012

    QIU Shulan. Use of multiple environmental isotopes($ \delta {}^{34}{\text{S}} $, $ \delta {}^{15}{\text{N}} $, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}} $and $ \delta {}^{13}{{\text{C}}_{DIC}} $)to trace sulfate and nitrate contaminations of karst groundwater in an agricultural area-A case from Wingmuguan Subterranean Stream System[D]. Chongqing: Southwest University, 2012

    [7]

    徐友宁, 张江华, 何芳, 等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    [8]

    张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(1): 185-195

    ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(1): 185-195.

    [9]

    张卫国, 侯恩科, 李军, 等. 陕南石煤及煤灰中磷元素的迁移规律[J]. 西安科技大学学报, 2021, 41(02): 316-322

    ZHANG Weiguo, HOU Enke, LI Jun, et al. Migration law of Phosphorus in stone coal and coal ash in southern Shaanxi province[J]. Journal of Xi’an University of Science and Technology, 2021, 41( 2): 316-322.

    [10]

    张亚丽, 张志敏, 张继军, 等. 安康西部农田土壤硒形态及农作物富硒特征[J]. 西北地质, 2021, 54(3): 229-235

    ZHANG Yali, ZHANG Zhimin, ZHANG Jijun, et al. Soil Selenium Speciation in Cropland of Western Ankang and the Characteristics of Crop Selenium Enrichment[J]. Northwestern Geology, 2021, 54(3): 229-235.

    [11]

    Balci N, Iii W, Mayer B, et al. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite[J]. Geochimica Et Cosmochimica Acta, 2007, 71(15), 3796-3811. doi: 10.1016/j.gca.2007.04.017

    [12]

    Banfield J F, Nealson K H, Lovley D R. Geomicrobiology: Interactions between microbes and minerals[J]. Mineralogical Magazine, 1998, 62(5), 725-726.

    [13]

    Bottrell S, Tellam J, Bartlett R, et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK[J]. Applied Geochemistry, 2008, 23(8), 2382-2394. doi: 10.1016/j.apgeochem.2008.03.012

    [14]

    Everdingen R O V, Krouse H R. Isotope composition of sulphates generated by bacterial and abiological oxidation[J]. Nature, 1985, 315(6018): 395-396. doi: 10.1038/315395a0

    [15]

    Jezierski P, Szynkiewicz A, Jedrysek M O. Natural and Anthropogenic Origin Sulphate in an Mountainous Groundwater System: S and O Isotope Evidences[J]. Water Air & Soil Pollution, 2006, 173(1/4): 81-101.

    [16]

    Laura V . Fertilizer characterization: isotopic data (N, S, O, C, and Sr). [J]. Environmental Science & Technology, 2004, 38(12): 3254. DOI:doi:10.1021/es0348187.

    [17]

    Lewis J S , Krouse H R . Isotopic composition of sulfur and sulfate produced by oxidation of FeS[J]. Earth and Planetary Science Letters, 1969, 5(6): 425-428.

    [18]

    Mingyu W , Sheng H , Bianfang C , et al. A review of processing technologies for vanadium extraction from stone coal[J]. Mineral Processing & Extractive Metallurgy, 2018: 1-9.

    [19]

    Qibo H , Xiaoqun Q , Qiyong Y , et al. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using δ13CDIC and δ34S in karst area, northern China[J]. Environmental Earth Sciences, 2016, 75(1): 1-10. doi: 10.1007/s12665-015-4873-x

    [20]

    Schippers A , Sand W . Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur[J]. Applied & Environmental Microbiology, 1999, 65(1): 319.

    [21]

    Stempvoort D R V, Krouse H R . Controls of δ18O in sulphate: Review of experimental data and application to specific environments[J]. Environmental Geochemistry of Sulfide Oxidation, 1994.

    [22]

    Taylor B E , Wheeler M C , Nordstrom D K . Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation[J]. Nature, 1984, 308(5959): 538-541. doi: 10.1038/308538a0

    [23]

    Tuttle M L W , Breit G N , Cozzarelli I M . Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J]. Chemical Geology, 2009, 265(3-4): 455-467. doi: 10.1016/j.chemgeo.2009.05.009

    [24]

    Wang X , Zhang Y, Liu T, et al. Phase Transformation and Dissolution Behavior of Pyrite in the Roasting-Sulfuric Acid Leaching Process of Vanadium-Bearing Stone Coal[J]. Minerals, 2020, 10(6): 526-535 doi: 10.3390/min10060526

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1084
  • PDF下载数:  128
  • 施引文献:  0
出版历程
收稿日期:  2023-01-06
修回日期:  2023-07-06
刊出日期:  2023-08-20

目录